
Bandita Das Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6, (Part -III) June 2018, pp.63-71

www.ijera.com DOI: 10.9790/9622-0806036371 63 | P a g e

Scoping Constructs for Software Generators

Bandita Das, Sambit Sahoo,
Gandhi Institute of Excellent Technocrats, Bhubaneswar,India

Vignan Institute of Technology and Management,Berhampur, Ganjam, Odisha, India

ABSTRACT. A well-known problem in program generation is scoping. When iden-tifiers (i.e., symbolic

names) are used to refer to variables, types, or functions,program generators must ensure that generated

identifiers are bound to theirintended declarations. This is the standard scoping issue in programming lan-

guages, only automatically generated programs can quickly become too com-

plexandmaintainingbindingsmanuallyishard.Inthispaperwepresentgeneration scoping: a language mechanism to

facilitate the handling of scopingconcerns. Generation scoping offers control over identifier scoping beyond

thescoping mechanism of the target programming language (i.e., the language inwhich the generator output is

expressed). Generation scoping was originallyimplemented as an extension of the code template operators in the

IntentionalProgrammingplatform,underdevelopmentbyMicrosoftResearch.Subse-quently, generation scoping

has also been integrated in the JTS language exten-sibility tools. The capabilities of generation scoping were

invaluable in theimplementation of two actual software generators: DiSTiL (implemented usingthe Intentional

Programming system), and P3 (implemented using JTS).

Keywords:softwaregenerators,programtransformations,generationscoping,hygienicmacro expansion

I. INTRODUCTION
Programgenerationistheprocessofgeneratin

gcodeinahigh-levelprogramminglanguage. A well-

known problem with program generation has to do

with the resolu-tion of names used to refer to

various entities (e.g., variables, types, and

functions) inthe generated program. This is the

standard scoping issue of programming

languagesbutscopingproblemsareexacerbatedwhenp

rogramsaregeneratedautomatically.Forinstance,

often the same macro or template is used to create

multiple code

fragments,whichallexistinthesamescopeofthegenera

tedprogram.Inthatcase,careshouldbetaken so that

the generated fragments do not contain declarations

that conflict (e.g.,variableswith the same name in

the samelexical scope).

Avoidingscopingproblemsinprogramgenerationcan

bedonemanually:Lisppro-grammers are familiar

with the gensymfunction for creating new symbols.

Usinggensymto create unique names for generated

variable declarations is one of the com-monly

recommended practices for Lisp programmers.

Unfortunately, this practice istedious; it

complicates program generation and makes the

generator code harder toread and maintain.

Mechanisms have been invented to relieve the

programmer of theobligation to keep track of

declared variables and generate new symbols for

theirnames.Thesemechanismsfallunderthegeneralhe

adingofhygienicmacro-

expansion(e.g.,[7],[8],[10])andaddressthescopingpr

oblemformacros:self-containedtrans-

formationsthatarebothspecifiedandappliedinthesam

eprogram.Adesirableprop-

ertyinthissettingisreferentialtransparency:identifiers

introducedbyatransformationrefertodeclarationslexi

callyvisibleatthesitewherethetransforma-

tionisdefined—

notwhereitisapplied.Inthispaperweadapttheideasofh

ygienicmacro-

expansiontoamoregeneralprogramgenerationsetting

,wherereferentialtransparencyisnotmeaningful.Our

mechanismcanbeusedforsoftwaregenerators,whicha

reessentiallystand-

alonecompilers.Thedefinitionoftransformationsinso

ft-

waregeneratorshasnolexicalconnectiontotheprogra

mgeneratedbythesetransfor-

mations(forinstance,thegeneratorprogramandthegen

eratedprogrammaybeindifferentprogramminglangu

ages).Ourmechanismiscalledgenerationscopingand

givesthegeneratorprogrammerexplicitandconvenien

tcontroloverthescopingofthegeneratedcode.(Infact,t

hegenerationscopingideawasinventedindependently

ofhygienicmacro-

expansiontechniques,butintheprocessweessentiallyr

e-

inventedtheprinciplesthatarecommontobothgenerati

onscopingandhygienicmacroexpansion.)Generation

scopinghasbeenimplementedontwolanguageextensi

bilityplat-

forms:MicrosoftResearch‟sIntentionalProgrammin

gsystem[13]andtheJakartaToolSuite(JTS)[1].Twoc

omponent-

basedsoftwaregenerators,DiSTiL[14]andP3[1],were

builtusinggenerationscoping.Inbothcases,generatio

nscopingprovedinvaluable,asitsimplifiedthegenerat

RESEARCH ARTICLE OPEN ACCESS

Bandita Das Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6, (Part -III) June 2018, pp.63-71

www.ijera.com DOI: 10.9790/9622-0806036371 64 | P a g e

orcodeandaccentuatedthedistinctionbetween

executedandgeneratedcode.

