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ABSTRACT:This paper is aimed at finding the buckling load of columns by using a different approach than 

the traditional methods. One-dimensional maps are often seen in dynamic systems to describe how a regular 

motion changes into an irregular motion through bifurcations.The totalpotential energy is one of the traditional 

methods to find the buckling load of a structure. At first sight, it seems that these two are irrelevant. However, 

due to the fact that they are bothrelated to the bifurcation theory, this paper first transform the equilibrium 

condition of the total potential energy of a structure into the form of a one-dimensional map.By locating the first 

bifurcation point of the one-dimensional map, the buckling load of the structure can then be obtained. There are 

three examples given in this paper to demonstrate this innovative approach. The results show that the 

one-dimensional map theory works well and can be used as an alternative for finding the buckling load. 
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I. INTRODUCTION 
When a slender member is subjected to an 

axial compressive load, it may result in the loss of its 

stability to resist loading even though the stresses 

developing in the structure are well below the 

strength of materials. There are many ways structures 

can become unstable. If the elastic buckling is the 

cause of failure, to obtain the buckling load becomes 

necessary and important because the maximum load 

the structure can support must be determined 

beforehand. There are different kinds of methods to 

findthe buckling load, such as equilibrium methods, 

dynamic methods and energy methods, as discussed 

in Simitses[1] and Chen and Liu[2]. In a 

mathematical sense, buckling is a bifurcation from 

stable to unstable equilibrium in the solution to the 

equations of static equilibrium. A bifurcation occurs 

when a small smooth changemade to the parameter 

values of a system causes a sudden qualitative or 

topological change in its behavior [3-5], usually from 

simple to highly complicated behavior. Bifurcation 

theory is a useful and widely studied subfield of 

dynamical systems. 

one-dimensional mapsarethe most generally 

accepted paradigm in chaotic dynamics to show how 

the system is affected by the parameter in the map 

and how it becomes chaotic when the parameteris 

changed, as illustrated in Alligood [4] and Moon[5]. 

The system behavior doesn’t change as long as the 

fixed point of the map remains stable, while the 

system behavior changes qualitatively as soon as the 

fixed point becomes unstable. The boundary 

separating the stable and unstable fixed points 

corresponds to a critical value of the parameter. A 

point in the parameter space where one can see a 

change in the qualitative behavior of a system is 

defined as a bifurcation point,e.g., loss of stability of 

a solution or the emergence of a new solution with 

different properties. When a bifurcation occurs, more 

and different fixed points emerge, that is, the period 

of the system grows longer. The bifurcation can keep 

happening until the system becomes chaotic with 

amazingly irregular behaviors[3-5]. As a 

consequence, whether the system behavior changes 

qualitatively is much related to the stability of the 

fixed points. Based on the above stability concept of 

a one-dimensional map, this paper develops another 

approach to find the buckling load, which is different 

than the traditional methods and proves to be feasible 

and effective. 

 

II. FIXED POINTS AND STABILITY OF 

A ONE-DIMENSTIONAL MAP 
A fixed pointfor a functiong(x)is a number 

pfor which the value of the function does not change, 

i.e., g(p)=p.By simple algebraic manipulation, an 

equation h(x)=0 can equivalently be transformed into 

the form 

x = g(x)(1) 

According to Burden and Fairs [6], if Eq. (1) is 

regarded as a one-dimensional map 

,...3,2,1,0),(1  nxgx nn (2) 

thenthe fixed point of this one-dimensional map 

corresponds to the solution to the equation h(x)=0. 

Based on this concept, this paper first transforms the 

equilibrium equation of the total potential energy into 

a one-dimensional map and then finds the fixed point 
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xfof the map, which is exactlythe equilibrium 

position of the total potential energy.  

To determine the stability of a map, one looks at the 

value of the slope evaluated at the fixed point. 

Suppose that xf is the fixed point of a 

one-dimensional map and xois the initial value close 

to xf. If  

1
)(






x

xg f
(3) 

the sequence of the one-dimensional map will 

converge to xf, i.e., thestable fixed point; if  

1
)(






x

xg f
(4) 

it will diverge from xf,i.e., theunstable fixed point. 

When  

1
)(






x

xg f
(5) 

the parameter of the map is at a critical value where 

bifurcation occurs, which is illustrated in Alligood [4] 

and Moon[5]. 

