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ABSTRACT 
Ant colony optimization is an evolutionary search procedure based on the way that ant colonies cooperate in 

locating shortest routes to food sources. Early implementations focused on the travelling salesman and other 

routing problems but it is now being applied to an increasingly diverse range of combinatorial optimization 

problems. This paper is concerned with its application together enhanced with the tabu search algorithm to the 

examination scheduling problem. It builds on an existing implementation for the graph coloring problem to 

produce clash-free timetables and goes on to consider the introduction of a number of additional practical 

constraints and objectives. A number of enhancements and modifications to the original algorithm are 

introduced and evaluated. Results based on real-examination scheduling problems including standard 

benchmark data show that the final implementation is able to compete effectively with the best-known solution 

approaches to the problem.  
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I. INTRODUCTION 
The exam timetabling [19], [20], [21], [22], 

[23], [24] problem faces the problem of scheduling 

exams within a limited number of available periods. 

As students plan to write diff erent exams, setting up 

a conflict free timetable is not a trivial task due to 

limited resources like periods, examination rooms 

and teacher availability. The main objective is to 

balance out student’s workload and to distribute the 

exams evenly within the planning horizon. In 

particular, it should be avoided that a student has to 

write two exams in the same period. Such situations 

will be referred to as conflicts of order 0 in the 

sequel. Additionally, as few students as possible 

have to attend x exams within y consecutive periods. 

Such conflicts can either be totally forbidden by 

constraints or penalized in the objective function. 

For example, Carter et al. proposed in [1] a cost 

function that imposes penalties Pω for a conflict of 

order ω, i.e. whenever one student has to write two 

exams scheduled within ω + 1 consecutive periods. 

In the literature ω normally runs from 1 to 5 with P1 

= 16, P2 = 8, P3 = 4, P4 = 2, P5 = 1. 

Solving practical exam timetabling 

problems requires that additional constraints have to 

be considered, e.g. some exams have to be written 

before other exams or some exams cannot be written 

within specific periods. [2], [3], [4] give 

comprehensive lists of possible hard and soft 

constraints. 

The exam timetabling problem can be 

formulated as a graph coloring problem. Each node 

represents one exam. Undirected arcs connect two 

nodes if at least one student is enrolled in both 

corresponding exams. Weights on the arcs represent 

the number of student enrolled in both exams. The 

objective is to find a coloring where no adjacent 

nodes are marked with the same color or to 

minimize the weighted sum of the arcs that connect 

two nodes marked with the same color. The exam 

timetabling problem is a generalization of the graph 

coloring problem as in the objective function also 

conflicts of higher orders are penalized. 

To solve exam timetabling problems, 

several algorithms have recently been developed. In 

[1] applied some well-known graph coloring 

heuristics which they combined with backtracking. 

In recent time various heuristical approaches have 

been developed. Most of them use local search like 

tabu search, simulated annealing, great deluge or 

adaptive search methods [1], [2], [5], [6], [7], [8], 

[9], [10], [11]. A comprehensive survey on the 

literature on exam timetabling problems can be 

found in [4]. 

This research was motivated by the need 

for a software tool for solving a practical exam 

timetabling problem. As ant colony approaches have 
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been proven to be a powerful tool for various 

combinatorial optimization problems (c.f. the survey 

in [12]), it is apparent to adapt this solution 

approach to the exam timetabling problem. In the 

literature diff erent variants of ant colony approaches 

have been presented. We will compare some of 

these strategies with respect to their suitability for 

our problem. 

This paper is organized as follows: In 

section 2 a detailed problem formulation will be 

presented. Section 3 will give an introduction into 

ant colony systems. The next sections will present a 

solution approach and test results for some 

benchmark problems that were taken from the 

literature. Finally, section 5 summarizes the results 

and suggests discussion for future work. 

 

II. PROBLEM FORMULATION 
Before stating the problem formally, we introduce 

some notation. 

