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ABSTRACT 
The rotary inverted pendulum (Furuta pendulum) is a didact equipment used for studying and applications of 

control techniques, since its model has non-linearities and unstable equilibrium point when the pendulum is in 

the vertical position. This paper presents the modelling of a mechanical structure of a rotary inverted pendulum 

and, using the linearization around the operation point, describes the design of a tracking system controller to 

this system, considering both state feedback or observed state feedback from a state observer. Results from 

simulations are presented based on two comparative cases, in which, in the first one only the tracking system 

controller is considered and, in the second one a state observer is added to the strategy. The results show that the 

proposed control strategies were able to lead the linear model to the equilibrium point, as well as allow the 

controlled output follow reference signals. Thus, the modelling and controlling methodologies have presented 

promising results. 
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I. INTRODUCTION 
The rotary inverted pendulum is a classic 

mechanical system for the studying of the control 

techniques at laboratories. It was developed by 

Furuta [1, 2, 3], in 1992, and it consists of a system 

with two degrees of freedom, composed by two 

rotary joints. Its rotational movement is based on the 

torque application by a motor coupled on one of its 

joints. The interest in studying this system is due to 

its non-linear behavior, which is compared to several 

similar problems found in interesting industrial 

applications, such as spatial rockets, bipedal robots, 

satellite launchers and vehicles for individual 

transportation [4, 5].  

In the literature, modelling and controlling 

strategies for the rotary inverted pendulum, usually 

known as Furuta pendulum, are widely widespread. 

Such strategies encompass from traditional industrial 

controllers (PID, PI, among others) [5] to more 

advanced control strategies, as described in the 

following. In [6], a predictive controller based on an 

optimal control law considering perturbation is 

presented. A linear regulating controller with state 

feedback, based on differential leveling and root 

allocation, is described in [7]. In [8], a linear 

quadratic regulator (LQR) approach is described. A 

destabilizing controller that uses positive feedback is 

presented in [9]. A linear state feedback controller is 

presented in [10]. Among the intelligent control 

strategies, the fuzzy controllers are highlighted [11, 

12, 13]. All the mentioned works consider the 

inverted pendulum stabilization in the vertical 

position. 

Among the modern control techniques, in which 

they consider state space models, a tracking system 

control is highlighted. In this technique, a 

determined system’s output must follow a reference 

signal [5, 14, 15]. However, this control approach 

requires the measurement of all state variables, 

which is not always feasible. In this case, it is 

possible to use a state observer in order to estimate 

all the state variables by means of the system's 

output measurements and, then, the tracking system 

controller can use the observed state to compose the 

control signal.  

Considering a linear approximation of the 

system’s mathematical model, around the point in 

which the pendulum position is vertical (inverted), 

the presented work describes the application of the 

tracking system control technique, with state 

feedback, to achieve a position control and 

stabilization of the rotary inverted pendulum. Due to 

the impossibility to measure all the state variables, a 
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state observer was also considered in the control 

loop. The results are evaluated considering the 

following comparative cases: (i) tracking system 

controller; and (ii) tracking system controller along 

with state observer. 

The rest of this paper is organized as follows: in 

Section II, the main constructive characteristics of a 

Furuta pendulum are presented. In Section III, the 

system’s linear mathematical model is discussed. A 

description about the considered control techniques 

is presented in Section IV, followed by the results 

and discussions, in the Section V, and by the main 

conclusions of the paper, in the Section VI.   

 

II. ROTARY INVERTED PENDULUM: 

FURUTA PENDULUM 
The rotary inverted pendulum is a didact 

equipment used for studying and applications of 

control techniques, mainly in Engineering courses, 

due to its non-linear characteristics and its unstable 

equilibrium point. These features allow experiments 

using advanced control approaches.  

In general, the inverted pendulum is composed 

by a rotational arm (A) in which a DC motor (12V) 

is coupled at one of its extremity, as presented in 

Fig. 1. A torque (𝜏) is generated by means of the DC 

motor actioning, which provides the movement of 

the mentioned arm and then the free movement of 

the pendulum [16]. The arm’s movement go 

through the horizontal plane and positive or negative 

angles can be obtained from that movement, 

representing its respective angular positions (𝜃0), in 

radians, measured by an encoder, coupled to the 

motor’s axle [7, 17, 18]. In the other arm’s 

extremity, a potentiometer and a pendulum are 

coupled to it. In addition to the pendulum’s angular 

position measurement (𝜃1), this set also allows the 

free and oscillatory pendulum’s movement, 

throughout the vertical plane. For a better 

understanding, the main considered parameters and 

variables of the rotary inverted pendulum are shown 

in Fig. 1. 