 

III. BIFURCATION OF A 

ONE-DIMENSIONAL MAP 
Perhaps the simplest example of a dynamic mode 

that exhibits the bifurcation phenomena is thelogistic 

map or population growth model[7], which is given 

by 

xn+1=xn(1-xn)(6) 

wherexnis limited to the interval [0, 1] and the 

parameter to the interval [0, 4]. The equilibrium 

points (or fixed points) can be found by solving the 

equation  

x=x(1-x)=g(x)(7) 

whichhas roots atx=0 and





1
x . When<1, the 

map has only one fixed and stable point at x=0, while 

for 1<<3, the map has two fixed points x=0 and






1
x , where the former is unstable and the 

latter is stable. Hence the first bifurcation point 

occurs at =1. For>3, a double-period orbit appears, 

i.e., the second bifurcation point happens at =3, as 

shown in Fig. 1. 

From Eq.(7), the first derivative of g(x) with respect 

to x gives 

)21( x
x

g





(8) 

Substituting the smaller equilibrium point x=0 into 

Eq. (8) leads to(9) 

 

                     (9) 

According to Eq. (5), if 1




x

g
, bifurcation will 

happen, i.e., =1, which corresponds to the first 

bifurcation point in Fig. 1 

 

 
Fig. 1The first and second bifurcation points of the 

logistic map at =1 and =3. 

 

IV. STABILITY OF TOTAL POTENTIAL 

ENERGY 

For a conservative one-degree-of–freedom 

system, the total potential energyV is usually 

expressed in term of the generalized coordinate, 

measured from a fixed datum,and external load P, i.e., 

V(,P). If the system is in equilibrium, the first 

derivative of Vwith respect to must be equal to zero, 

i.e., 

0


V

(10) 

Based on the second derivative of V evaluated at the 

equilibrium position, the total potential energy V(, P) 

can further be classified into three types[8]: (1) 

Stable equilibrium, if 

0
2

2




 V
(11) 

i.e., the total potential energy is at a local minimum; 

(2) Unstable equilibrium, if  

0
2

2




 V
(12) 

i.e., the total potential energy is at a local maximum; 

(3) Neutral equilibrium, if  

0
2

2




 V
(13) 

When the system is in neural equilibrium, it 

is at the boundary between stability and instability, 

where the equilibrium branches and a bifurcation 

occurs.  According to Simitses [1] and Gere and 

Goodno [9], when the external load reaches the 

bifurcation point, the structure is on the verge of 
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1


g

buckling and the corresponding load is called the 

critical load, denoted by the symbolPcr. Hence the 

buckling load can be determined fromEqs. (10) and 

(13). 

Because both the bifurcation point of the 

one-dimensional map and the total potential energy 

correspond to a critical point, if the equilibrium 

condition of the total potential energy could be 

changed into a one-dimensional map, the buckling 

load Pcr might be obtained by considering this 

one-dimensional map instead of the equation. Due to 

this conjecture, this paper develops the following 

method to find the buckling load of a structure.  

Suppose that V(,P) is the total potential energy of a 

structure. The stationary value of the total potential 

energy can be found by making 

0),( 



Ph

V
(14) 

which yields the equilibrium equation. After that, Eq. 

(14) can be transformed equivalently into  

),( Pg  (15) 

The one-dimensional map 

),(1 Pg nn   (16) 

is then constructed, whose fixed points correspond 

exactly to the static equilibrium positions of the total 

potential energy.According to Eq.(5), one of the 

critical states of the map at fixed point is  

1
)(




 fg
(17) 

wheref is the fixed point. It is apparent that the 

condition of Eq. (17) is equivalent to that of Eq. (13). 

As a result, the critical state 1
)(




 fg
of the 

one-dimensional mapcan be used to locate the 

bifurcation point of a structure and find the buckling 

load. It should be noted here that the other critical 

state 

1
)(




 fg
(18) 

cannot be applied to find the buckling load, because 

it’s not equivalent to the condition of Eq. (13) 

obviously.  

 

V. ILLUSTRATIVE EXAMPLES 
Buckling is one of the major causes of 

failures in many structures. Hence, considering the 

possibility of buckling occurring in the structures is 

very important in design. Following are three 

examples that could fail due to buckling, rather than 

compression exceeding strength of materials. The 

rotational displacement  is assumed to be small in 

each example. For the sake of comparison, the three 

examples are taken form Gere and Goodno [9] and 

Hibbeler [10]. 

 

5.1 Single Rigid Bar Supported byaTranslational 

Spring 

This idealized column consists of a rigid bar 

of length 2L, compressed by an axial load P, as 

shown in Fig.2. It is initially held in a vertical 

position by a translational spring having stiffness k. 