 

Table 1: Symbol and meaning 
Symbol Meaning 

R index set of rooms 

I index set of exams 

T index set of periods 

Ω index set of order of conflicts 

Krt capacity of room r in period t 

cij number of students enrolled in exam i as well as in exam j      

Ei number of students enrolled in exam i 

Pω penalty imposed if one student has to write two exams within ω + 1 periods 

yit binary variable equal to 1 if exam i is scheduled in  

period t and 0 otherwise 

pirt number of students of exam i assigned to room r in  

period t 

 

Using this notation, the exam timetabling problem can be formulated as follows:  

 

 

 

 

 

 

 

 
 

The objective function (1) balances out 

students’ workload by minimizing the weighted 

sum of all conflicts. Constraint (2) states that each 

exam is assigned to exactly one period. If an exam 

is not assigned within a period, then no seats 

should be reserved for that period in any room. 

This is imposed by constraint (3). Constraints (4) 

and (5) assure that the number of seats reserved for 

an exam will be equal to the number of students 

who are enrolled in that exam and that the room 

capacities are not exceeded. Finally, constraint (6) 
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avoids conflicts of order 0, i.e. that a student has to 

write two exams in the same period. 

The exam timetabling problem is a generalization 

of the graph coloring problem, which is known to 

be NP-hard [22]. Therefore, solution approaches 

try to decompose the problem in order to solve it 

within a reasonable amount of time [30]. One way 

is to split up the problem into the two following 

sub problems, which can be solved sequentially: 

Problem I: Scheduling of exams, i.e. 

assign exams to periods in order to balance out 

students’ workload as pursued by the objective 

function (1). Instead of considering capacity 

constraints for the single rooms, only the total 

capacity of all available exam rooms within a 

period is considered. In the IP formulation stated 

above this can be accomplished by replacing the set 

of rooms by a artificial single room. For this 

problem a solution approach will be presented in 

the next sections. 

Problem II: Room planning, i.e. distribute 

the exams of one period among the available 

examination rooms. Finding a feasible room plan is 

not difficult if the exams can take place in more 

than one room and if more than one exam can take 

place in one room at the same time, provided that 

the room capacity is not exceeded. If exams are 

split up into different rooms one could consider the 

campus layout and try to generate a room plan 

where these exams are only assigned to rooms not 

too far from each other in order to minimize 

walking distances. We will not consider this 

problem in the following.  

 

III. ANT COLONY OPTIMIZATION 
Ants live together in colonies and they use 

chemical cues called pheromones to provide a 

sophisticated communication system. An isolated 

ant moves essentially at random but an ant 

encountering a previously laid pheromone will 

detect it and decide to follow it with high 

probability and thereby reinforce it with a further 

quantity of pheromone. The repetition of the above 

mechanism represents the collective behaviour of a 

real ant colony which is a form of autocatalytic 

behaviour where the more the ants follow a trail, 

the more attractive that trail becomes. The above 

behaviour of real ants has inspired ACO which has 

proved to be an effective metaheuristic technique 

[15],[26],[27],[19] for solving many complex 

constraint optimization problems [21]. This 

technique uses a colony of artificial ants that 

behaves as cooperative agents in a mathematical 

space where they are allowed to search and 

reinforce pathways (solutions) in order to find the 

optimal ones. The features of artificial ants are: 

having some memory, not being completely blind 

and the process time is discrete. 

Depending on the choice of a constructive 

heuristic and the way the pheromone values are 

used, there are different ways how this basic 

solution approach can be adapted to the exam 

timetabling problem. At each stage of the 

construction process in the AS approach of Costa 

and Hertz [7] called ANTCOL the ant chooses first 

a node i and then a feasible color according to a 

probability distribution equivalent to (c.f. section 

III, B, 9). The matrix τ provides information on the 

objective function value, i.e. the number of colors 

required to color the graph, which was obtained 

when nodes i and j are colored with the same color. 

In contrast to elite strategies where only 

the ant that found the best tour from the beginning 

of the trial deposits pheromone, all ants deposit 

pheromone on the paths they have chosen. 