In order to obtain the mathematical model of the 

rotary inverted pendulum, its several parameters are 

required. The considered parameters were obtained 

from a real system, under construction, available at 

the Automation Laboratory of the Federal Institute 

of Paraná (IFPR) – Jacarezinho – Paraná – Brazil, 

and they are presented in Tab. 1. 

The moments of inertia of the system are 

individually obtained for the arm and pendulum’s 

sets [7]. The junction between the arm and the 

pendulum is made by a potentiometer, whose its 

axis has a length of  𝑙 =  0.012 m, a radius of  

𝑅 =  0.003 m and a mass of 𝑚 =  0.010 kg. 

 
Fig. 1. Rotary inverted pendulum. 

 

Tab. 1: Parameters of the rotary inverted pendulum. 

Symbol Description Value Unit 

g Gravitational 

acceleration 

9.81 m/s2 

𝒍𝟏 Distance between the 

half pendulum and 

the potentiometer 

0.145 m 

𝑳𝟎 Distance between the 

arm’s center and the 

pendulum 

0.150 m 

𝒎𝟏 Pendulum’s mass 0.0248 kg 

𝒎𝟎 Arm’s mass 0.155 kg 

 

The presented parameters were used to calculate 

the inertia of the potentiometer axis, 𝐼𝑃:  

𝐼𝑃 =  
1

2
 𝑚𝑅2 =  4.5000 × 10−8kg m2. (1) 

The inertia of the pendulum, IH, is also 

necessary in the total inertia composition of the 

pendulum set, and using the data from Tab. 1, it is 

given by: 

𝐼𝐻 = 
1

12
𝑚1(2𝑙1)

2 

= 1.7381 × 10−4kg m2. 
(2) 

The total inertia of the pendulum set, 𝐽1, is 

composed by the sum of the inertias from the 

potentiometer and the pendulum. From (1), (2), it is 

possible to compute: 

𝐽1 = 𝐼𝑃 + 𝐼𝐻 = 0.00017385 kg m2 . (3) 

The same procedure is used to calculate the 

inertia of the arm’s set, which is attached to one of 

the DC motor extremities (see Fig. 1). The main 

parameters from the DC motor considered in this 

work are presented in Tab. 2.  
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Tab. 2: Parameters of the DC motor. 

Symbol Description Value Unit 

D Diameter of the motor 0.036 m 

𝒓𝑴 Radius of the motor 

shaft 

0.009 m 

𝒎𝑴 Mass of the motor 0.450 kg 

𝒎𝒓 Mass of the joint screw 0.005 kg 

After obtaining the DC motor parameters 

(Tab. 2), it is possible to calculate the moment of 

inertia from the DC motor, 𝐼𝑀: 

𝐼𝑀 = 
1

2
(
𝑚𝑀

2
+ 0.005) 𝑟𝑀

2 

= 9.3150 × 10−6kg m2. 
(4) 

Moreover, (5) allow us to calculate the moment 

of inertia of the arm, 𝐼𝐵, using the parameters 

presented in Tab. 1: 

𝐼𝐵 = 
1

3
 𝑚0𝐿0

2 =  0.0012 kg m2. (5) 

Finally, the total inertia of the arm’s set, 𝐼0, is 

obtained by the sum of 𝐼𝑀 and 𝐼𝐵, and from (4) and 

(5), it follows: 

𝐼0 = 𝐼𝑀 + 𝐼𝐵 = 0.001209315 kg m2. (6) 

 

