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ABSTRACT 
The removal of polycyclic aromatic hydrocarbons (PAH)s in contaminated sites is one of the major challenges 

in the petroleum industry. This work aimed to select one hydrocarbonoclastic Pseudomonas aeruginosa among 

three isolates recovered from petrol stations and to evaluate the degradation of pyrene and anthracene in 

submerged culture. For bacterial screening, we chose the emulsification index and the drop collapse test. The 

TGC-02 isolate was selected due to its emulsification index towards four fuels and oil collapse within 48h. 

Further, TGC-02 was inoculated into a liquid medium contaminated with 50 mg/L (PAH)s. Tests were carried 

out in triplicate at 5-day intervals to determine the cellular growth, pH, cell viability, protein content and 

enzymatic activity over 25 days of incubation. Cellular growth in the reactors with petroderivatives were not 

statistically different from the control. Up to 20 days, cells remained viable. Considering the abiotic losses, 

TGC-02 had degraded about 40 and 30% of pyrene and anthracene, respectively. pH increased from 5 to 8 and 

no specific activity was observed for laccase or manganese peroxidase. However, protein concentration 

increased during the degradation experiment. Results suggested that these enzymes are not involved in the 

process of anthracene and pyrene removal by P. aeruginosa. 
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I. INTRODUCTION 

Modern society is still heavily dependent 

on fossil fuels to perform most of its activities [1,2]. 

Polycyclic Aromatic Hydrocarbons (PAH)s are one 

of the major contaminants generated by the 

incomplete combustion of fossil fuels [3]. (PAH)s 

are very toxic, carcinogenic and teratogenic 

molecules for mammals [4, 5]. Their hydrophobicity 

allows easy absorption by contact with the skin and 

after ingestion or inhalation, this poses a health risk 

[6,7]. 

In a liquid medium, the physicochemical 

properties of (PAH)s promote the sorption of these 

molecules in suspended organic matter, as well as in 

the soil aggregates in the vadose zone, making it 

difficult to remove them, which is one of the major 

challenges of the oil industry [8]. (PAH)s sorption in 

the soil is especially guaranteed by its persistent 

nature, attributed, among other properties, to low  

 

 

 

solubility in water and the number of condensed 

aromatic or cyclopentane rings [9, 10]. Additionally, 

the number of the rings divides the (PAH)s into two 

groups: low molecular weight (PAH)s (LMW-PAH) 

with two and three rings and high molecular weight 

(PAH)s (HMW-PAH), formed by four or more rings 

[11]. 

Bioremediation stands out as one of the 

best strategies for removing (PAH)s from 

contaminated water [12]. Several bacterial groups 

can convert these compounds to CO2, such as 

Actinobacteria [13] and Cyanobacteria [14]. 

Additionally, Proteobacteria stand out for their 

metabolic versatility, and can be used as (PAH)s 

removal agents. However, little is known about the 

enzymatic mechanism involved in the process, and it 

is believed that oxidoreductases participate in the 

process [15]. 

Pseudomonas aeruginosa is the main 

representative of the fluorescent pseudomonads 

group (Proteobacteria). Its metabolic versatility and 

persistence in environments that exert high selective 

pressure, making the species one of the best 
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candidates as a bioremediation agent for recalcitrant 

and persistent molecules [16,17]. Additionally, P. 

aeruginosa is one of the most prevalent bacteria 

found in sites contaminated by petroleum 

hydrocarbons [18]. The literature reports the use of 

more than 90 organic compounds as sources of 

carbon and energy for the bacterium [19], among 

them aromatic hydrocarbons [20] and asphaltenes 

[21]. Thus, the aim of the present study was to 

identify hydrocarbonoclastic isolates of P. 

aeruginosa and to evaluate the degradation capacity 

towards anthracene and pyrene in water. 

 

II. MATERIAL AND METHODS 
2.1 (PAH)S 

96% pure anthracene and 98% pure pyrene 

were used (Merk KGaA, Darmstadt, Germany). 

(PAH)s solutions were prepared in pure acetone 

(Sigma-Aldrich, Darmstadt, Germany). 

 

2.2. Microbes and acclimation 

Three isolates of P. aeruginosa recovered 

from soil samples surrounding petrol station areas in 

the city of João Pessoa, Brazil, TGC-02, TGC-03 

and TGC-07 [3] were used in this study. We 

assumed that the exerted selective pressures 

represented by the concentration of the Total 

Petroleum Hydrocarbons (TPH) in these soils, which 

ranged 10,000-12,000 mg/Kg [22], allowed these 

isolates as potential candidates for this study. The 

isolates are registered in the National Genetic 

Heritage and Associated Traditional Knowledge 

Management System (SisGen) under number 

A6B80BD, and kept in the Laboratory of 

Environmental Microbiology. 

