RESEARCH ARTICLE

OPEN ACCESS

Photon Cross Section Studies of Nickel Based Alloys and Special Alloys at Energies 42.0 Kev - 59.54 Kev And 145.4 Kev – 661.6 Kev.

S. Thomas Reddy¹, Yalagalasandeep², V. Nathanial², V. Ludhiyana² And D.V. Krishna Reddy¹

¹Department of Physics, Kakatiya University, Walangal – 506 009, ²Department of Physics, University College of Science, Osmania University, Hyderabad – 500 007. Correspondence Author :Thomas shyamala

ABSTRACT :

The Photon cross section studies of nickel based alloys and special alloys are measured using gamma ray spectrometry based NaI (TI) scintillation detector with four energies, i.e., 42.0 KeV, 59.54 KeV and 145.4 KeV, 661.6 KeV respectively. The samples, such as nickel based alloys and special alloys are collected from various manufacture companies in INDIA. Photon cross section values are measured from the experiment and compared with theoretical values of Strom-Isreal and Veigele by the using of XCOM programme. Experiment values are very good agreement with theoretical values.

Keywords : Photon cross section studies, Special alloys, energies 42.0 KeV, 59.54 KeV and 145.4 KeV, 661.6 KeV.

Date of Submission: 20-06-2018

Date of acceptance: 09-07-2018

----- ------

I. INTRODUCTION :

Because of having various uses in the fields like Industry, Education, Agriculture, Health etc., the study of the interaction of photons with matter has gained more important role in recent years. In the involvement of researchers around the globe we have got literature about many of effective atomic numbers (Zeff) for total and partial photon interactions. The effective atomic numbers (Zeff) for the total and partial gamma ray interactions in alloys is having equally important. The absorption and scattering of gamma-rays in all materials are related to value of Z_{eff} of materials and the energy of photons. In this all interactions, there will have a energy transfer from photon to matter. Theoretical and experimental studies have been reported in a wide range of energies from a few KeV up to several GeV. Although, the several researchers have been carried out good research in this interaction study, still there is many interactions have to study. In the present study we have reported the results of Scattering cross sections and Incoherent scattering cross sections of special alloys (barns/atom) at two energies, i.e., 145.4 KeV and 661.6 KeV. Along with the study of Scattering cross section (of barns/atom), we have studied Nickel based alloys, photoelectric & Interpolated total effective atomic numbers (Z_{eff}) at energies 42.0 KeV and 59.54 KeV.

II. EXPERIMENTAL METHODS :

Using gamma ray spectrometer, in order to carry out systematic studies on the aspects which are mentioned above, it is required to conduct transmission experiments, for the measurement of total photon cross sections in elements, alloys and mixtures with an aim to estimate photoelectric and scattering cross sections and effective atomic numbers. Transmission experiments using a good geometry setup in conjunction with a PC based multi-channel analyser was conducted in this laboratory. The incoherent scattering cross section and scattering cross section values are measured from experiment and compared with theoretical values of Strom-israel and Veigele by the using XCOM programme.

In the present experimental investigation scintillation spectrometer consists of a thallium activated sodium iodide thin crystal. Optically coupled to photomultiplier along with a preamplifier, a linear amplifier and PC based multichannel analyser is employed for the detection of X- and Gamma Rays. Gamma rays are well collimated using collimators of cylindrical shape and a circular aperture of 6mm diameter between the source and the detector. The detector was shielded by a lead screen to reduce the radiation coming directly from the source and scattered from the surroundings. The attenuation measurements were made with multichannel analyser. The experimental setup is shown in fig.1.

The radioactive isotopes used in the present investigation are listed in the Table 1, along with their energies and half-lives. These radioactive isotopes Barium (¹³³Ba), Cesium (¹³⁷Cs), Europium(¹⁵²⁺¹⁵⁴Eu), Cerium (¹⁴¹Ce), were obtained from the BRIT, Bhabha Atomic Research Centre, Trombay, Mumbai, India and Americium (²⁴¹Am) of strength 30mCi source obtained from isotope division, Americium Laboratories, Americium, Buckinghamshire, England, U.K.