III. MATHEMATICAL MODEL 
The rotary inverted pendulum is composed by 

two bodies which interact with each other and then 

results in a combined movement between the 

pendulum (𝜃1 angle in Fig. 1) and the arm (𝜃0 angle 

in Fig. 1), since the last one connects the pendulum 

to the motor. In the mathematical modelling 

considered in this work, a linear approximation 

around an operation point of the pendulum system is 

considered. The operation point consists of the pair 

(𝑥∗, 𝑢∗), where 𝑥∗ is the state of the system and 𝑢∗ is 

the control signal. The non-linear model of the 

rotary inverted pendulum can be obtained through 

the Euler-Lagrange equations, which result in [7, 19, 

20]: 

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�) + 𝑔(𝑞) = 𝐹 (7) 

where 

𝑀(𝑞) = [
𝑀11(𝑞) 𝑚1𝑙1𝐿0 cos(𝜃1(𝑡))

𝑚1𝑙1𝐿0 cos(𝜃1(𝑡)) 𝐼1 + 𝑚1𝑙1
2 ], 

𝑀11(𝑞) = 𝐼0 + 𝑚1(𝐿0
2 + 𝑙1

2 sin2(𝜃1(𝑡))), 

𝐶(𝑞, �̇�) = [
𝐶11(𝑞, �̇�) 𝐶12(𝑞, �̇�)

𝐶21(𝑞, �̇�) 0
], 

𝐶11(𝑞, �̇�) =
1

2
𝑚1𝑙1

2�̇�1(𝑡) sin(2𝜃1(𝑡)) , 

𝐶12(𝑞, �̇�) = −𝑚1𝑙1𝐿0�̇�1(𝑡) sin(𝜃1(𝑡)) , 

+
1

2
𝑚1𝑙1

2�̇�0(𝑡) sin(2𝜃1(𝑡)), 

𝐶21(𝑞, �̇�) = −
1

2
𝑚1𝑙1

2�̇�0(𝑡) sin(2𝜃1(𝑡)). 

𝑔(𝑞) = [
0

−𝑚1𝑙1𝑔 sin(𝜃1(𝑡))
] , 

𝐹 = [
𝜏
0
] , 𝑞 =  [

𝜃0

𝜃1
], 

and 𝜏 represents the torque applied in the system by 

the DC motor. Thus, by isolating �̈� in (7), (8) can be 

obtained: 

�̈�  =  𝑀−1(𝑞)[−𝐶(𝑞, �̇�)[𝑥2, 𝑥4]
𝑇 −  𝑔(𝑞) + 𝐹] 

        =  [
𝜔1(𝑞, �̇�, 𝜏)

𝜔2(𝑞, �̇�, 𝜏)
]. (8) 

In order to obtain the state space model, the arm 

and the pendulum’s angular positions, 𝜃0 and 𝜃1, 

respectively, and their angular velocities, �̇�0 and �̇�1, 

were defined as state variables. Thus, from (8) and 

from the defined state variables, the non-linear 

model in the state space is achieved: 

𝑥 = [𝑥1
𝑥2 𝑥3 𝑥4]𝑇 

=  [𝜃0 �̇�0 𝜃1 �̇�1]
𝑇 , 

�̇� =  𝑓(𝑥, 𝑢) 

=  

[
 
 
 
𝑓1(𝑥, 𝑢)

𝑓2(𝑥, 𝑢)

𝑓3(𝑥, 𝑢)

𝑓4(𝑥, 𝑢)]
 
 
 

=  [

𝑥2

𝜔1(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑢)
𝑥4

𝜔2(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑢)

] , 

  𝑢 = 𝜏. 

(9) 

In the Furuta pendulum, from the control 

systems point of view, the main objective is to keep 

the pendulum in the inverted position (𝜃1 = 0). For 

this objective, a linear approximation around the pair 

(𝑥∗, 𝑢∗), according (10), is considered. In this case, 

there is no initial condition for 𝑥1
∗ = 𝜃0

∗, which 

means that this variable can be arbitrarily chosen, 

unlike the state variable 𝑥3
∗ = 𝜃1

∗ = 0, that is, the 

pendulum must be close to the inverted position [7, 

21, 22]. 

    𝑥∗ = [𝑥1
𝑥2 𝑥3 𝑥4]𝑇 = [𝜃0

∗ 0 0 0]𝑇 , 
𝑢∗ = 0, 
  �̇� = 𝑓(𝑥∗, 𝑢∗) =  [0 0 0 0]𝑇 .      