The isolates were acclimated to anthracene 

and pyrene for 96h at 30°C in flasks containing 

Minimal Mineral Medium, MM (0.5 g/L K2HPO4, 

0.5 g/L (NH4)2SO4, 0.5 g/L MgSO4, 0.01 g/L FeCl2, 

0.01 g/L CaCl2, 0.001 g/L MnCl2, 0.001 mg/L 

ZnSO, to which had been added 0.1 g/L of yeast 

extract and increasing concentrations of (PAH)s (1, 

5, 10, 25 and 50 mg/L). Every 24h, an aliquot (10% 

v/v) was transferred to a new flask, evaluating the 

growth of the cells by observing the turbidity by 

visual inspection [23]. 

 

2.3 Determination of hydrocarbonoclastic activity 

The tests, carried out in triplicate, had the 

objective of selecting, among the three isolates of P. 

aeruginosa, the one with the highest petroleum 

hydrocarbon degrading potential. The screening 

consisted of two tests: calculation of the 

emulsification index and a drop-collapse assay. In 

the first, the technique described by Cooper and 

Goldenberg [24] was used, using a 1:1 ratio of the 

aqueous phase and the oil phase, represented by 

gasoline, diesel oil, kerosene and lubricating oil, 

purchased at gas stations. The mixture was stirred 

vigorously for two minutes every 24h interval over 2 

days. The emulsification indexes of 24h (E24) and 

48h (E48) were measured by dividing the emulsion 

height and the total height of the phase mixture, 

multiplied by 100. A 1% SDS solution was used as 

the control. 

The drop-collapse assay was performed 

according to Hanson and Desai [25]. A 12-well cell 

culture plate (working volume/well 2 mL) was filled 

with 1.5 mL of MM, 10 μL of oil phase (gasoline, 

diesel, lubricating oil, benzene, toluene and Xylene), 

1.5 μL of the 1% 2,6-Dichlorophenolindophenol 

indicator solution (DCPIP) and 2.5μL of the 

bacterial suspension with turbidity standardized by 

tube #1 on the MacFarland scale. The plates were 

incubated at 30°C for 120h.  Changes in the colour 

or appearance of the oil drop were visually recorded 

every 24 hours. The cell viability was verified every 

24h by transferring 10μL to 96-well plates 

containing nutrient broth, followed by incubation at 

30°C for 24-48h and visual inspection of the 

turbidity [26]. 

 

2.4 (PAH)s biodegradation assay 

The assay was performed in triplicate for 

25 days under static incubation at room temperature 

in amber glass microcosms containing 30mL of 

mineral medium to which 0.1 g/L of yeast extract 

and 50 mg/L of pyrene or anthracene had been 

added. The inoculum corresponded to 10% (v/v) and 

was prepared in 0.85% NaCl, from a recent TGC-02 

culture, with turbidity standardized using tube #1 on 

the MacFarland scale. Aliquots were withdrawn at 0, 

3, 5, 10, 15, 20 and 25 days for enzyme activity and 

protein concentration assays. A cell viability test was 

performed for each sample collected. The assay was 

performed in microdilution plates, adding 1mL of 

the sample and equal volume of 1% (v/v) resazurin 

solution. Cell viability was determined by observing 

the change of the colour from blue to pink or 

colourless [27]. Five experimental groups were 

formed, including controls (two abiotic controls and 

one with TGC-02 inoculated in the medium without 

(PAH)s. Room temperature and pH were monitored 

during the experiment. 

 

2.5 Determination of laccase and manganese-

peroxidase (MnP) activity 

Samples were centrifuged at 10.000 rpm for 

10 minutes (Mini-Spin Eppendorf Rotor F-45-12-

11). The assays were performed with the supernatant 

and with the pellet, resuspended in 2 mL of 0.85% 

NaCl and sonicated for 10 minutes (Unique USC 

1800). 
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For the determination of laccase activity, 

we adapted the method described by Arora et al. 