Sl.No:	Radioisotope	Half- life Time	Energy of the Photons selected in KeV ^a		
		Time	Х-	Y-	
			Rays	Rays	
1	²⁴¹ Am	433		59.54	
		Years			
2	¹³³ Ba	10.7	30.85	81	
		Years			
3	(142+154) Eu	16.0	42		
		Years			
4	¹⁴¹ Ce	32.5		145.4	
		Days			
5	¹³⁷ Cs	30.17	32.1	661.6	
		Years			

(^a C.M. Leadere and V.S. Shirly. Tables of Isotopes Wiley New Yark) **Table 1:** Radio Isotopes and photon energies used in the present work

The linearity of the spectrometer was studied separately with thick and thin NaI (TI) crystal detectors, the spectral distribution between the pulse height and the photon energy using the standard source are shown in figure.2. The results plotted in figure.2, shown an excellent linearity over the photon energy region of interest.

In the present study as a samples we have taken Nickel based alloys, i.e., Superimphy, Inconel, Anhyster-DS, Invar and Telphy and the special alloys SuperniC-274, MDN-174, MDN-250, Super Heat-80, Soft Mag-48B, BT-9, Titan-31, BT 5-1, OT 4-1, BT 3-1, Titan 12, Titan 15. These alloys were obtained as gift samples from Mishra Dhatu Nigam Limited, super alloys projects, Hyderabad, India. And Nimonic-90 and S.Steel are the gift samples from D.M.R.L., Hyderabad, India. For the experiment the sample alloy was cold rolled under uniform pressure and uniform foils were obtained. These uniform foils were cut into rectangular pieces of various sizes and thicknesses. The mass of the foils was determined by the same microbalance and was corrected to third decimal place. The thickness was measured using a micrometre whose least count is 0.001 cm. After knowing the mass and thickness of the foil the mass per unit area was computed. Alloy foils of various thicknesses (gm/cm²) used in the present investigation ranges from 50 mg/cm² to 1000 mg/cm², such that the transmission (I/I₀) lies between 0.1 to 0.6.

III. ANALYSIS OF DATA :

In this work the data obtained from experimental procedure were analysed by using the standard formulations. The mass attenuation coefficients for wrought Nickel Base alloys at different energies were determined by performing scattering experiments, and by using semi empirical relations were the experimental values are compared.

$$\mathbf{I} = \mathbf{I}_0 \exp\left(-\mu_{\mathrm{m}} t\right) \tag{1}$$

Where I₀ and I are the un-attenuated and attenuated photon intensities and the sample thickness is $t(g/cm^2)$ and the linear mass attenuation coefficient is $\mu_m = \mu/\rho$ (cm²/g).

For any chemical compound or mixture of elements, the mixture rule will give the total mass attenuation coefficient μ_{m} .

$$\mu_m = \Sigma_i W_i(\mu_m)_i$$

where, W_i is the weight fraction (the proportion by weight) (μ_m) is the mass attenuation coefficient of i^{th} element.

(2)

For a material composed of multi element the fraction by weigh is given by,

$$w_i = \frac{n_i A_i}{\sum_i n_i A_i} \tag{3}$$

Where A_i is the atomic weight of the ith element and n_i is the number of formula units.

The total atomic cross-section (σ_t) for materials can be obtained from the measured values of μm using the following relation

$$\sigma_{t} = \frac{\mu_{m}N}{N_{A}} \tag{4}$$

 $N = \sum_{i} n_i A_i$ Where atomic mass of materials, N_A is the Avagadro's number.

The total electronic cross-section (σ_e) for the element is expressed by the following equation

$$\sigma_{e} = \frac{1}{N_{A}} \sum \frac{f_{i}N_{i}}{Z_{i}} (\mu_{m})_{i} = \frac{\sigma_{i}}{Z_{eff}}$$
(5)

Where f_i denotes the fractional abundance of the element I with respect to the number of atoms such that $f_1+f_2+f_3+f_4+...,f_i = 1$ Z_i is the atomic number of ith element

The total atomic cross-section (σ_t) and total electronic cross-section (σ_e) are related to the effective atomic number (Z_{eff}) of the material through the following relation

$$Z_{eff} = \frac{\sigma_{t}}{\sigma_{e}} \tag{6}$$

Finally, the average distance between two successive interactions, called the photon mean free path (λ), is given by

$$\lambda = \frac{\int_{0}^{\infty} x \exp(-\mu x) dz}{\int_{0}^{\infty} \exp(-\mu x) dx} = \frac{1}{\mu}$$
(7)

Where (μ_l) is the linear attenuation coefficient and x is the absorber thickness.

