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ABSTRACT 

The game of chess has been a testbed for the application of Artificial Intelligence for a long time. It has been a 

tough task for an engine of any board game to make an optimal move with limited computational power and 

time constraints. However, there are numerous chess engines that have been developed by combined efforts of 

the best developers and chess grand masters which were designed by considering various starting books, ending 

books, game specific techniques and hard coded algorithms to gain strategic advantage over the opponent. Even 

after all these efforts, humans have defeated chess engines time and again with just a few steps lookahead, while 

on the other hand the computer is unable to win even after having high computational power and using 

expensive lookahead algorithms. In this project, we train a neural network to learn a chess board evaluation 

function which can be used to evaluate the board without deep lookahead search algorithms. From the Shannon 

number, we can infer that it is not possible to train the model for each possible state. Hence, we need a 

computational technique which can approximately predict the score of unseen boards based upon training on 

other board states. 
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I. INTRODUCTION 
Despite what most people think, highly 

rated chess players do not differ from the lower rated 

ones in their ability to calculate a lot of moves 

ahead. On the contrary, what makes chess 

grandmasters so strong is their ability to understand 

which kind of board situation they are facing very 

quickly. According to these evaluations, they decide 

which chess lines to calculate and how many 

positions ahead they need to check, before 

committing to an actual move [1]. Considering the 

size of any board game, we can say that every board 

game like Chess, Shogi, Go, Checkers, Tic Tac Toe, 

and many more have at least one optimal for each 

position which is probabilistic considering the 

various game parameters. This probability, also 

called the winning probability of any player, is the 

deciding factor in choosing the optimal move. As 

these games have finite board/game states, we can 

conclude that they are computable provided we have 

infinite time, space and computational power. It is 

the time and space complexity of the algorithm to 

find the winning probability of these game states that 

define their effectiveness and usefulness in other 

domains. Considering this, the human brain has been 

able to solve these puzzles to a large extent though 

not 100% accurately. A problem mapping strategy 

which can mimic the human brain and take 

advantage of the computational power of computers 

will be a big step towards game strategy solving 

algorithms. We have used Multilayer Perceptron 

(MLP) to learn the chess board evaluation function 

as they have given best results for chess as compared 

to other architectures and this helps achieve a 

constant time complexity as well as limited space 

complexity. 

 

II. PREVIOUS WORK 
There has been extensive research in the 

field of machine learning to develop an architecture 

that suits well to the rules of a particular or multiple 

[2] board games, such as Chess, Go, Shogi, 

Checkers, Backgammon, etc. All of the research 

suggests using various machine learning techniques 
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like supervised or reinforcement learning depending 

on the dataset quality available. For example, the 

CrazyAra engine makes use of supervised learning 

as only data of lower quality was available [3]. 

However, implemented using Monte Carlo Tree 

Search (MCTS), it achieved an accuracy of 60.4% 

[3]. This paper demonstrates using an architecture 

that will only need the game states as inputs and 

their respective centipawn scores. Thus, the base 

will be supervised learning. Prior work however, has 

shown that reinforcement learning can overtake 

supervised learning given an efficient searching 

technique [2]. The AlphaZero engine uses self-play 

to improve itself and only requires the games’ rules. 

It works on symmetric as well as asymmetric board 

games and shows that Alpha-Beta search is not 

necessarily superior to MCTS [2]. The Giraffe chess 

engine [4] uses the TDLeaf(λ) algorithm. The 

drawback of this chess engine is the search speed. 

This search speed is low because of the low hit rate 

of the cache. In the Giraffe thesis, the 

implementation uses a neural network that takes the 

positions of chess pieces as inputs and for each 

position, a sequence of numbers is given as output 

that can work as a signature [4]. The similarity in 

positions is the reason for humans’ high search 

efficiency. In this, unwanted searching can be 

avoided if humans can make out the equally efficient 

moves. This will dramatically reduce the average 

branching factor of search trees. The Giraffe chess 

engine shows all the probabilities for a move by a 

particular chess piece. This significantly reduces the 

search space. Similar to this, our model also reduces 

the search space by computing the centipawn score 

for all possible moves from the current board state, 

looking only one depth ahead in the search space [4]. 

The choice of the basic model in the 

architecture used in this paper is MLP. As proven 

previously, MLPs have a much better performance 

as compared to Convolutional Neural Networks, and 

this is using both the Algebraic and the Bitmap 

notations [1]. Again, the input data representation 

can be in the form of Algebraic notation where each 

board is represented using a string of the positions of 

its pieces, or the representation can be in Bitmap 

format, where the entire board is represented as 

binary string. Algebraic notation gives more 

information about a board than Bitmap, but this is 

counter-productive, thus the concise Bitmap format 

is chosen here [1]. 