[28]. Samples of 13 µl from the amber glass 

microcosms were transferred into a tube containing 

288 µl of a solution (224 µl of 200 mM sodium 

acetate buffer pH 4.5 and 64 µl of 5mM guaiacol – 

extinction coefficient of 26,60 M-1cm- 1). Then, the 

absorbance (λ = 450 nm) was determined at 5, 10, 15 

and 30 minutes (MindRay MR-96A). A positive 

control of the assay was performed with laccase 

from Trametes versicolor at 0.01mg/mL (Sigma-

Aldrich 38429) to verify that the assay was properly 

carried out. 

For the determination of MnP activity, we 

adapted the methodologies described by Wariish et 

al. [29] and Kuan et al. [30]. Samples of 50μL from 

the amber glass microcosms were mixed with 450μL 

of Milli-Q water, 250μL of sodium acetate buffer 

(200 mM, pH 4.5), 100μL of manganese sulphate 

(20 mM), and 100μL of sodium lactate (250 mM). 

The reaction was started by adding 50 μL of H2O2 

(50 μM) and the production of the lactate-Mn 

complex (extinction coefficient of 65,00 M-1cm-1) 

was monitored at 270 nm for 10 min (Even IL0082-

Y-BI). A positive control of the assay was conducted 

with MnP from Bjerkandera adjusta at 0.01mg/mL 

(Sigma-Aldrich 68528) using the same reasoning as 

for laccase positive assay. 

 

2.6 Quantification of the protein 

The method described by Sedmark and 

Grossberg [31] was used for protein quantification. 

Samples of 150μL of the supernatant were mixed 

with 150 μL of Coomassie Brilliant Blue G250 and 

absorbance was determined at λ = 630 and 450 nm. 

The ratio of the means of each absorbance was 

replaced in the equation y = 0.0496x + 0.224 

(r2=0.9907), obtained in the calibration curve with 

bovine serum albumin (Sigma-Aldrich A9418). 

 

2.7 (PAH)s quantification 

The (PAH)s concentration was determined 

by gas chromatography (HP 5880, column 30 m x 

0,25 mm) coupled to mass spectrometry (EM 5987), 

using USEPA methods [32, 33]. The extracts were 

obtained by Soxhlet extraction [34], using 

dichloromethane. The pre-concentration of the 

samples was carried out in nitrogen atmosphere. 

 

2.8 Cell growth determination 

The cell growth was quantified by the 

spectrophotometric method [35]. An aliquot of each 

experimental group was subjected to absorbance 

analysis at 600 nm (Even IL0082-Y-BI). The blank 

corresponded to the minimum mineral medium, with 

and without the (PAH)s. 

 

2.9 Statistical data analysis 

All the experiments were carried out in 

triplicate and the results are presented as the mean 

and standard deviation of three independent 

observations. After confirmation that the data 

followed a normal distribution, statistically 

significant differences at 95% of confidence were 

checked by using One-way ANOVA with Tukey 

post-hoc test (GraphPad Prism 7, GraphPad 

Software Inc). 

 

III. RESULTS AND DISCUSSION 
3.1. Screening of Pseudomonas aeruginosa isolates 

The three isolates reached emulsification 

indexes higher than 40 and 15% in 48h, respectively 

for the hydrocarbons with higher carbon chains, i.e., 

lubricating oil and kerosene (Fig. 1). Specifically, 

TGC-02 emulsified all petroderivatives except diesel 

oil. Its hydrocarbonoclastic activity was expected 

because all the strains were recovered from soils 

impacted by petroderivatives [3]. The emulsification 

of the petroleum hydrocarbons by P. aeruginosa 

may occur through the synthesis of biosurfactants, 

particularly rhamnolipids [36].  

Diesel and gasoline are more toxic 

petroderivatives because they have shorter carbon 

chains and thus, are more volatile [22]. However, 

Lebonguy et al. [37], evaluated the emulsifying 

activity of two P. aeruginosa isolates using diesel 

oil, gasoline and hexane. They observed an E24 of 

53% to diesel oil. Considering the fact that TGC-07 

was the only isolate to emulsify the diesel, even at a 

lower percentage, suggests that there was a possible 

contamination by this fuel in its isolation site. 