In the present Measurement the statistical error is limited to less than 1% by collecting a sufficient number of counts under the photo peak for the selected region of interest (ROI). The percentage deviation due to the non-uniformity of the absorbers was estimated using the relation. This has been minimized by following the counting sequence of Conner et all.(1970). The errors due to this method will be almost of the order of 0.5%. The extrapolation technique described earlier eliminates the error due to multiple scattering. The overall errors introduced on the total photon mass attenuation coefficients are thus around 2%.

IV. RESULTS AND DISCUSSION :

Utilising the good geometry setup and employing the methods already discussed, the mass attenuation coefficients were measured in twelve special alloys at two energies 145.5 KeV and 661.6 KeV are represented in table 2a, and nine nickel based alloys at two energies 42.2 KeV and 59.54 KeV are presented in the table 3a, where also, the experimental results are compared with Strom &Isreal, Vegele and Hubbels theoretical values.

1.1. Scattering and Incoherent scattering crosssections:

The scattering and Incoherent scattering cross sections by subtracting the minor contribution of photoelectric cross section and photoelectric plus coherent scattering cross sections respectively from the total experimental cross sections, where the photoelectric plus coherent scattering contribution is less than 20% of the total cross section.

SLNø	Name of the alloy	Scattering Cross Sections								
		Habbell et al		Strongleral		Veigele		Experimental		
		145.4 KeV	661.6 KeV	145.4 KeV	661.6 KeV	145.4 KeV	661.6 KeV	145.4 KeV	661.4 KeV	
1	Supernic 274	14.55	7.626	15.49	7,610	15.63	7.623	15.69	7,678	
2	MDN 174	12.78	6.661	12.73	6.648	12.90	6.656	12.94	6.853	
3	MDN 250	13.71	7.045	13.66	7.038	13.84	7.031	13.66	7,096	
4	Super Heat 80	13.64	7.035	13,63	7.021	13.74	6.922	13.55	6.801	
5	Soft Mag 48B	12.31	6.421	12.30	6.410	12.38	6,418	12.33	6,436	
6	BT-9	10.90	5.954	10.91	6,044	11.00	5.752	10.94	5.581	
1	Titan 31	10.39	6.041	10.39	5.810	10.48	5.541	10.51	5.536	
8	BT 5-1	11.15	5.892	11.14	5,851	11.19	5.861	11.08	5.851	
9	074-1	[0.6]	5.752	10.58	5.752	10.64	5.638	10.52	5.629	
30	BT 3-1	19.75	5.957	10.76	5.940	10.85	5.693	11.10	5.688	
11	Titan 12	10.65	5.684	10.65	5.667	10.69	5.671	10.63	5.663	
12	Titim 15	10.64	5.672	10.64	5,666	10.69	5.670	10.71	5.631	

Table 2a:	Scattering cross section of special al	lloys
	(barns/atom) at energy	
	$(145 4 \text{ K}_{0}\text{V})$ and $(661 6 \text{ K}_{0}\text{V})$	

(145.4 KeV) and (661.6 KeV).

Thus the scattering cross-sections (σ_{sca}) and incoherent scattering cross sections (σ_{incoh}) were obtained in all the twelve special alloys at 145.4 KeV and 661.6 KeV photon energies. The Scattering Cross sections values are presented in Table 2a, along with theoretical values of Hubbell et al.(1968) and Storm and Israel (1970).

And the incoherent scattering cross sections values are presented in Table 2b, along with theoretical values of Hubbell et al.(1968) and Storm and Israel (1970).

