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ABSTRACT 
Several landslides incidents in the Bujumbura region are reported regularly by independent sources. However, 

few studies on the causes in the region have been conducted and no record of susceptibility map at a regional 

exists. In this study, two different approaches are applied to map landslide susceptibility in the region. The 

physical approach is based on mohr-coulomb failure criterion and is applied using a probabilistic approach, the 

first order second moment method. The statistical approach is based on logistic regression. The study has two 

objectives: (i) to map landslide susceptibility in the region and (ii) to compare the results of the different 

approaches. Applying the two approaches in a GIS framework, two susceptibility map are produced. The 

accuracy of the two models is independently assessed using ROC and AUC curves. A comparative analysis of 

the results is conducted and the results shows a fair spatial correlation. The susceptibility maps are compared 

using rank differences and ArcSDM and a spatial comparison map of susceptibility levels is produced.  
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I. INTRODUCTION 
The peri-urban area of Bujumbura, 

hereafter referred to as Bujumbura region, has 

witnessed several hazards of different nature: floods, 

mudflows and landslides. The impact of landslides 

includes loss of life, destruction of infrastructure, 

damage to land and loss of natural resources [1], [2]. 

Motivated by the increasing number of recorded 

incidents, Nibigira et al. (2015) mapped past and 

existing landslides in the western part of Burundi, 

which includes the Bujumbura region, and identified 

factors influencing the development of instabilities 

[3]. In order to provide information about landslide 

susceptibility for one watershed of the Bujumbura 

region, Kubwimana et al. (2018) developed a 

landslide susceptibility map using Analytic Hierarch 

Process (AHP) for the Kanyosha river watershed [4]. 

The objectives of this study is to develop landslide 

susceptibility maps from logistic regression and 

deterministic model, and to asses and compare the 

accuracy of the obtained susceptibility maps. 

Several studies assessing and mapping 

landslide susceptibility have been conducted 

worldwide using two principal approaches: physical 

and statistical. On one hand, physically based 

approaches [5]–[9] have been extensively applied for 

landslide susceptibility assessment. For physically 

based models, the relevant factor is the factor of 

safety based on slope stability analysis. Slope 

stability analyses of landslides in physically based 

models are usually performed using conventional 

limit equilibrium method based on the Mohr–

Coulomb failure criterion. On the other hand, 

statistical approaches [10]–[14] have been also used 

for landslide susceptibility assessment. Statistical 

approaches are more bounded to local particularities 

since they are always linked to a determined training 

dataset. Few comparative assessments of the two 

approaches have been conducted [15], [16]. Recent 

studies have developed a new physically based slope 

stability analysis for unsaturated soils [17].  

This study proposes a comparative 

assessment of the new physical approach and a 

statistical approach, the logistic regression. For 

comparative purposes the physical approach is 

developed using a probabilistic method, the first 

order second moment method. 

In this study, one physical approach based on 

Lu and Godt (2008) definition of the safety factor 

and one statistical approach based on logistic 
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regression, both within a geographical information 

system(GIS), were applied to map and assess 

landslide susceptibility in the Bujumbura region. For 

the first purpose of mapping landslide susceptibility, 

two set of independent variables were collected: 

independent variables of the physical model and 

independent variables for the statistical model. 

Independent variables of the physical model were 

based on the Lu and Godt [17] model of slope 

stability. For the statistical model, a number of five 

predictors using expert knowledge were established 

as the independent variables of the logistic 

regression. Using GIS the two models were applied 

and landslide susceptibility was mapped. Finally, 

accuracy of the two model was assessed using the 

success rate curve and compared using kappa 

statistics and rank differences.  

 

II. STUDY AREA 
The area under study is located in western 

part of Burundi near the Tanganyika Lake, lying 

between 3°28’S and 3°23’S latitude, and 29°20’E 

and 29°24’E longitude (Error! Reference source 

not found. and Figure 1). The area is around 31 km2 

and includes 15 administrative sectors. The study 

area overlaps two geographical region of Burundi: 

Imbo Region and Mirwa Region. The Imbo region is 

a relatively flat region and the  

 

 
Figure 1. Location of study area 

 
Figure 1. Extent of the study map 

Mirwa region is composed of steep hills  

and mountains. The study area also overlaps 

watersheds of three of the major rivers across 

Bujumbura. The altitude varies from 777 to  

1386 m. The slope angle values range from 0° to 

57°. The yearly average temperature is 23 °C, and 

the annual precipitation is 1274 mm [18]. 

 

III. DATA AND METHODOLOGY 
3.1. Landslide Inventory 

Within the framework of this study a 

landslide inventory map was required both for 

application in the logistic regression model and for 

accuracy assessment of both landslide models. For 

this purpose, a landslide inventory was prepared 

using literature review, aerial orthophotos, satellite 

imagery (Google earth Imagery), a 10 m–resolution 

Digital Elevation Model (DEM) provided by the 

―Bureau de centralisation géomatique du Burundi‖ 

(BCG) and extensive field survey. In result, a 

detailed and reliable inventory map with a total of 89 

landslides was created (Figure 1).  