(10) 

The model (9) after being linearized around the 

equilibrium point (10) is given by [5]: 

�̇� = 𝐴𝑥 + 𝐵𝑢, 
𝑦 = 𝐶𝑥,   𝑧 = 𝐶𝑇𝑥, 

(11) 

where 

𝐴 =

[
 
 
 
 
 
 
 
 
𝜕𝑓1(𝑥, 𝑢)

𝜕𝑥1

𝜕𝑓2(𝑥, 𝑢)

𝜕𝑥1

𝜕𝑓3(𝑥, 𝑢)

𝜕𝑥1

𝜕𝑓4(𝑥, 𝑢)

𝜕𝑥1

𝜕𝑓1(𝑥, 𝑢)

𝜕𝑥2

𝜕𝑓2(𝑥, 𝑢)

𝜕𝑥2

𝜕𝑓3(𝑥, 𝑢)

𝜕𝑥2

𝜕𝑓4(𝑥, 𝑢)

𝜕𝑥2

𝜕𝑓1(𝑥, 𝑢)

𝜕𝑥3

𝜕𝑓2(𝑥, 𝑢)

𝜕𝑥3

𝜕𝑓3(𝑥, 𝑢)

𝜕𝑥3

𝜕𝑓4(𝑥, 𝑢)

𝜕𝑥3

𝜕𝑓1(𝑥, 𝑢)

𝜕𝑥4

𝜕𝑓2(𝑥, 𝑢)

𝜕𝑥4

𝜕𝑓3(𝑥, 𝑢)

𝜕𝑥4

𝜕𝑓4(𝑥, 𝑢)

𝜕𝑥4 ]
 
 
 
 
 
 
 
 

, 

   𝐵 =  

[
 
 
 
 
 
 
 
 
𝜕𝑓1(𝑥, 𝑢)

𝜕𝑢
𝜕𝑓2(𝑥, 𝑢)

𝜕𝑢
𝜕𝑓3(𝑥, 𝑢)

𝜕𝑢
𝜕𝑓4(𝑥, 𝑢)

𝜕𝑢 ]
 
 
 
 
 
 
 
 

. 
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Let 𝑥 be the state vector, 𝑦 the measured output 

vector and 𝑧 the controlled output vector, 𝐴 the state 

matrix, 𝐵 the control input matrix, C the measured 

output matrix and 𝐶𝑇 the controlled output matrix, in 

such way that the measured outputs are the angular 

positions, 𝜃0 and 𝜃1, and the controllable output is 

the arm angle, 𝜃0, thus 

𝐶 = [
1 0 0 0
0 0 1 0

] , 

𝐶𝑇 = [1 0 0 0]. 
(12) 

Therefore, from (9) and (11), the state and 

control input matrices are: 

𝐴 =  

[
 
 
 
 
 
 
0
0
0
0

1
0
0
0

0
−𝑔𝑚1

2𝑙1
2𝐿0

𝐼0(𝐽1 + 𝑚1𝑙1
2) + 𝐽1𝑚1𝐿0

2

0
(𝐼0 + 𝑚1𝐿0

2)𝑚1𝑙1𝑔

𝐼0(𝐽1 + 𝑚1𝑙1
2) + 𝐽1𝑚1𝐿0

2

0
0
1
0

]
 
 
 
 
 
 

, 

𝐵 =  

[
 
 
 
 
 
 

0
𝐽1 + 𝑚1𝑙1

2

𝐼0(𝐽1 + 𝑚1𝑙1
2) + 𝐽1𝑚1𝐿0

2

0
−𝑚1𝑙1𝐿0

𝐼0(𝐽1 + 𝑚1𝑙1
2) + 𝐽1𝑚1𝐿0

2]
 
 
 
 
 
 

, 

and then, from the data in (3), (6) and Tab. 1, 

𝐴 = [

0
0
0
0

1
0
0
0

0
−20.8703

0
66.9295

0
0
1
0

] , 

𝐵 =  [

0
762.5775

0
−591.6167

]. 