Since the system is conservative, the potential energy 

is then given by   

2)
2

3
)(

2

1
()cos22(  LkLLpV (19) 

The equilibrium condition for the total potential 

energy is 

0
4

9
)

6
(2

4

9
sin2

23

2
















kL
LP

kL
LP

V

(20) 

which can be rewritten as 

P

kL

8

9

6

3 



 (21) 

The one-dimensional map takes the form 

P

kL nn
n

8

9

6

3

1





 

(22) 

There are two fixed points of the map: =0 and

)
8

9
1(6

P

kL
 .  Let  

 

                                       (23) 

 (23) 

The derivative of the function g(, P) with respect to 

 becomes 

(24) 

 

Substitute=0 (the smallest value of the two fixed 

positions)into Eq. (24) and let     , 

which leads to 

1
8

9


P

kL

(25) 

Therefore, the buckling load for the column is 

kLPcr
8

9
 , whichcoincides with Gere and 

Goodno[9]. When the axial load P>9kL/8,the single 

rigid bar will buckle.  

 

 

 

 

 

P

kL
Pg

8

9

6
),(

3 



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Fig. 2 Single rigid bar supported by a translational 

spring 

 

5.2 Two -Bar SystemSupportedbyaTranslational 

Spring  

The second example is a column composed 

of two rigid bars AB and BC, each of length L/2, 

which are connected with a translational spring of 

stiffness k, as shown in Fig. 3. Initially the two bars 

are perfectly aligned and held in a vertical position. 

The compressive force P is acting along the 

longitudinal axis, i.e., the dashed line in Fig.3. The 

total potential energy for the conservative system is 

expressed as 

2)
2

(
2

)cos
22

(2),( 
LkLL

PPV (26) 

The equilibrium condition for the this mechanism is 

0
4

)
6

(

4
)sin

2
(2

23

2
















kL
LP

kLL
P

V

(27)which can be 

written as 

P

kL

46

3 



 (28) 

The one-dimensional map can be formed as  

P

kL nn
n

46

3

1





 

(29) 

There are two fixed points of this map:=0 and 

)
4

1(6
P

kL
 . Let  

P

kL
Pg

46
),(

3 



 (30) 

Then 

                     (31) 

 

Similarly, substitute the smaller fixed point =0 into 

Eq. (31) and let, which leads to  

1
4


P

kL
(32) 

The critical load for this two-bar systemis
4

kL
pcr  , 

whichcoincides with the result found by Hibbeler 

[10]. When the compressive force P>kL/4 , the 

two-bar system will buckle. 

 

 
Fig. 3Two -bar system supported by a translational 

spring. 

 

5.3 Two-Bar SystemSupported bya Rotational 

Spring 

The third example is a system of two rigid 

bars AB and BC, each of length L/2, connected with 

a rotational spring of stiffness kR, as shown is 

Fig.4.Initially the two bars are perfectly aligned and 

held in a vertical position. The compressive force P is 

acting along the longitudinal axis, i.e., the dashed 

line in Fig. 4. The total potential energy is given by 

2)2(
2

1
)cos

22
(2  Rk

LL
PV (33) 

If the system is in in equilibrium, then 

 (34)  

 

which can be written as 

PL

kR



4

6

3

(35) 

The one-dimensional map can be formed as 

PL

k nRn
n





 

4

6

3

1 (36) 

 

There are two fixed points of this map: =0 

 

 

P

k



0.5L

1.5L
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Fig. 4Two-bar system supported by a rotational 

spring 

 

Then 

PL

kg R4

2

2








(38) 

 

Likewise, substitute the smaller fixed point 

=0 into Eq. (38) and let       , which 

leads to 

 

1
4


PL

kR

(39) 

 

Hence, the buckling load for this two-bar system is, 

which agrees with the result found by Gere and 

Goodno[9]. When the compressive force P>4kR/L, 

the two-bar system will buckle. 

 

VI. CONCLUSION 
Due to the existence of equilibrium and 

stabilityin both the one-dimensional map and total 

potential energy, this paper first transform the 

equilibrium condition of the total potential energy of 

a column into the one-dimensional map and then 

locates the first bifurcation point of the 

one-dimensional map, from which the buckling load 

of the columncan be determined. Three kinds of 

columnsare given to prove that the approach  

 

 

 

 

 

 

 

presented in this paper works well. The buckling load 

of each column found by the one-dimensional 

mapagrees withthatobtained by the traditional 

method; therefore, the approach introduced in this 

paper can be considered an alternative to determining 

the critical load of a structure. 
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