According to [21] this strategy is called ant cycle 

strategy. Different priority rules were tested as 

constructive heuristic. Among those chosen in each 

step, the node with the highest degree of saturation, 

i.e. the number of different colors already assigned 

to adjacent nodes, achieved the best results with 

respect to solution quality and computation times. 

In [14] a pre-ordered list of events is 

given. Each ant chooses the color for a given node 

probabilistically similar to the formula (c.f. section 

III, B, 9). The pheromone trail τij contains 

information on how good the solution was, when 

node i was colored by color t. The constructive 

heuristic employed in their approach is not 

described. 

For the exam timetabling problem the way 

the information in matrix τ is used in both 

approaches is not meaningful. Due to the conflicts 

of higher orders the quality of a solution does not 

depend on how a pair of exams is scheduled nor on 

the specific period an exam is assigned to. For 

example, assigning two exams i and j with cij = 0 

to the same period can either result in a high or in a 

low objective function value as the quality of the 

solution strongly depends on when the remaining 

exams are scheduled. In the following we 

implemented a two-step approach. 

Step I: Determine the sequence according 

to the exams is scheduled. Like for the TSP we 

assume that an ant located in a node, corresponding 

to an exam, has to visit all other nodes, i.e. it has to 

construct a complete tour. The sequence according 

to this ant constructs the tour corresponds to the 

sequence in which the exams are scheduled. 

Step II: Find the most suitable period for 

an exam which should be scheduled. Therefore, all 

admissible periods are evaluated according to the 

given penalty function. 
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Following this two-step approach 

probabilities pνij for choosing the next node j that 

has to be scheduled are computed according to (c.f. 

section III, B, 9). Pheromone values τij the ants’ 

paths are updated by the inverse of the objective 

function value. 

For the heuristic value ηij the following 

simple priority rule for graph coloring was 

implemented. The exam with the smallest number 

of available periods is selected. A period would not 

be available for an exam if it caused a conflict of 

order 0 with another exam that has already been 

scheduled. This priority rule corresponds to the 

saturation degree rule (SD) which was tested in [1]. 

The value ηij is chosen to be the inverse of the 

saturation degree. 

 

TABU TIMETABLE ANT COLONY 

OPTIMIZATION (TACO) 

In the proposed TACO technique an 

initialisation phase takes place during which ants 

are positioned on different nodes (sessions) with 

empty tabu lists and initial pheromone distributed 

equally on paths connecting these sessions. Ants 

update the level of pheromone while they are 

constructing their schedules by iteratively adding 

new sessions to the current partial schedule. At 

each time step, ants compute a set of feasible 

moves and select the best one according to some 

probabilistic rules based on the heuristic 

information and pheromone level. The higher value 

of the pheromone and the heuristic information, the 

more profitable is to select this move and resume 

the search. The selected node is putted in the tabu 

list related to the ant to prevent to be chosen again. 

Heuristic information represents the nearer sessions 

around the current session, while pheromone level 

“memory” of each path represents the usability of 

this path in the past to find good schedules. At the 

end of each iteration, the tabu list for each ant will 

be full and the obtained cheapest schedule is 

computed and memorized. For the following 

iteration, tabu lists will be emptied ready for use 

and the pheromone level will be updated. This 

process is repeated till the number of iterations 

(stopping criteria) has been reached. In more 

details, the proposed TACO technique constructs 

the cheapest observation schedule for a given 

examination timetable using the following two 

stages. 

 

SCHEDULE CONSTRUCTION STAGE 

After each move, an ant leave a pheromone trail on 

the connecting path to be collected by other ants to 

compute the transition probabilities. Starting from 

the initial session i, an explorer ant m chooses 

probabilistically session j to observe next using the 

following transition rule: 

  

 

 
   

    

 
, ,

, ,

,

0

m

i j i j

m

m
i j i jk S i

if j S i
P i j

otherwise

 

 

 

 


    
    

     
   
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               (9) 

where 

(i,j) : the intensity measure of the pheromone 

deposited by each ant on the path (i,j). The 

intensity changes during the run of the program. 