(13) 

It is important to notice that the model (11), (12) 

and (13) considers state vectors around the operation 

point presented in (10), in which 𝜃1 = 0, that is, the 

pendulum is in the vertical position (see Fig. 1). That 

means the swing-up control such that 𝜃1 = 𝜋 

changes to 𝜃1 = 0 cannot be achieved with a 

controller which its design is based on the presented 

linear model. On the other hand, this problem can be 

solved using a controller which its design is based 

on a non-linear model of the plant [7]. 

 

IV. TRACKING SYSTEM CONTROLLER 

AND STATE OBSERVER 
The tracking system controller with state 

feedback is designed by means of the linear model 

of the rotary inverted pendulum, as shown in (11), 

(12) and (13), aiming that the system output, 𝑧(𝑡), 

follows a desired input, 𝑟(𝑡), then the intended 

steady-state response is such that [14]:  

lim
𝑡→∞

𝑧(𝑡) = 𝑟(𝑡). (14) 

The controller design methodology considers 

new state variables, 𝜉(𝑡), whose dynamics depend 

on the difference between the reference 𝑟(𝑡) and the 

system controlled output 𝑧(𝑡), as explained in [5], 

thus, from (11) and (12), 𝜉̇ is defined as  

𝜉̇ = 𝑟 − 𝑧 = 𝑟 − 𝐶𝑇𝑥. (15) 

The control law herein considered encompasses 

the plant state feedback, 𝑥, and the feedback of the 

new state variable 𝜉, therefore, 

𝑢 = −𝐾𝑥 + 𝐾𝐼𝜉. (16) 

A block diagram of the tracking system 

controller applied in the rotary inverted pendulum 

model is presented in Fig. 2, according to (11), (15) 

and (16). 

 

 
Fig. 2. Block diagram of the tracking system controller along with the rotary inverted pendulum model. 

 

From (11), (15) and (16), the overall system is 

given by the augmented state equation, given by: 

[
�̇�(𝑡)

𝜉̇(𝑡)
] = [

𝐴 0
−𝐶𝑇 0

] [
𝑥(𝑡)

𝜉(𝑡)
] + [

𝐵
0
] 𝑢(𝑡) 

+ [
0
𝐼
] 𝑟(𝑡), 

(17) 

where 𝐼 represents the identity matrix of adequate 

dimension. 

An asymptotically stable system is designed so 

that 𝑥(∞), 𝜉(∞) and 𝑢(∞) converge to constant 

values. So, during steady state, 𝜉̇(𝑡) = 0, and then 

𝑧(∞) = 𝑟. Based on these definitions, from (17), 

[
�̇�(∞)

𝜉̇(∞)
] = [

𝐴 0
−𝐶𝑇 0

] [
𝑥(∞)

𝜉(∞)
] + [

𝐵
0
] 𝑢(∞) 

+ [
0
𝐼
] 𝑟(∞). 

(18) 
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Considering that 𝑟(𝑡) is a step input, so 𝑟(∞) =
𝑟(𝑡) = 𝑟 for 𝑡 > 0. In this case, subtracting (18) 

from (17), one obtains: 

[
�̇�𝑒(𝑡)

𝜉�̇�(𝑡)
] = [

𝐴 0
−𝐶𝑇 0

] [
𝑥𝑒(𝑡)

𝜉𝑒(𝑡)
] + [

𝐵
0
] 𝑢𝑒(𝑡), 

𝑥𝑒(𝑡) = 𝑥(𝑡) − 𝑥(∞), 
𝜉𝑒(𝑡) = 𝜉(𝑡) − 𝜉(∞) , 
𝑢𝑒(𝑡) = 𝑢(𝑡) − 𝑢(∞), 

(19) 

where 𝑢𝑒(𝑡) is defined by: 

𝑢𝑒(𝑡) = −𝐾𝑥𝑒(𝑡) + 𝐾𝐼𝜉𝑒(𝑡) 

= −[𝐾 −𝐾𝐼] [
𝑥𝑒(𝑡)

𝜉𝑒(𝑡)
]. 

(20) 

Assuming the new error vector 𝑒(𝑡) =
[𝑥𝑒(𝑡)

T 𝜉𝑒(𝑡)
T]𝑇, from (19) and (20), the 

following dynamics is obtained: 

�̇� = (�̂� − �̂�𝐾)𝑒, 

�̂� =  [
𝐴 0

−𝐶𝑇 0
] , �̂� =   [

𝐵
0
],  

(21) 

𝐾 =  [𝐾 −𝐾𝐼],  

then the gain matrix 𝐾 must be designed so that the 

dynamics (21) be stable. 