Board games have been known to have a 

very large game-tree complexity, with chess having 

one with a lower bound of 10
120,

 as given by the 

Shannon number [5]. Even though it has already 

been established that MCTS will be a good choice 

for tree searching [1], we will not be using any 

search algorithm here. This is due to the below 

described architecture where the model only 

generates the possible board states after one move 

and chooses the most optimal one among those. 

 

III. METHODOLOGY 
A. Dataset, centipawn score generation and 

normalization, and board representation 

The proposed model makes use of 

supervised learning. Hence, there is a need for 

labeled data. For this purpose, we have used a large 

dataset containing thousands of games. All games 

have been taken from the KingBase dataset [6]. 

Bitmap notation for representing games makes it 

possible to keep track of piece position and helps to 

determine whether a piece is present on the board or 

not [7]. The data requires preprocessing. 

Preprocessing involves parsing and creating board 

representations suitable for MLP model [7]. 

First, each board state is given a centipawn 

score generated using the Stockfish 10 engine, which 

is one of the strongest existing chess engines. Each 

board was evaluated with the following Stockfish 

configuration: Hash table size=16MB, Depth=20, 

Max evaluation time=1 second, and all centipawn 

scores were converted such that they are from the 

perspective of white side, i.e. positive centipawn 

score means white side is at an advantage and 

negative centipawn score means black side is at an 

advantage, where each centipawn corresponds to 

1/100th of a pawn. 

There is no exact range of centipawn score. 

However, after evaluating a subset of the training 

dataset, we concluded that the centipawn score is 

generally between -7000 to 7000 or it is a checkmate 

in some ‘n’ steps. Hence we decided to set the 

centipawn range as -10000 to 10000 for our 

evaluated boards. If the Stockfish engine is not able 

to do a checkmate in ‘n’ steps, then it returns a 

centipawn score, otherwise it returns the number of 

moves in which it can do a checkmate. Hence, this 

checkmate move count is converted to centipawn 

score using the following formula: 

𝑐𝑝 =  𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 − 𝑚𝑎𝑡𝑒_𝑠𝑡𝑒𝑝𝑠 ∗ 𝑚𝑖𝑛_𝑑𝑖𝑓 ∗
           𝑠𝑖𝑔𝑛(1) 

where, 

cp is the Centipawn score, 

max_score = 10000, 

min_dif (minimum difference) = 50, 

sign = +1, if black is getting checkmated, 

 -1, if white is getting checkmated, 

mate_steps = it’s the absolute value of the 

number of steps in which one of the sides 

can be checkmated. 

After the score generation, the centipawn 

score is normalized from [-10000, 10000] to [-1, 1]. 

After analyzing the centipawn score 

distribution and the importance of each centipawn 

value in winning and losing of the game, we have 

normalized the scores in the following manner: 
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Table 1: Normalized Centipawn scores 

Input range Output range 

[ -10000, -2000 ] [ -1.0, -0.95 ] 

[ -2000, -50 ] [ -0.95, -0.3 ] 

[ -50, 50 ] [ -0.3, 0.3 ] 

[ 50, 2000 ] [ 0.3, 0.95 ] 

[ 2000, 10000 ] [ 0.95, 1.0 ] 

 

    Secondly, the input data is converted into a 

concise numerical representation i.e. the Bitmap 

format. Here, we have used 778 bits to represent 

each board state. The DeepChess engine also used a 

similar form of 773 bits representation for the input 

[8]. In Bitmap representation, each of the 64 squares 

of the chess board are given 12 features (for the 12 

types of pieces), and the rest are additional bits 

added to get more information about advanced chess 

moves [1]. Each bit can either mark the presence or 

absence of a piece on that square, or of a situation 

being present (such as the En-passant move).

 

Table 2: Calculation for bits in 778 bits Bitmap representation 

Feature Bits Type Comment 

P1 piece 6*64 bool order: {KING, QUEEN, BISHOP, KNIGHT, ROOK, PAWN} 

P2 piece 6*64 bool order: {KING, QUEEN, BISHOP, KNIGHT, ROOK, PAWN} 

Turn 1 bool Which player to play next, 1=> White, 0=>Black 

Checkmate 1 bool Indicate whether it is a checkmate 

King side castling 2 bool One bit for each player, 1=> allowed 

Queen side castling 2 bool One bit for each player, 1=> allowed 

Check 2 bool Whether it is a check or not, 1 bit for each player 

Queen 2 bool Whether queen is alive or not, 1 bit for each player queen 

Total bits 778   

 

B. Multilayer Perceptron Architecture 

This subsection gives the details of the 

MLP architecture that has been used to achieve the 

results presented in the next section. Mean Squared 

Error (MSE) loss function is used for the regression, 

and considering the large number of board positions 

of the chess board, we decided to use six hidden 

layers where the first two hidden layers have 2048 

neurons and the later four layers have 1024 neurons 

each. In order to prevent overfitting, a Dropout value 

of 10% is used for each hidden layer. Each layer is 

connected with a nonlinear activation function: the 

six hidden layers use Rectified Linear Unit (ReLU) 

activation function, while the final output layer uses 

hyperbolic tangent as the activation function. Adam 

optimizer is used for the stochastic optimization 

problem with its parameters initialized to: learning 

rate(η)=0.001, β1=0.9 and β2=0.999. The network 

has been trained with Mini-batches of 16384 

samples. 