With respect to longer carbon chain 

hydrocarbons (Fig. 1), the three isolates emulsified 

kerosene (C14-C20), especially TGC-02, about 25%, 

as well as exhibiting a higher E48 of the lubricating 

oil (C20-C40). The emulsification of the lubricating 

oil was expected since the isolates were already 

acclimated to the compound [3], indicating that the 

presence of kerosene particularly promoted greater 

cellular stress to TGC-02. This hypothesis is 

supported by the study of Shahaliyan et al. [19], who 

performed the same test with a strain of 

Pseudomonas sp. and observed an E24 of 46% to 

kerosene. 
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Fig. 1. Emulsification index of petroderivatives by 

Pseudomonas aeruginosa isolates 

 

In the drop-collapse test (Table 1), TGC-07 

and TGC-03 presented hydrocarbonoclastic activity 

for fuels over a longer time than TGC-02, but did 

not demonstrate interaction with the benzene, 

toluene and xylene (BTX). Meanwhile, TGC-02 

consumed 4 of the 6 hydrocarbons tested within 48 

hours (except toluene and xylene), remaining viable 

up to 196h. The viability of the cells was much 

higher than that determined by Pirrôlo et al. [38]. 

The authors checked the oil drop collapse after 196h 

with P. aeruginosa LBI. In addition, BTX is more 

volatile at room temperature and therefore more 

toxic to bacterial cells [39], as demonstrated by 

Thenmozhi et al. [40] when investigating P. 

aeruginosa strains in the presence of toluene. 

 

Table 1. Time (h) when the hydrocarbon drop has 

collapsed 

 Hydrocarbons 

Isolates LO D G B T X 

TGC-02 48 120 48 96 - - 

TGC-03 48 48 48 48 - - 

TGC-07 96 96 96 - - - 
LO – lubricating oil, D – diesel, G – gasoline,  

B – benzene, T – toluene, X - xylene 

 

Although all three isolates showed 

hydrocarboclastic activity, TGC-02 was chosen for 

the (PAH)s biodegradation test, considering the 

number of emulsified hydrocarbons and those used 

as the carbon source in the drop-collapse test. 

 

3.2 Cell growth and degradation of (PAH)s 

With respect to abiotic losses, TGC-02 

reduced 37.83±0.12% of pyrene and 33.01±0.10% of 

anthracene (Table 2). Our results were higher than 

those observed by Xia et al. [41], 21.93%, using P. 

aeruginosa grown in solid state for 20 days. Under 

controlled conditions of agitation and temperature, 

higher rates of biodegradation may be reached. This 

was the case of a previous 25-days study where a 

strain of P. aeruginosa degraded more than 50% of 

pyrene in a submerged culture [42]. However, it is 

important to note that our study aimed to measure 

the potential of TGC-02 using static incubation at 

room temperature. 

 
Table 2. PAH degradation by Pseudomonas 

aeruginosa TGC-02* 

PAH Degradation (%) 

Pyrene 37.83±0.12 

Anthracene 33.01±0.10 
*Excluding abiotic losses 

 

The degradation of (PAH)s, especially 

HMW-PAH, by P. aeruginosa are widely reported 

and showed good results. Lin et al. [43] observed the 

consumption of 40% of pyrene using Pseudomonas 

sp. in 30 days. The degradation kinetics of this 

(PAH)s in the same period of 30 days was studied by 

Gosh et al [44], who observed that the rate of 

degradation was inversely proportional to the 

concentration initially present. 

Cellular growth in the reactors with 

petroderivatives were not statistically different from 

the control (reactors with culture medium only). By 

the 10th day, the cell concentration had reached the 

stationary phase, with a reduction in cell density on 

the 15th day and regrowth by the 20th day when the 

cells were no longer viable (Fig 2). In addition, the 

bioprocesses favoured an establishment of an 

alkaline medium with the average room temperature 

around 25ºC, a value within the range considered 

ideal for the degradation of hydrocarbons at room 

temperature, mimicking real conditions [45]. 

The concentration of organic matter present 

in the microcosms containing pyrene and anthracene 

may justify the fact that the TGC-02 had started the 

stationary phase by the 5th. On the other hand, in the 

microcosms without (PAH)s, the log phase was 

longer, suggesting some degree of toxicity of the 

pyrene and anthracene. Possibly, after biomass 

growth up the 10th day, the main carbon source had 

been depleted, reflecting the reduction of cell 

density. However, cell debris itself may have been 

used as a carbon source for the maintenance of the 

remaining cells, which remained viable up to the 20th 

day. After this, cell viability was extinguished, 

suggesting the accumulation of toxic metabolites or 

depletion of nutrients necessary for cell metabolism. 