The identified landslides were classified 

mainly as shallow translational slides according to 

classification proposed by Varnes [19]. Since the 

aim of this study is assessing the accuracy of 

models, only one training dataset was established. 

The training dataset was then used in inferring the 

weights of selected predisposing factors. Finally, the 

training dataset was used for accuracy assessment 

for both models and for their comparison using 

success rate curves. 

 

3.2. Statistical model 

For statistical models, logistic regression is 

widely used in landslide susceptibility assessment 

and mapping [10], [12], [14], [20] – [24]. In this 

study a binary logistic regression was applied. 
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Logistic regression is a statistical method involving 

multivariate regression in order to link a dependent 

variate with multiple independent variables. The 

binary logistic regression used in this study is used 

to predict presence or absence of landslide based on 

the weights of independent variables. Among 

numerous benefits of using logistic regression, there 

is the possibility to use different independent 

variables (categorical or continuous) and the fact 

that no assumptions about the distribution of 

independent variables is made a priori. The logistic 

regression defines a probability of landslide using 

relationship given by: 

            (1) 

where 𝑃 is the probability of landslide occurrence 

and 𝑦 is the linear logistic model. The values of the 

linear logistic model theoretically vary from -∞ to 

+∞. Hence the probability defined by (1) ranges 

between 0 and 1. The linear logistic model is defined 

by the relationship: 

               (2)  

where b0 is the intercept of the model, 

b1,…,bn are the coefficients of the independent 

variables, x1,…,xn are the independent 

variables.Amid various predisposing factors, five 

important predictors were selected: Pedology, Land 

Cover, Slope Angle, Distance to streams and 

Distance to roads. The selected predisposing factors 

are already successfully applied in other research on 

this topic [25]. Two independent variables 

(Pedology and Land cover) are categorical and the 

rest of the independent variables are continuous 

variables (Slope angle, Distance to streams and 

Distance to roads).Pedology is a major factor in soil 

stability. The depth of a shallow landslide is 

generally not more than 1–2 m. Therefore, the 

pedological map provides a useful basis for the study 

of the relationship between landslides and the type 

of soils [26]. The map used in this study was derived 

from the 1:50.000 soil map of Burundi provided by 

the ―Institut Geographique du Burundi‖ (IGEBU). 

The map is composed of five types of soils (Figure 

2) 

. 

Figure 2. Pedology Map 

Land cover variations highly influence 

landslide formation and evolution. Statistical 

analysis through logistic regression has proved to be 

a convenient tool for assessing the influence of 

different land cover classes on landslides. Several 

classes have been found to significantly increase or 

decrease the rate of landslides [27]. The map used in 

our study was clipped from Sentinel-2 global land 

cover data by the Regional Center for Mapping of 

esources of Development(RCMRD) (Figure 3).   

 

 
Figure 3. Land Cover Map 

 

Slope angle, distance to streams and 

distance to roads are all important factors in 

landslide assessment. Most of the studies selected 

either one or all those factors in modeling landslide 

susceptibility [3], [24], [28], [29]. In this study a 10 

m–resolution Digital Elevation Model (DEM) in 

combination with roads and streams maps provided 

by the IGEBU were used for distance and angle 

computing using ArcGIS 10.3 (Figure 1).First Order 

Second Moment MethodA number of deterministic 

model have been applied in various context [6], [7], 

[9]. Lu and Godt (2008) introduced a generalized 

framework for the stability of infinite slopes under 

steady unsaturated  seepage conditions. As all the 

deterministic models, the purpose is to determine a 

safety factor reflecting the stability of a considered 

slope. The proposed framework by Lu and Godt 

relies on the existing understanding of unsaturated-
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zone hydrology and considers for the first time, the 

contribution of suction stress in the stress analysis. 

The safety factor is defined by the relationship: 

 
where φ' is the friction angle; β is the slope angle; c' 

is the soil cohesion; γ is the unit weight of moist 

soil; H is the height of the soil column above the 

bedrock and σ
s
 is the suction stress defined by: 

 

 
where ks is the field hydraulic conductivity; q is the 

steady infiltration; γw is the unit weight of water; α 

and n are the empirical fitting parameters of 

unsaturated soils properties and the matric suction 

ua-uw is defined by: 

 