 

IV. RESULTS 
This section presents the results that have 

been obtained in the MLP architecture discussed 

previously. All the training data is from white’s 

perspective hence the model tends to play better as 

white (1
st 

player) as compared to black (2
nd

 player). 

After training the model for 128 epochs, the 

resultant MSE was 0.0264. 

Following is the game played by the model with 

itself: 

['e2e4', 'd7d5', 'e4d5', 'e7e5', 'b1c3', 'f8a3', 'f1b5', 

'c7c6', 'b5c6', 'b8c6', 'd5c6', 'd8d2', 'c1d2', 'a3b2', 

'c6b7', 'g8f6', 'b7a8r', 'b2a1', 'a8a7', 'c8h3', 'a7f7', 

'h3g2', 'f7g7', 'g2c6', 'g7g3', 'h8g8', 'g3g8', 'e8d7', 

'd1a1', 'c6h1', 'a1d1', 'f6g8', 'a2a4', 'g8f6', 'f2f4', 

'd7c6', 'd1g4', 'e5f4', 'g4g8', 'f6g8', 'd2f4', 'h1f3', 

'g1f3', 'c6b7', 'f3e5', 'g8e7', 'e1f1', 'e7c8', 'a4a5', 

'c8b6', 'a5b6', 'b7b6', 'f4g3', 'b6a6', 'f1g2', 'a6b7', 

'g2f1', 'b7b8', 'f1g2', 'h7h6', 'c3a4', 'b8b7', 'h2h3', 

'b7b8', 'c2c4', 'b8b7', 'g2f2', 'h6h5', 'f2g2', 'h5h4', 

'g3h4', 'b7c7', 'h4g3', 'c7d8', 'g2h1', 'd8c8', 'c4c5', 
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'c8c7', 'c5c6', 'c7d6', 'h1g2', 'd6c7', 'h3h4', 'c7d6', 

'h4h5', 'd6e7', 'g3f2', 'e7f6', 'f2b6', 'f6e5', 'b6c7', 

'e5f6', 'g2h3', 'f6g5', 'c7e5', 'g5f5', 'e5h8', 'f5e4', 

'h5h6', 'e4e3', 'c6c7', 'e3e2', 'c7c8n', 'e2f3', 'h8g7', 

'f3e2', 'g7h8', 'e2f3', 'h8g7', 'f3e2']. 

     Following is the game played by the model with 

stockfish 10 configuration (Hash size=16MB, 

Threads=1, analyse time=0.01 seconds): 

['e2e4', 'd7d5', 'e4d5', 'd8d5', 'g1f3', 'g8f6', 'd2d4', 

'd5e4', 'f1e2', 'c8f5', 'e1g1', 'e4c2', 'b1c3', 'c2d1', 

'g2g4', 'd1c2', 'c3d5', 'f5g4', 'd5f6', 'g7f6', 'a2a4', 

'c2e2', 'c1e3', 'g4f3', 'f1b1', 'h8g8', 'e3g5', 'g8g5'] 

When the game starts, the model is able to 

play just decently. However, considering the 

sparseness when chess boards are converted to 

binary form and the humongous possibilities of the 

different board positions for input to the MLP, 

exploratory search is necessary as the game 

proceeds. 

In order to evaluate the performance of the 

MLP, we used the model to predict the chess moves 

on the Kaufman special dataset of 25 complicated 

board positions, and the model was unable to predict 

the expected move for any of the board positions. 

 

V. CONCLUSION AND FUTURE WORK 
In this work, we discussed a chess engine, 

which avoids the use of state space search to find the 

next optimal move. It only relies on the trained 

network to select the most favourable move after 

being trained on millions of games played between 

players. This work tries to show that for board 

games like chess, there should be an optimal move 

for each board state. However, we cannot say that 

there is no need to perform exploratory search for 

every request to the model or the engine to play or 

predict an optimal move. 

The system is developed by using only the 

Portable Game Notation files for the chess game and 

its board states evaluated scores generated using 

Stockfish 10. Thus, the model can be ported to other 

board games as well, requiring only their PGN files 

and an evaluation method. 

As the system is partially aware of good 

moves and bad moves. Hence, using MCTS and self-

play can help enhance and fine tune the board 

evaluations. The system can also be extended to 

learn from games played against human players, or 

against any other game engines. 
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