
Sareen Fathima, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 10, Issue 12, (Series-III) December 2020, pp. 64-68

www.ijera.com DOI: 10.9790/9622-1012036468 64 | P a g e

Comparative Analysis of Malware Classification using Machine

Learning Algorithms

1
Sareen Fathima,

2
Suzaifa,

3
Abdul Khader

123Department of CSE, BIT Mangalore, India

Abstract - The rapid development of computer networks in the past decades has created many security
problems related to malware on network systems. Malware can create successful attempts to cause the damage

to the computer networks by unauthorized malwares. From the previous research we have found that it is easy to

classify the known malware attack, but quite difficult to detect new malware and modify anomalous malware

attack. The huge amount of data is due primarily to malware author’s polymorphism. In order to effectively

examine such data, all malware data belonging to the same family (class) should be found. In our case, it

analyses the behaviour of data, and then this data is considered as normal based on the built model behaviour.

Most of the existing malware classification systems rely heavily on human analysts to measure Log loss to

differentiate between malware. With the increase in network traffic, manual work by humans in the
classification system is a non-trivial problem. Thus, machine learning techniques are fast emerging, where we

can train the system and even detect anomaly attacks. Microsoft Kaggle dataset has been used to train the

model. Random Forest, k-Nearest Neighbor, Random Forest, Logistic Regression, and XGBoost Classifier are

used.

Keywords— Machine Learning, Malware, Malware Classification, Microsoft Kaggle Dataset, XGBoost

Classifier, Random Forest, k-Nearest Neighbor, Logistic Regression, LogLoss

Date of Submission: 14-12-2020 Date of Acceptance: 28-12-2020

I. INTRODUCTION
Malware is defined as any action that tries

to gain unauthorized access to systems, do data

manipulation, or render the system unstable by

exploiting the existing vulnerabilities in the system.

Malware volume is enormous and fast growing. The

high volume of various unidentified files is one of

the reasons why the malware authors introduce

polymorphism. Due to these obscure tactics, malware

files of the same class may look different. We need

to be able to identify these data in the class to be

successful in examining such malware data. The

classification can be applied to new files found to be

malicious and of some family. Because of the scope
of the function, anti-virus organizations use computer

preparation to identify and recognize malware. The

objective of this project is to classify the malware

into nine different classes of malware. The system

predicts the likelihood of belonging to each class

(soft labeling) instead of making a hard labeling.

Malware can be analyzed using two methods.

1. Static Code Analysis.

2. Dynamic Behavior Analysis.

Static Code Analysis, Static code analysis
involves the study of the binary file and the search

for patterns in its structure indicating malicious

behaviors. The fact that the malware writers can

override detection methods through techniques such

as metamorphic and polymorphic code obfuscation

(dead code instruction) and polymorphism have been

less effective in recent years because of the fact. In

addition, Packers disrupt the entire program and
make it necessary to evaluate the application only

during execution time.

Dynamic Behavioural Analysis (DBA),

involve executing a binary in an emulated or virtual

machine environment and looking for patterns for

requesting operating system (OS) or general system

behavior that show malicious behaviour. Behavioral

analysis has become more popular since it actually

runs malware in its favorite environment, which

makes it more difficult to completely avoid detection.

The analysis evaluated will be performed such that
details on the actions of the subject may be collected

when driving in order to administer behavioral

research. This data may be used to train an automatic

distinction to distinguish harmful and benevolent

applications. This data is then used. One of the most

popular literature tools to understand malware

behavior is to capture OS calls i.e. system calls.

In applications across many platforms

including smartphones and devices, machine learning

techniques and data mining have provided promising

results for detecting the hidden malware effectively.

RESEARCH ARTICLE OPEN ACCESS

Sareen Fathima, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 10, Issue 12, (Series-III) December 2020, pp. 64-68

www.ijera.com DOI: 10.9790/9622-1012036468 65 | P a g e

A number of static malware detection approaches

have differentiated their work by studying different

classifiers such as k-Nearest Neighbor (KNN),

support vector machine (SVM), and Naıve Bayes

(NB) etc. The findings indicate that XGBoost

classification can achieve greater than 90% precision.

Recent studies often use different data mining

methods to evaluate authorization use for smartphone
devices. In this study, we have taken machine

learning and similitude mining approaches that focus

on visualizing static and dynamic malware detection.

Some of the recent studies have studied

visualization techniques to significantly accelerate

the malware detection process. Visual analysis adapts

to big data environments where data analysis

includes complex data to integrate computation and

human professional analytical reasoning. Similarity

mining is a machine learning technique based on the

analysis of similarities in distance measurement in
visual analytics and has recently been adopted for

malware detection. In this project, we demonstrate

the similarity matrix between different malware

programs widely used by attackers.

II. LITERATURE SURVEY
There are many works done in the area of

malware classification.