 
The need of a probabilistic approach is 

essential to this work since it will help compare the 

statistical and the deterministic model. There are 

several methods such as the point estimate method 

[30], first order second moment [31], [32] or Monte 

Carlo simulation [33] which are usually combined 

with a slope stability model to provide a probability 

of landslide instead of a safety factor. In this work 

the first order second moment method (FOSM) was 

used combined with Lu and Godt safety factor 

equation to map landslide susceptibility. The FOSM 

uses the first-order terms of a Taylor series 

approximation of the performance function to 

estimate the expected value and variance of the 

performance function. Since FOSM’s highest 

statistical value is variance, the method is called a 

second moment method. The usual Taylor’s series 

approximation is: 

          

 
where Z is the performance function which is in our 

case the FS and the mean value of FS=g(μx); μx is 

the mean value vector of (x1, x2, x3… xn) and μxi – is 

the mean value of each xi, 

Considering as proposed in this method only the 

order term, the mean value of the safety factor and 

the variance of the safety factor become: 

 
where cov(xi,xj) is the covariance of xi and xj. 

However, our variables are considered uncorrelated. 

Hence, the variance of the safety factor becomes: 

 

 

Table 1. Mean and standard deviation of mechanical and Hydrological parameters 
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In order to apply a deterministic model, an 

extensive laboratory and field survey was conducted. 

A statistically meaningful sample of 225 (15 for 

each sector) samples were collected for laboratory 

analysis and the same number of field test were 

performed. At each sector level, a mean average 

value and a standard deviation for the concerned 

parameters were inferred from laboratory analysis 

(Table 1). 

Friction angle and cohesion are key 

parameters to landslide formation. The lower the 

cohesion intercept, the higher the probability of 

landslide occurrence. The lower the friction angle, 

the lower the probability of landslide occurrence. 

However, these parameters are highly variable  

spatially. Hence in our approach we randomly 

selected sample point to measure specifically the 

mean and the spread at the sector level for all these 

parameters. The combination of the mechanical 

parameters with other local parameters such as slope 

angle and depth at each location will provide an 

accurate mean value of the safety factor since the 

variation of these parameters is taken in account in 

our probabilistic approach. Friction angle and 

cohesion were determined using laboratory 

procedures [34]. 

The definition of the depth of soils is 

difficult to conduct on a regional scale. In this study 

a soil depth model, using a simplified approach often 

used in largescale regional analyses, is applied [35]. 

The considered model correlates soil depth to the 

local slope and has the form: 

 
where Hi is the computed soil depth, Hmax 

and Hmin are respectively, the maximum and the 

minimum soil depth measured in the area, βi is the 

local slope angle value and βmax and βmin are 

respectively maximum and minimum slope angle 

value measured in the area. 

The hydraulic conductivity of soils was 

determined by the simple falling head technique 

[36]. This method has been developed and applied 

on Burundian soils. The Simplified Falling Head 

(SFH) technique allows us to determine the field-

saturated hydraulic conductivity of an initially 

unsaturated soil by a one-dimensional falling head 

infiltration process. The SFH technique consists of 

applying quickly a small volume of water on the soil 

surface confined by a ring inserted at a fixed 

distance into the soil, H0, and in measuring the time, 

ta, from the application of water to the instant at 

which the infiltration surface is no longer covered by 

water. The hydraulic conductivity takes the form: 

 
 

where ∆θ is the difference between the 

field-saturated (θfs) and the initial (θi) volumetric 

soil water content and α* is parameter based on the 

textural/structural soil characteristics. 

Van Genuchten parameters are used to 

determine suction stress for unsaturated soils. In our 

study, a pedo-transfer function was applied estimates 

the water retention curve characteristics using only 

soil texture and bulk density [37]. For this purpose, 

applied standard laboratory procedures to obtain 

particle size distribution and bulk density [38], [39]. 

 

 
Figure 4. Landslide susceptibility map. (LR) 

 

3.3. Model comparison. 

For model comparison we first classified 

the obtained maps according to the same levels of 

susceptibility (>0.8=very high, 0.5-0.8=high, 0.3-

0.5=moderate, 0.3-0.1=low, <0.1=very low) and 

defined the effective ratios for each level. Then 

using the Rank Differences tool of the ArcSDM 

package [40] we assessed the models concordance. 

Further, we used kappa statistics to assess spatial 

correlation. Finally, we used ROC (receiver 

operating characteristic) curves and AUC (Area 
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Under the receiver operating characteristic Curve) to 

assess independently the accuracy of each model 

compared to the training dataset. 

 

IV. RESULTS AND DISCUSSION 
4.1. Statistical landslide susceptibility assessment 

Landslide susceptibility map obtained using 

logistic regression (Fig. 5) shows that 10.4% of the 

study area is under very high and high probability of 

landslide. The accuracy of the logistic regression 

model applied is 85.537%. The logistic regression 

model applied correctly identified 38.268% of 

landslide in the training dataset and correctly 

identified 95.372% of the training dataset not 

affected by landslide. The precision of the logistic 

regression model applied is 63.243% (Table 2). 