The culture conditions in the (PAH)s-

contaminated liquid medium may favour the 

establishment of a medium saturated in metabolites, 

leading to intoxication of the cells. This was 
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observed in a previous study [46]. When the authors 

compared the characteristics of submerged and solid 

cultures, they observed that the destabilization of 

enzymes is more common in the first case, with 

excessive cell aggregation occurring, resulting in the 

death of nearby cells. In addition, other factors such 

as the formation of peroxides and the limited 

bioavailability of the molecules participated in the 

cell viability process [47]. 

There was a slightly higher percentage of 

pyrene consumption compared to anthracene. 

Although pyrene (four rings) is more stable and 

complex than anthracene (three rings), P. aeruginosa 

preferentially degrades pyrene [3]. In brief, it may be 

explained by the fact that HMW-PAH 

biodegradation may occur through cometabolic 

pathways and when LMW-PAH are present, they are 

used as cosubstrates [48]. 

 

 
Fig. 2. Growth kinetics and cell viability of 

Pseudomonas aeruginosa TGC-02: control (A), in 

the presence of pyrene (B) and anthracene (C). 

 

Vaidya et al. [49] proposed that the 

metabolism of pyrene in P. aeruginosa may be 

related to the metabolic pathway of phthalic acid. 

Because of the metabolization of pyrene to phthalic 

acid, this compound may be converted to pyruvate 

and citrate. Other metabolites may be formed, such 

as dihydroxypyrene, 4-oxa-pyrene-5-one, 1,2-

dimethoxypyrene [42, 44]. While 1,2-

dimethoxypyrene is a result of the oxidation of the 

C4 and C5 of the pyrene, the others are produced by 

fission and decarboxylation of the intermediates 

used to form 4-phenolic acid, followed the path of 

phthalic acid. 

In the presence of anthracene, TGC-02 

demonstrated a cellular stress behaviour. Anthracene 

is an LMW-PAH, containing three condensed rings 

that may form different toxic compounds that 

accumulate when the molecule is destabilized, for 

example, anthraquinone, anthrone and phthalic 

anhydride [50]. 

The pH increased from approximately 6 to 

8 indicating the formation of alkaline metabolites 

during the hydrocarbon degradation process [51]. 

The pH, as a chemical factor, directly affects the 

microbial activity due to the H+ concentrations, 

which can make feasible or prevent enzymatic 

activities. The variation of this indicator could be 

observed throughout the process. The pH increase 

may have a positive influence on the availability of 

macro and micronutrients in the medium, allowing 

the isolates in cultivation to possess catabolic 

activity for assimilation and biomass growth [52]. 

 

3.3 Determination of the enzymatic activity and 

the protein content 

TGC-02 surprisingly did not express MnP 

and laccase, but an increase in protein concentration 

was observed throughout the process of degradation, 

corroborating the increase in biomass and substrate 

consumption (Fig. 3). 

We hypothesized two reasons for the 

absence of laccase and MnP activities: the first refers 

to the low concentrations of both enzymes in the 

medium, lower than the levels detectable by the 

methodologies used; the second reason is that these 

enzymes are not directly related to the degradation 

of anthracene and pyrene and that other 

oxidoreductases assume the role of MnP and laccase 

in the oil hydrocarbons metabolism in P. 

aeruginosa. Yan and Wu [53] evaluated 46 genes 

involved in the degradation of (PAH)s by P. 

aeruginosa PAO1. The authors observed that the 

expression of these genes varied according to growth 

conditions and that some of them were activated by 

the oxygen concentrations such as NADH 

dehydrogenase I, 3-oxoadipate enol lactonase, 4-

hydroxybenzoate-3-monoxygenase, quercetin- 2,3-

dioxygenase and 1,2-dioxygenase homogentisate. In 

addition, the expression of enzymes responsible for 

the degradation of (PAH)s depends on multiple 

factors, such as tolerance, resistance, production of 

exopolysaccharides and quorum sensing [54, 55]. 
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Fig. 3. Range of the total protein in Pseudomonas 

aeruginosa TGC-02: control (A), in presence of 

pyrene (B) and anthracene (C). 

  

IV. CONCLUSIONS 
P. aeruginosa TGC-02 presented the 

highest hydrocarbonoclastic activity among the three 

evaluated isolates, reducing by approximately one 

third the amount of pyrene and anthracene 

contaminants of the aqueous medium used in the 

degradation tests. Laccase and manganese 

peroxidase activities were not detected. However, 

there was an increase in the protein concentration, 

coinciding with the cellular growth increase, 

suggesting that the enzymes investigated are not 

involved in the process of anthracene and pyrene 

removal by P. aeruginosa in water.  
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