K. Allix, Q. Jerome, T.F. Bissyande, J.
Klein, R. State and Y.L. Traon (2014), the writers

conducted a large collection of malware analysis and

safe Android platform applications in this article.

While a wide range of research has covered Android

malware in recent years, none have addressed it

forensically. Authors have analyzed a number of

malware applications for deep study

P.V. Shijo and A. Salim (2015), this paper

provides for the analysis and classification of an

unknown executable file with integrated static and

dynamic analysis methods. The method uses machine

learning to train well-known malware and benign
programs. By analyzing both binary code and

dynamic behaviour, the feature vector is selected.

The approach suggested incorporates the advantages

of static as well as dynamic analysis, increasing

performance and the outcome of classification.

Buczak AL and Guven E, (2016), this

paper describes a focused literature survey of cyber

analytics methods used in Machine Learning (ML)

and data mining (DM) to support malware detection.

Since data are so important in ML / DM approaches,

several well-known cyber data sets used in ml / dm
have been described. The complexity of the ML /

DM algorithms is addressed, the challenges for cyber

security using ML / DM are discussed and some

recommendations are made as to when using a given

method.

NayanZalavadiya, et. al., (2017), this

paper examines the types of malware, tools,

techniques and analysis of specific malware that is

Trojan Remote Access (RAT). It gives full system

access and monitoring to the remote system for

malicious activity. RAT is very harmful malware.

The authors say techniques of dynamic detection are

more effective and the best way to analyze dynamic
malware is to sandbox the environment.

Shalaginov A, Banin S, Dehghantanha A

and Franke K. (2018), the rapid increase in the

range and number of malware species made it very

hard for forensic researchers to respond quickly.

Machine Learning (ML) has therefore become a

necessity to automate various aspects of the

investigation of statically and dynamically controlled

malware. We believe that static analysis supported by

machine learning can be employed rather than

resource-consuming, dynamic malware analysis, as a
methodological approach in the technical Cyber

Threats Intelligence (CTI) system.

Omar Al-Jarrah in (2019), proposed paper

which uses artificial neural network to recognize the

temporal behavior of malware attacks. The outputs

are used by the pattern recognition neural networks

to recognize the attacks, which are classified, by the

classifier to generate attack alerts.

Peng Wei, Yufeng Li, Zhen Zhang et al.

in (2020), describes Optimization method The

C3.0algorithm. This algorithm shortens the average

detection time by at least 24.69% on the premise of
increasing the average training time by 6.9%;

compared with the tested malware classification

algorithms.

Royi Ronen, Marian Radu, Corina

Feuerstein, Elad Yom-Tov, and Mansour Ahmadi

(2018), provide a high-level comparison of the

publications citing the dataset (Microsoft Kaggle

Challenge). The comparison simplifies finding

potential research directions in this field and future

performance evaluation of the dataset.

III. OBJECTIVES OF MALWARE

CLASSIFICATION
The objectives are:

1. To investigate on how to implement

machine learning techniques to malware

classification, in order to classify unknown malware.

2. To develop malware classification software
that implements machine learning to detect unknown

malware using Random Forest, KNN, Logistic

Regression, and XGBoost algorithms.

3. To investigate the machine learning

technique for malware classification using Microsoft

Kaggle Dataset, and to achievs a high accuracy rate

by obtaining the least log loss.

Sareen Fathima, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 10, Issue 12, (Series-III) December 2020, pp. 64-68

www.ijera.com DOI: 10.9790/9622-1012036468 66 | P a g e

IV. PROPOSED SYSTEM

Fig 1: System Design

This system aims to develop a method

which can classify variants of malware in a system

with the help of Machine Learning algorithm using

Microsoft Kaggle dataset with better predictive

accuracy. Random forests are constructed by

combining several trees with isolation training.

Unlike boosting the base models by means of a

sophisticated weighting system, the trees are

typically trained independently and trees predictions

combined by average. Every tree is developed
separately in the XGBoost Classifier with best hyper

parameter. We don't bootstrap between separate trees

unlike the wild forest of Breiman (2001).

 XGBoost algorithm is used to train the

module using Cleveland collection of dataset instead

of having one target class. Both the prior details was

utilized by the current system to forecast the status of

the problem and it will not take part in preparation

and testing processes to isolate the specific data,

rendering it ideal for knowledge updating because

each new problem represents an improved dataset.

V. SOFTWARE REQUIREMENT

SPECIFICATION
A. Software Requirements

 Operating System: Windows 8.1 Platform or

Above

 Programming Language: Python 3.6.7

 Framework: Jupiter Notebook

 Cloud Platform: Google Cloud Engine

(GCE)

B. Hardware Requirements

 Processor: Intel core i3 1.60GHz or above

 Hard Disk: 250 GB

 RAM: 4.00 GB

 Input: Keyboard and Mouse

 Output Device: High Resolution Monitor

C. Functional Requirements

 Data pre-processing: The purpose of pre-

processing is to check for missing values in the

dataset. If any such values are found, it is replaced by

mode of the corresponding values.