 

 

he coefficients of the logistic regression 

model applied (beta weights) for each predisposing 

factor are listed in Table 3. For the continuous 

variables, the odds of landslides increase when the 

slope angle and the distance to roads increases and 

vice versa when the distance to streams increases, 

the odds of landslides decreases. For the categorical 

variables, the odds of landslides are higher for 

predominantly sandy soils and lower for 

predominantly clayey and loamy soils. Likewise, the 

odds of landslides for shrubs covered and trees 

covered area are higher than the rest of land cover 

type. However, this is mainly due to the soil 

occupation density of the study area where shrubs 

and trees covered areas are located only in the 

steepest slopes and built or cropland areas on more 

gentle slopes. 

The ROC curve of the landslide susceptibility 

model is shown in Fig. 7. The LR model predictive 

capacity is good, as expressed by the AUC of 0.872. 

 

4.2. Physically based landslide susceptibility 

assessment 

Landslide susceptibility map produced 

using the FOSM shows that 5.4% of the study area is 

under very high and high probability of landslide 

(Fig. 6). The accuracy of the FOSM model applied is 

82.446%. The FOSM model applied correctly 

identified 13.96% of landslide in the training dataset 

and correctly identified 96.696% of the training  

 

Table 2.  Description of landslides factors and unstandardized weights 
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dataset not affected by landslide. The 

precision of the logistic regression model applied is 

46.783% (Table 4). The landslide susceptibility map 

produced spatially approximates the slope angle 

map. This is due to the contribution of the slope 

angle variable in each of the component of the safety 

factor equation. 

 

 
The main contributor to the safety factor 

value in our study is the friction component of the 

equation (Fig. 6).  In similar case study [32], the 

aftermath of the slope stability simulation is to 

establish a threshold slope angle above which sliding 

is likely to occur. In our case study, a threshold of 

33.2 degrees for a mean safety factor lesser than 1.5 

was established. The results of the FOSM model 

applied in our case show that the uncertainty about 

safety factor decreases as increases the slope angle. 

Hence the safety factors in regions with steep slope 

are more reliable than those obtained in regions with 

gentle slopes.  

 

 
Figure 5. Components contribution to safety factor 

values for different range of slope angle and 

standard deviation about the safety factor values for 

each range of slope angle. 

The AUC value of the FOSM model 

applied is 0.810. The ROC curve of the landslide 

susceptibility model is shown in Fig. 7.ison of 

landslide susceptibility models 

 
Figure 6. Landslide susceptibility map (FOSM<1.5) 

 

Comparatively the susceptibility maps 

produced with LR and FOSM models differs. 

Cohen’s kappa coefficient is only 0.199 meaning the 

spatial correlation is at most fair. However, the good 

accuracy capacity of both models was corroborated 

by the AUC (Fig. 7). The spatial extent of each 

susceptibility level, the corresponding percentage of 

correct predictions are summarized in Table 5. The 

spatial comparison of the two susceptibility maps is 

shown in Fig. 8. Zero shows spatial concordance 

between landslide susceptibility levels. Negative 

values show that landslide susceptibility levels 

obtained with FOSM are lower compared with the 

susceptibility levels obtained with LR. The 

difference increasing from -1 to -4. Positive values 

show the contrary. The ideal spatial concordance 

between susceptibility levels for the two maps 

occurs in 41.1% of the study area. The opposite 

happens in 9.9% of the study area (Table 6). The 0 

and +1 concordance happens in 81.8%. This means 

that spatial ideal concordance and spatial level 

difference where LR level is one level lower than the 

FOSM level occupy 81.1% of the study area. This 

confirms the ability of the physical model to more 
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accurately differentiate the susceptibility levels in 

the intermediary levels (69.545% of the study area 

for FOSM with 72.12% of correct predictions) than 

the statistical model which is more accurate in the 

extreme susceptibility levels (35.441% of the study 

area for LR with 30.271% of correct predictions). 

 

 
Figure 7. Spatial agreement map between LR and 

FOSM maps. 

 

 
 

 
 

 
Figure 8. ROC curves of landslides susceptibility 

models 

 

V. CONCLUSION 
Landslide susceptibility assessment using 

statistical or deterministic models are widely used. 

However, they represent different approaches. While 

deterministic models use mechanical and 

hydrological properties, the statistical models use 

regression and weights potential triggering factors. 

In this study, landslide susceptibility using logistic 

regression and First order second moment method 

models was mapped. Further, the results obtained 

are compared with a landslide inventory map we 

built using literature and imagery. The AUC curve 

results obtained showed an independently good 

accuracy for both models. The Kappa statistics 

showed a fair correlation at most. Spatial 

comparison of the results shows a better accuracy for 

FOSM in intermediate levels and for LR in extreme 

levels. Landslide susceptibility assessment showed 

both model could be applied with satisfactory 

results. However, a combination of the two models 

should be explored.  
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