SLN ₉	Name of the alloy	Incoherent Scattering Cross Sections								
		Habbell et al		Strongelsreal		Veigels		Experimental		
		145.4 KeV	661.6 KeV	145.4 KeV	661.6 KeV	145.4 KeV	661.6 KeV	145.4 KeV	661.6 KeV	
1	Supervic 274	12.494	T,461	12 550	T.4%	12.544	7,430	12.594	7.484	
2	MDN 174	11.093	6.572	11.071	6.563	11.150	6.258	11.185	6.444	
3	MDN 250	11.683	6.938	11.682	6.932	11.745	6.665	11.594	6.727	
4	Super Heat 80	11.675	6.931	11.713	6.923	11.713	6.923	11.555	6.838	
5	Soft Mag 488	10.785	5,336	10.731	6.330	10.751	6.330	10.686	6.357	
6	BT-9	9.641	5.688	9.651	5.684	9.646	5.682	9.597	5.512	
7	Tras 31	9,321	5.488	9.324	5.482	9.324	5.481	9.351	5,477	
8	BT 5-1	9.816	5.794	9.826	5.790	9.824	5,788	9.124	5.73	
.9	0T4-1	9,478	5.583	9.482	3.77	9.412	5.557	9.372	5549	
10	BT 3-1	9.553	5,633	9.561	5.628	9.559	5.625	9.783	5 630	
11	Titux 12	9,533	5.616	9.537	5.610	\$538	5.609	9.40	5.602	
12	Titan 15	9530	5.614	9.535	5.609	9,535	5.608	9.557	5.530	
						1				

Table 2b: Incoherent Scattering cross section of special alloys (barns/atom) at energy (145,4K,V)

(145.4 KeV) and (661.6 KeV).

The theoretical values of Hubbellet al. are almost consistent with theoretical values of Storm and Israel (1970) except in few cases. There is good agreement between the theory and experiment as evident from the tables. The experimental values are also good agreement with the compiled values of Vegele (1973).

1.2. Total and partial effective atomic numbers:

The Z_{eff} and Z_{poto} values of Nickel Based alloys at two photon energies 42.0 KeV and 59.5 KeV and the scattering values of special alloys at energies at 145.4 KeV and 661.6 KeV are presented in table 3a, and table 3b, respectively. Z_{photo} values for nickel based alloys at two energies 42.0 and 59.54 KeV calculated from Hine's relations along with interpolated values. Similarly Z_{scat} the effective atomic umber for scattering is given by Hine (1952).

SL No	Name of the allary	12	l KeV	95	Photoelectric	
		Interpolate d (Z _{el})	Photoelectric (Z _{plan})	laterpolated (L _{et})	Photoelectric (Z _{pine})	effect Hine's Relation
1	Seperimply	27.15	7736	2722	17.12	273
2	Ashyster - M	nn	27.47	27.56	2738	27.98
3	Iscend	17.16	27.18	27.20	27.12	12
4	Nincole - 90	337	27.36	3687	nv	24
j.	Anhyster-DS	XI	3696	3696	36.87	27.00
6	lata	362	26.67	3672	2662	3.76
1	Détery - P	26.5	25.72	<u>365</u>	364	37
8	Telphy	25.42	29	2595	28	2595
9	S Steel	237	2583	2580	2.7	2584

Table 3a: Interpolated total effective atomicnumbers (Z_{eff}) and Photoelectric effective atomicnumbers (Z_{photo}) of Nickel based alloys at 42.0 Kevand 59.54 KeV.

SLNo	Name of the alloy	Experimental Results							
	namena antare	Scatte effective number	ering atomic s (Z _{unn})	laco effectiv aucube	herent re atomic rs (Z _{nutt})	Hines relation for Z _{trak}			
		145.4 KeV	661.6 KeV	145.4 KeV	661.6 KeV				
1	Sepenic 274	19.20	29.24	29.36	29.35	29.38			
2	MDN 174	25.64	25.68	25.78	25.74	25.86			
3	MDN 250	17.50	27.15	27.36	27.24	-27.33			
4	Super Heat 80	27.05	27.21	27.29	27.28	27.25			
5	Soft Mag 488	24.74	24.81	24.86	24.82	24.94			
6	BT~9	22.19	22.26	22.36	22.36	22.38			
1	Titas 31	21.38	21.42	21.54	21.52	21.62			
1	BT 5-1	22.62	22.70	22.79	22.78	22.83			
9	0741	21.81	21.89	21.92	21.90	21.97			
10	BT 3-1	22.91	22.07	22.18	22.18	72.18			
11	Titas 12	21.87	21.92	23.96	21.94	21.95			
12	Titan 13	23.84	21.89	21.94	21.94	21.96			
			-						

Table 3b: Scattering effective atomic numbers (Z_{scatt}) and Incoherent effective atomic numbers (Z_{incoh}) of special alloys at 145.4 KeV and 661.6KeV.