 Feature Extraction: All 52 features of .asm

file are input to the classifier. This module selects a

subset from the actual classifier. This process is

usually done to improve the accuracy and reduce the

training time when the number of feature is very

large.

 Hyper tuning module: It is here that the

values of the parameters of the classifier are changed

in order to increase the performance of classifier. The

parameters can be varied and the one which gives the

better accuracy is selected as the model.

 Results: Confusion Matrix, Log Loss.

D. Non Functional Requirements

 PERFORMANCE REQUIREMENT, low

test log loss rate has been successfully achieved

using XGBoost Classifier with Hyper Parameters for
both .bytes and .asm files individualy, and as well as

after merging features of .bytes and .asm files.

 SOFTWARE QUALITY

REQUIREMENT, maximum possible accuracy has

been achieved using XGBoost Classifier with

hyperparameters using Random Search with log loss

of 0.385, XGBoost Classifier with log loss of 0.0427,

and Random Forest Classifier with log loss of

0.4192. It generated the confusion matrix. It used

minimal resources for training the dataset as well as

obtaining the results. The module is reliable and can
be used to classify most of the malware in the

validation set.

VI. DATA DESCRIPTION
Microsoft Kaggle Dataset is used. Microsoft

provides the details on the website of Kaggle. The

data size is 200 GB (uncompressed). 10,868 research

samples are usable. The corresponding .asm and

.bytes files for every sample are available. The files
are generated using the disassembler device of IDA.

10,868 samples have been collected each of .bytes

and .asm files.

Every sample belongs to one of the nine

separate malware classes: Ramnit, Lollipop,

Kelihos_ver3, Vundo, Simda, Tracur, Kelihos_ver1,

Obfuscator.acy, Gatak.

Sareen Fathima, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 10, Issue 12, (Series-III) December 2020, pp. 64-68

www.ijera.com DOI: 10.9790/9622-1012036468 67 | P a g e

Fig 2: .asm file format

Fig 3: .bytes file format

VII. IMPLEMENTATION
A. Feature Extraction

 Based on the analysis of the data, it is found

that .bytes and .asm file sizes would be useful in

integrating them in the class family prediction.

 For .bytes files, only file sizes are used as
the feature.

 For .asm files, we extracted 52 features

from all the .asm files which are important.

B. Machine Learning Models on .bytes and .asm

files

1. KNN Classifier: When KNN classifier was

used, log loss of 0.4626 was obtained for .bytes file

and log loss of 0.0798 was obtained for .asm file.

2. Logistic Regression Classifier: When

Logistic Regression classifier was used, log loss of

0.8516 was obtained for .bytes file and log loss of
0.3992 was obtained for .asm file.

3. Random Forest Classifier: When Random

Forest classifier was used, log loss of 0.0753 was

obtained for .bytes file and log loss of 0.0323 was

obtained for .asm file.

4. XGBoost classifier: When XGBoost

classifier was used, log loss of 0.0654 was obtained

for .bytes file and log loss of 0.0303 was obtained for

.asm file.

5. XGBoost Classification with best hyper

parameters using Random Search: In this case, log

loss of 0.0624 was obtained for .bytes file and log
loss of 0.0257 was obtained for .asm file.

Random Forest Classifier, XGBoost Classifier,

and XGBoost Classifier with hyperparameters,

after merging features of .bytes files and .asm

files:
On applying the machine learning models

on features of .bytes files and .asm files individually,

the least log loss was achieved for XGBoost

classifier with hyper parameter using Random
Search, XGBoost classifier, and Random Forest

classifier. After merging the features of .bytes and

.asm files, we used Random Forest classifier,

XGBoost classifier, and XGBoost classifier with

hyper parameter using Random Search again on final

features and we were able to achieve the log loss of

0.0419, 0.04275, and 0.0385 respectively.

VIII. FINAL RESULT
The table below provides an overview of the

results of all our classification models. The Microsoft

Kaggle for each of our models and the cross-

validation performance for the training data are also

discussed.

TABLE I. FINAL RESULT

MODEL
LOG LOSS

(.bytes)

LOGLOSS

(.asm)

KNN 0.4626 0.0798

LOGISTIC

REGRESSION
0.8516 0.3992

RANDOM

FOREST
0.0753 0.0323

XGBOOST

CLASSIFIER
0.0654 0.0303

XGBOOST
CLASSIFIER

WITH HYPER

PARAMETER

0.0624 0.0257

After merging the features of .bytes and

.asm file, malware files were reclassified using

Random Forest (RF) classifier, XGBoost classifier,

and XGBoost classifier with hyper parameter using

Random Search, and we were able to achieve the Log

loss of 0.04192, 0.0427 and 0.0385 respectively.