 : the intensity control parameter. 

(i,j)  : the visibility measure of the quality of the 

path (i,j). This visibility, which remains constant 

during the run of the program, is determined by 

(i,j)=1/l(ij), where l(ij) is the cost of move from 

session i to the session j.  

 : the visibility control parameter. 

Sm(i) : the set of sessions that remain to be 

observed by ant m positioned at session i. 

Equation 9 shows that the quality of the path (i,j) is 

proportional to its shortness and to the highest 

amount of pheromone deposited on it (i.e., the 

selection probability is proportional to path 

quality).  

 

PHEROMONE UPDATING STAGE 

Ants change the pheromone level on the paths 

between sessions using the following updating rule: 

      , , ,i j i j i j
     

                                           
(10) 

 where 

 : the trail evaporation parameter. 

(i,j)  : the pheromone level.   

The amount of deposited pheromone is the 

mechanism by which ants communicate to share 

information about good paths. Stagnation may 

occur during the pheromone updating and this can 

be happened when the pheromone level is 

significantly different between paths connecting the 

observed schedule. This means that some of these 

paths have received higher amount of pheromone 

more than other and an ant will continuously select 

these paths and neglect the others. In this situation, 

ants keep constructing the same schedule over and 

over again and the exploration of the search stops. 

Stagnation can be avoided by influencing the 

probability for choosing the next path which 

depends directly on the pheromone level. To make 

better use of the pheromone and exploit the search 

space of a schedule more effectively, several ideas 

based on the pheromone control strategy have been 

implemented, tested and analysed. Some of these 
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ideas are: additional pheromone trail limits, 

smoothing of the pheromone trails, re-initialization 

of the pheromone trial and additional reinforcement 

of the pheromone, etc. In the following section, 

different approaches based on these ideas have 

been proposed and implemented to effectively 

diverse the search space and select the best possible 

observation schedule for a given timetable 

schedule..” 

 

ANT COLONY SYSTEM 

Ant Colony System (ACS) differs from the other 

ACO instances due to its strategy of constructing 

an observation schedule [10]. An ant positioned on 

session i selects the session j to observe by 

applying the following equation: 

  

 

      0, ,

( , )

arg max [ . ]
mk s i i k i k

i j

if q q
p

I otherwise



 


 
 


(11) 

 where  

I : a random variable selected according to the 

probability given by Equation 1.  

q : a uniformly distributed random number to 

determine the relative importance of exploitation 

versus exploration q[0,..,1]. 

q0 : a threshold parameter and the smaller q0 the 

higher the probability to make a random choice (0 

 q0  1). 

In each step of building a schedule, an ant located 

at session i samples the parameter q to move to 

session j. Using Equation 3, an ant selects the best 

path to reach the next session when (q q0) 

(exploitation). Otherwise, the ant will 

probabilistically choose the next session to be 

observed using Equation 2 with a bias toward the 

best possible path (biased exploration). While ants 

build their schedules, at the same time they locally 

update the pheromone level of the visited paths 

using the local updating rule as follows:  

       0, ,
1

i j i j
        

                                    
(12) 

where 

  : a persistence of the trail and the term (1- ) can 

be interpreted as trail evaporation. 

0: the initial pheromone level which is assumed to 

be a small positive constant distributed equally on 

all the paths of the network since the start of the 

survey. 

The aim of the local updating rule is to make better 

use of the pheromone information by dynamically 

changing the desirability of paths. Using this rule, 

ants will search in wide neighbourhood of the best 

previous schedule. When all ants have completed 

their schedule, the pheromone level is updated by 

applying the global updating rule only on the paths 

that belong to the best found schedule since the 

beginning as follows: 

        , , ,
1

i j i j i j
        

                             
(13) 
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i j

C if i j Global Best Schedule

oherwise


   
  



  (14) 

where 

   : a pheromone decay parameter. 

Cm : the cost of the best schedule performed from 

the beginning by ant m. 