In fact, Z_{eff} value decreases as energy increases and is supposed to reach to a constant value (Partha Sarathi 1974), But the above statement cannot be confirmed from the present results in view of the experimental errors. This may be due to narrow range of atomic numbers constitute the alloys selected in the present investigation. However from the present experimental results there appears to be a decreasing trend in Z_{eff} value with increasing energy. From these tables it can also be seen that Z_{pho} is near to Z_{eff} at low photon energies where, photoelectric effect is dominant and as energy increases the Zincoh value slowly approaches the Zeff value. This trend occurs, as at low energy photoelectric cross sections dominate and at higher energies incoherent scattering cross sections dominate the photoelectric effect plus coherent scattering. This effect can be observed from the present result. However, as the variation in not much and is within the range of experimental errors, definite conclusions cannot be drawn in this regard. But, according to Hine any partial effective atomic number is independent of energy. In order to observe this, systematic studies are to be conducted with alloys having different elements with wide range of atomic numbers.

V. CONCLUSIONS :

The total photoelectric cross sections that were obtained by subtraction method are in very good agreement with the theoretical values of Storm and Israel. They are also in agreement with the compilation data of Veigele within the range of errors. However, there is general agreement between various theoretical, compiled and available earlier investigations.

The extracted total photon cross sections of special and nickel based alloys are in good agreement with the theoretical predictions of Strom and Israel. The total photoelectric cross sections derive from total photon cross sections at 42.0 KeV and 59.54 KeV photon energies for nickel based alloys are in good agreement with theoretical prediction of Scofield. Similarly the total scattering and incoherent scattering cross section derived from the total photon cross section at photon energies 145.4 KeV and 661.6 KeV, for special alloys are in good agreement with the theoretical values of Hubbell et al. And Storm and Israel.

The interpolated values of partial effective atomic numbers $Z_{pho}, \ Z_{sea}$ and Z_{incoh} are almost energy independent. The calculated values of Z_{pho} and Z_{incoh} from Hine's relations are in good agreement with the interpolated values. The references listed below have completed their work with different low energies with different samples.

REFERENCES:

- [1]. Davisson C M, Alpha, Beta and Gamma ray Spectroscopy,vol.1 (1965).
- [2]. Chendra Lingam S, Suresh Babu K, Krishna Reddy D V, Ind J Phys, 58A (1984), 285.
- [3]. Hine G J, Phys Rev, 85 (1952), 725;Nucleonics, 10 (1952), 9.
- [4]. Hubbell J H, VeigeleWm J, Briggs E A, Brown R T, Cromer D T and Howerton R J, J PhysChem Ref Data,4 (1975) 471.

- [5]. Radha Krishna Murthy, Ph.D. thesis, Kakatiya University (1994).
- [6]. Suresh Babu K, Chandra Lingam S and Krishna Reddy D V, Can J Phys, 62 (1984), 178.
- [7]. Bhandal G S and Singh K, ApplRadiatIsot, 44 (1993), 929.
- [8]. Hubbeell J H and Overbo I, JPhysChem Ref Data, 8 (1979), 69.
- [9]. Wang Dachun, Luo Ping An and Yang Hua, NuclInstr Meth B95 (1995), 161-165.
- [10]. S B Dagli and A F Bayatas, Radiat. Measurements 37, 253 (2003)
- [11]. Shivaramu, R Vijayakumar, L Rajasekharan and N Ramamurthy, Radiat. Phys. Chem. 62.371 (2001).
- [12]. Icelli, S Erzeneoglu, I H Karahan and G Cankaya, J. Quant. Spectrosc.Radiat. Trandfer 91, 485 (2005).
- [13]. Tjugum, S.A., Johanson, G.A, Holstad, M.B., Radiat. Phys. Chem., 60(2001), 797-798.
- [14]. PrashantS.Kore, PravinaP.Pawar. Radiation Physics and Chemistry 98 (2014) 86-91.
- [15]. Renu Sharma, J.K.Sharma and Tejbir Singh, Internatioonal Journal of Pure and Applied Physics. ISSN 0973-1776 Volume 13, Number 1 (2017), pp. 191-194

S. Thomas Reddy "Photon Cross Section Studies of Nickel Based Alloys and Special Alloys At Energies 42.0 Kev - 59.54 Kev And 145.4 Kev – 661.6 Kev."International Journal of Engineering Research and Applications (IJERA), vol. 8, no.7, 2018, pp.26-30