Considering 𝑧(𝑡) ∈ ℜ from (11), if the desired 

eigenvalues of the matrix �̂� − �̂�𝐾 are defined by 

𝑙1, 𝑙2, … 𝑙𝑛+1, then the state feedback gain matrix 𝐾 

and the integral gain constant 𝐾𝐼  can be designed by 

the pole placement method, whenever the system 

(21) be a fully state controllable system [5]. 

The eigenvalue vector considered in the tracking 

system controller design by pole placement was 

𝑙 =  [−3 −4 −5 −6 −7], (22) 

which resulted in the following gains for the tracking 

control system of the rotary inverted pendulum:  

𝐾 =  [𝐾 | −𝐾𝐼], (23) 

𝐾 = [−0.0712 −0.0317 −0.619 −0.0831] 
𝐾𝐼 = [−0.0651]. 

In general, the control using state feedback 

strategies assumes that all state variables can be 

measured, or they can be generated from the output 

system. For practical issues, this fact can be 

unfeasible, due to the number of sensors required for 

that measurements. Then, for the state variables 

estimation from the plant output 𝑦(𝑡) in (11), a state 

observer is considered in this work. It is important to 

notice that the system (11) with output 𝑦(𝑡) is 

observable [14]. 

An observer is a dynamical system which 

estimates the plant state vector. It can be designed 

independently of the tracking system controller (15) 

and (16) by using pole placement techniques [5]. 

The mathematical models from the observer system 

and the plant system are similar, except by adding a 

term that encompasses the estimated error, in order 

to compensate uncertainties from the matrices 𝐴 and 

𝐵 of the plant model, and the possible initial 

condition error. 

 

 
Fig. 3. Block diagram of the tracking system controller along with the rotary inverted pendulum model and the 

state observer. 

 

The initial condition error is the difference 

between the initial state from the plant and the 

estimated initial state from the observer. 

Therefore, the mathematical model of the 

observer is given by [5]:  

�̇̃� = 𝐴�̃� + 𝐵𝑢 + 𝐾𝑒(𝑦 − 𝐶�̃�) 
= (𝐴 − 𝐾𝑒𝐶)�̃� + 𝐵𝑢 + 𝐾𝑒𝑦, 

(24) 

where �̃� and 𝐶�̃� are the estimated state vector and 

output, respectively. The observer’s inputs are the 

plant output, 𝑦, and the control signal, 𝑢. The 𝐾𝑒 

matrix is called the observer’s gain matrix, and it 

ponders the difference between the measured output, 

𝑦, and the estimated output, 𝐶�̃�. Therefore, the 

observer is able to correct the state estimative and 
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then provides a good performance [5]. In Fig. 3, the 

use of the tracking system controller along with state 

observer in the inverted pendulum model is 

illustrated. 

In order to obtain the observation error  
𝑒 = 𝑥 − �̃�, (24) is subtracted from (11), what results 

in 

�̇� = �̇� − �̇̃� = 𝐴𝑥 −  𝐴�̃� − 𝐾𝑒(𝐶𝑥 − 𝐶�̃�) 
= (𝐴 − 𝐾𝑒𝐶)(𝑥 − �̃�) 
= (𝐴 − 𝐾𝑒𝐶)𝑒. 

(25) 

The eigenvalues from(𝐴 − 𝐾𝑒𝐶) are defined so 

that they are at left from the eigenvalues of the 

(�̂� − �̂�𝐾) in (21). Then, if the state observer 

presents an initial error in relation to the plant initial 

condition, this error will tend to zero as the time 

increases [5]. The eigenvalue vector 𝐿 were used in 

the observer design for the rotary inverted 

pendulum, using a pole placement technique, where 

𝐿 = [−15 −20 −25 −30]. (26) 

The obtained observer’s gain matrix 𝐾𝑒 were 

𝐾𝑒 = [

46.6436 −4.8535
525.0847 −130.3134
−4.5920

−102.6790
43.3564
516.8332

]. 