This rule is intended to provide a greater amount of 

pheromone on the paths of the best schedule, thus 

intensifying the search around this schedule. In 

other words, only the best ant that took the shortest 

route is allowed to deposit pheromone.  

 

MAX-MIN ANT SYSTEM 

The strategy of the MAX-MIN Ant 

System (MMAS) states that if the amount of the 

pheromone has a finite upper bound and a positive 

lower bound min, then ACO converges to the 

optimal solution [12].  The main features of 

MMAS algorithm for obtaining an improved 

performance on the basic ACO metaheuristic are as 

follows:  

Deep exploitation to the search space of 

the best found schedule by allowing a single ant to 

add pheromone after each iteration. This ant may 

be the one which found the best schedule in the 

current iteration (iteration-best ant) or the one 

which found the best schedule from the beginning 

(global-best ant). 

Wide exploration to the search space of 

the best found schedule by initialising the 

pheromone trails to max is used. Thus, in the next 

iteration only the paths that belong to the best 

schedule will receive pheromone, while the 

pheromone values of the other paths are only 

evaporated. 

As shown from the above, the aim of 

using only one schedule is to make the paths of the 

best found schedule receive large reinforcements. 

 

TACO ALGORITHM  
The function of ACO algorithm with Tabu 

Search (TACO) is to force ants to search for a 

better schedule by divorcing and exploring the 

search space while keeping the best found schedule 

[22]. This can be carried out by adding extra 

pheromone on the unused paths during the previous 

iterations and this will force ants to diverse the 
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search space and choose other new directions 

without repeating any bad experience and trapping 

again in local optimality of the schedule search 

space. The modified pheromone update rule in 

TACO is given as follows: 

    max1,,  qjiji 
                                                

(15) 

where 


otherwise

evaporatedarepathsunusedif1
ξ




 
q1  0 : a reinforcement parameter;  

 max : asymptotically the maximal value of the 

pheromone.  This condition (q1 1 - ρ) must be 

satisfied to fulfil the above criteria of the TACO 

technique for updating the pheromone.  

 

CASE STUDY 

To benchmark algorithms test cases of twelve 

practical examination problems can be found on the 

site of Carter [9]. Three experiments were carried 

out: 

1. TACO (with hill climber) 

2. TACO without hill climber 

3. TACO without ants 

Therefore, Carter proposed weighting conflicts 

according to the following penalty function: P1 = 

16, P2 = 8, P3 = 4, P4 = 2, P5 = 1, where Pω is the 

penalty for the constrain violation of order ω. The 

cost of each conflict is multiplied by the number of 

students involved in both exams. The objective 

function value represents the costs per student.  

 

IV. PARAMETER ADJUSTMENT 
The required parameters were specified as follows. 

The number of cycles was set to 50. Within each 

cycle 50 ants were employed to construct solutions. 

The candidate list contained the 20% of exams with 

the lowest number of available periods. Several test 

runs were carried out in order to determine the 

required parameters appropriately: 

– The evaporation rate ρ was set to 0.3. Like in [14] 

it turned out that this parameter is quite robust, i.e. 

the parameter ρ does not clearly influence the 

performance. 

– For the restrictions of the pheromone interval 

values to strategies were tested. Setting τmax = 1/ρ 

obtained slightly better results than in the case of 

variable τmax and τmin as proposed in [14]. 

– Diff erent values for the weighting factors α and β 

were tested. It turned out that the approach 

performed best when α was set to one and β was 

chosen high. Best results were obtained for β equal 

to 24. But the diff erence was on the average less 

than one percent when β was bigger than eight. A 

high β forces that exams which can be scheduled, 

due to zero order conflicts, only in a few remaining 

periods are scheduled first as they are given a much 

higher probability in (c.f. section III, B, 9). 

Remember that ηij is the inverse of the saturation 

degree. Thus, a high β value has the same eff ect 

like a candidate list. This could be a reason why the 

use of the candidate list did not improve the 

solutions. Whereas, for small values of β, i.e. 

values lower than 5, solutions with zero order 

conflicts could not always be avoided. 