IX. CONCLUSION
The classification of malwares was

successfully done using machine learning algorithms

on Microsoft Kaggle Dataset, and XGBoost

Classifier with hyperparameters showed the least log

loss.

The key difference between the models used

and the top classifications was, instead of explicitly

using the produced probabilities, to do more

adjustment and tuning of the probabilities expected

by the model. In terms of efficiency within our

Sareen Fathima, et. al. International Journal of Engineering Research and Applications

www.ijera.com
ISSN: 2248-9622, Vol. 10, Issue 12, (Series-III) December 2020, pp. 64-68

www.ijera.com DOI: 10.9790/9622-1012036468 68 | P a g e

respective implementations, the types of apps and

models did not vary too greatly aside from the above

discrepancy. The collection of features is essential

for the model’s efficiency. A study of the data

provides valuable insights into this aspect.

Redundant and noisy features could reduce the

accuracy of classification. For example, log loss had

increased when we tried to integrate "Call frequency
system" with the existing models.

Interestingly, the trade-off between

computer time and the accuracy of the model has

come to be part of our project. It took approximately

half a day to train the model on the entire data

collection used, after using about 52 features and

training a XGBoost classifier with hyper parameter

using Random Search, we were able to achieve the

Log loss of 0.0385, after merging the features of

.bytes and .asm files.

X. FUTURE SCOPE
Although the classification features which

were used in this project have been quite good, we

can still try to incorporate more interesting features,

particularly given the fact that most of the features

used in this project are based on frequency. For

example, research [11] shows how malware files can

be interpreted to support the task of classification.

So, we could build such "pixels" as.asm and .bytes
files features. They could help to differentiate the

families of malware. In fact, if we use real network

call frequency calls as options rather than just

frequencies, it may be worth testing if the network

call frequency function used contributes to a stronger

log loss. This can be achieved by constructing a bit

vector for all system calls and setting the

corresponding fractions for system calls invoked in

the file (there are just around 50 system calls).

Then, as a feature, we can use each bit.

Several of the top graders who claim it is an excellent

function have used the header detail. This is a very
interesting feature, because it only examines a small

part of the data to be classified. Thus, this task of

intelligent functional selection is an interesting and

difficult one, in which there is much to learn.

REFERENCES
[1]. The data set is downloaded from the following

link http://www.kaggle.com/c/malware-

classification
[2]. Base paper downloaded from the kaggle

website: Rakesh Chada, Nitish Gupta,

“Microsoft Malware Classification

Challenge”.

[3]. Royi Ronen, Marian Radu, Corina Feuerstein,

Elad Yom-Tov, and Mansour Ahmadi (2018),

“Microsoft Malware Classification

Challenge”.

[4]. https://towardsdatascience.com/malware-

classification-using-machine-learning-

7c648fb1da79

[5]. https://www.researchgate.net/figure/Malware-

families-in-the-dataset_tbl1_323470001

[6]. Dahl, George E., et al.”Large-scale malware

classification using random projections and

neural networks.” Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE

International Conference on. IEEE, 2013.

[7]. Annachhatre, Chinmayee, Thomas H. Austin,

and Mark Stamp. ”Hidden Markov models for

malware classification.” Journal of Computer

Virology and Hacking Techniques (2014): 1-

15.

[8]. Weber, Michael, et al.”A toolkit for detecting

and analyzing malicious software.”Computer

Security Applications Conference, 2002.

Proceedings. 18th Annual. IEEE, 2002.
[9]. https://www.blackhat.com/presentations/bh-

usa-06/BH-US-06-Bilar.pdf

[10]. Austin, T. H., Filiol, E., Josse, and Stamp, S.

M. ˆaAIJExploring Hidden Markov Models

for Virus ˘ Analysis: A Semantic Approach,

Proceedings of the 46th Hawaii International

Conference on System Sciences, Wailea, HI,

USA, 2013, Jan 7-10, 50395048

[11]. Nataraj, Lakshmanan, et al.” Malware images:

visualization and automatic classification.”

Proceedings of the 8th international

symposium on visualization for cyber security.
ACM, 2011.

[12]. https://www.kaggle.com/c/malware-

classification/forums/t/13509/brief-

description-of-7th-place-solution/72485

[13]. J.O. Kephart and W.C. Arnold, “Automatic

Extraction of Computer Virus Signatures,”

Proc. Fourth Virus Bull. Int’l. Conf., pp. 178-

184, 1994.

[14]. K. Griffin, S. Schneider, X. Hu, and T.

Chiueh, “Automatic Generation of String

Signatures for Malware Detection,” Proc. 12th
Int’l Symp. Recent Advances in Intrusion

Detection, 2009.n