 

(27) 

V. RESULTS AND DISCUSSION 
The results presented in this section are 

organized in two simulation cases:  

Case 1: only the tracking system controller, gain 

matrix (23); 

Case 2: tracking system controller along with 

the state observer, gain matrices (23) and (27). 

The first set of simulations begins with the 

pendulum around the inverted position, with 𝜃1 =
𝜋/6 rad, that is, 𝑥(0) =  [0 0 𝜋/6 0]𝑇. The 

simulation results, under this defined initial 

condition, are presented in Fig. 4, the control inputs, 

and Figs. 5 and 6, the state variables. It is possible to 

notice that, in both Case 1 and Case 2, the control 

strategies lead the system to the equilibrium point. 

 

 
Fig. 4. Control signals from the simulations with 

𝑥(0) =  [0 0 𝜋/6 0]𝑇. 

 

 
Fig. 5. Angular position and angular velocity of the 

arm movement from the simulations with  

𝑥(0) =  [0 0 𝜋/6 0]𝑇. 

 

 
Fig. 6. Angular position and angular velocity of the 

pendulum movement from the simulations with 

𝑥(0) =  [0 0 𝜋/6 0]𝑇. 

 

Furthermore, it can be observed that, both state 

variables (Fig. 5 and Fig. 6) and control signal 

(Fig. 4), are distinct between Case 1 and Case 2. 
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That difference is due to the null initial condition in 

the observer, while the plant has a non-null initial 

condition. However, this fact did not result in a 

system instability in any case. 

In order to verify if the tracking system 

controller is able to make the controlled output 𝑧 

follow a desired reference 𝑟, after the pendulum 

stabilization at the equilibrium point  

𝑥(0) =  [0 0 0 0]𝑇, the second set of 

simulation considers reference, 𝑟(𝑡) applied to the 

controlled system. This reference changes from  
𝑟 = 0 to 𝑟 = 𝜋/12 rad, at the instant 1 s, then it 

maintains this value till it returns to zero at the time 

5 s. The control signals and the state variables in this 

scenario are presented in Figs. 7, 8 and 9, 

respectively. The presented control system 

performance highlights the efficacy of the strategies.  

 

 
Fig. 7. Control signals from the simulations with a 

reference (in Fig. 8) for the arm angle  𝜃0. 

 

It is important to observe that the control 

strategies, in both considered cases (Case 1 and 

Case 2), provide similar responses in the second set 

of simulations. That similarity in the Figs. 7, 8 and 9 

is due to the initial state from the observer and from 

the plant were equal (null) in the beginning of the 

simulations, when the system is considered in the 

equilibrium point. 

 

VI. CONCLUSION 
This work presented control methodologies for a 

rotary inverted pendulum system (Furuta pendulum). 

The used control strategies considered the 

linearization from the non-linear model of the plant 

around an equilibrium point, which was the 

predefined position for the system stabilization 

(inverted position). From this point, the main 

objective of the methodologies was to keep the 

angular position of the pendulum at 0 rad, so that the 

inverted position is maintained. 

From the initial simulation results, it is possible 

to conclude that the proposed tracking system 

control methodology with state feedback was 

efficient in achieving the control objective, because 

the controller was able to make the arm angular 

position follow a required reference, as well as to 

stabilize the pendulum at the desired position.  

 

 
Fig. 8. Angular position and angular velocity of the 

arm movement from the simulations with a reference 

for the arm angle  𝜃0. 

 

 
Fig. 9. Angular position and angular velocity of the 

pendulum movement from the simulations with a 

reference (in Fig. 8) for the arm angle  𝜃0. 
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The second methodology used a state observer 

to estimate the plant’s state vector, the results in this 

case show it is a valid option when there are no 

sensors for all the state variable measurements. 

The tracking system controller along with the 

observer used in the plat resulted in a more 

oscillatory response compared with the use of the 

state feedback. It occurs whenever there are different 

initial conditions in the observer and in the plant. 

However, this strategy was also able to stabilize the 

pendulum, which means it is a valid approach for the 

control of a rotary inverted pendulum. 

For future works, the authors intend to obtain 

experimental results from a real rotary inverted 

pendulum, at the Automation Laboratory of the 

IFPR, in order to validate the mathematical model 

and the approached control strategies from this 

paper. 
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