– As the approach is non-deterministic each test 

case was solved twenty times. After determining 

the parameters in such a way, it turned out that less 

than 2 % of the solutions were generated more than 

once. Thus, stagnation that is caused by the fact 

that many ants generate almost the same solutions 

could not be observed. 

 

V. TEST RESULTS 
Table 2 displays the results for diff erent 

approaches. For each approach the minimal 

objective function value and the average result after 

twenty test runs are given. Results of the proposed 

TACO approach are given in the second column. 

In order to find out how much the hill 

climber contributes to the solution the TACO 

approach was also tested without making use of the 

hill climber. Comparing the results in the second 

and in the third column it is obvious that the hill 

climber considerably improves the solutions. 

Thus, one could ask how much the ants 

contribute to the solution or if solutions of the same 

quality could also be achieved by applying only the 

hill climber on a random starting solution. 

Therefore a third version of the TACO approach 

was implemented where each ant constructs an 

exam timetable without interacting with the other 

ants, i.e. the matrix τ is not updated at all. This 

approach can be seen as a randomized greedy 

heuristic. As in TACO with 50 ants and 50 cycles 

2500 exam timetables were generated. The best 

solutions of this approach are displayed in the last 

column of table 1. As the TACO approach without 

ants generates the worst solutions it is obvious, that 

the ant colony has a positive impact on the 

diversification of the solution space, i.e. the ants 

guide the search process into promising regions of 

the solution space where the hill climber can find 

good solutions. Increasing the number of ants and 

the number of cycles to 100 in the TACO approach 

did not result in achieving better solutions. Neither 

the average value of all twenty iterations was 

improved nor was better solutions found during the 

twenty iterations.
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 Table 2: Results for three diff erent variants of the TACO approach for twenty test runs 

 

TACO 

 

TACO 

 

TACO 

       without hill climber without ants 

test case best avg best avg best avg 

car-f-92 4.8 4.9 7.4 8.2 10.9 13.5 

car-s-91 5.7 5.9 9.2 9.6 11.6 13.8 

car-f-83 36.8 38.6 49.9 53.6 48.6 61.3 

hec-s-92 11.4 11.6 14.8 15.2 11.3 15.2 

kfu-s-93 15.1 15.4 23.8 24.6 19.3 22.5 

lse-f-91 12.1 12.7 19.2 19.5 16.8 25.6 

pur-s-03 504 5.6 12.2 12.5 11.5 14.5 

rye-s-93 10.2 10.4 18.1 18.5 12.1 15.2 

sta-f-83 155.3 157.5 160.3 161.3 157.6 158.2 

tre-s-92 8.8 9.1 12.5 12.8 9.6 13.2 

uta-s-92 3.8 3.8 6.2 6.5 8.5 9.8 

ute-s-92 27.7 28.6 33.8 32.5 27.5 31.2 

yor-f-83 39.6 40.3 50.23 51.9 62.8 75.2 

 

VI. CONCLUSION 
In this paper different strategies for 

solving exam timetabling problems were tested. 

Ant colony approaches are capable of solving large 

real world exam timetabling problems. The 

implemented algorithms generated comparable 

results like other high performance algorithms from 

the literature. Unlike for other combinatorial 

optimization problems like the TSP or the QAP for 

the exam timetabling problem the variants of the 

TACO approach did not outperform the simpler 

strategies. Of course, it goes without saying but 

proper adjusting parameters can improve the 

performance of an algorithm considerably. A self-

evident extension would be to incorporate 

additional constraints and requirements like e.g. 

scarce room resources or precedence constraints 

between exams. For future work, dynamic 

optimization will be searched for improving the use 

of space technology in other real life applications 

(e.g., ambiguity resolution). These applications 

require powerful dynamic optimization tools that 

account for the uncertainty present in a changing 

school environment. This will provide the state of 

the art and latest research on how dynamic 

metaheuristic algorithms may be applied to 

effectively and efficiently solve and optimize this 

kind of complex problems.   
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