Background:ScopingforGeneratedPrograms

Foraquickillustrationofsomeofthescopingissuesinpr

ogramgeneration,we

will use an (imaginary
1
) extension of the C

language with code template

operators.Weintroducetwosuchoperators:quote(abbr

eviatedas„)andunquote(abbreviatedas$).quotedesign

atesthebeginningofacodetemplateandunquoteescape

sfrom

it to evaluate a code generating expression.
2

Consider generating code to iterate over

atextfileandperformsomeactionsonitsdata.Apossible

implementationinourexam-plelanguageis

shownbelow,with thequoted codeappearingin bold:

CODE CreateForAllInFile (CODE filename,

CODE actions)

{return „{FILE *fp;

if ((fp = fopen($filename, “r”)) ==

NULL)FatalError(FILE_OPEN_ERROR);

while (feof(fp) == FALSE) {intbyte = fgetc(fp);

$actions;

}

}

}

The first scoping issue in the above code

has to do with the scope used to bind thereferences

in the generated code fragment. That is, the

generated code fragment onlyhas meaning in a

lexical environment where FILE, FatalError, fopen,

etc.,

aredefined.Wewilldisregardthisissuefornowandcon

centrateonthescopeofgenerateddeclarations.

In the above example, two declarations are

generated (these are underlined in thecode). The

scope of these declarations should be quite

different. The first is the decla-ration of file pointer

fp. This variable should be invisible to user code—

the code frag-mentrepresented by actions should

not be able to refer to fp. This is the rule

ofhygienicprogramgenerationanditensuresthatnoacc

identalcaptureofreferencescanoccur:thecodefragment

representedbyactions maycontainareferencetosomefp,

but this will never be confused with the fpgenerated

by the code above. Obvi-ously, this is a good

property to guarantee. The fpvariable is just an

implementationdetail and its name should be

protected from accidental clashes with other names

thatmay be in use.

The generated declaration of variable byte,

on the other hand, demonstrates theneed for

breaking the hygiene. Variable byte represents the

current character beingread from the text file. The

code represented by actions should be able to

accessbyte—

infact,byteistheonlyinterfaceforexploitingthefunctio

nalityoftraversingthetext file.

To illustrate the above points, consider an example

use of the CreateForAllIn-Filefunction.Aprogram

can haveafile pointer,fp,thatpoints toatext

file.Wemaywanttogeneratecodethatdetermineswhet

herafileisaprefixofthefilepointedtobyfp:

CreateForAllInFile(„(“prefix.txt”),

„{if (byte != fgetc(fp)) return -1;});

The fpidentifier above is not the same as

the fpintroduced accidentally by

theCreateForAllInFilefunction in (1). Nevertheless,

a naive generation process willresultintofp(above)

accidentally referring to the internal variable

ofCreateForAl-lInFile. This is a scoping problem

that we want to avoid, so that the client of Cre-

ateForAllInFilecan be oblivious to the choice of

name used for the internal filepointer variable. On

the other hand, the reference to byte should refer to

the variablewhose declaration is generated in (1).

Clearly, it is hard to satisfy both requirementswith

code fragment (1), as the two declarations are never

differentiated. We now dis-cuss two existing

approaches to scoping and why they are not

sufficient for our pur-poses.

First Approach: Generating Unique Symbols

Manually. The simplest way to sat-isfy this dual

requirement is manually. We can generate a unique

symbol for all decla-

rationsthatshouldbehiddenfromothercode.Thisis,for

instance,acommonpracticefor Lisp programmers,

who can use the gensymfunction to create unused,

uniquenamesingeneratedcode.Withourexamplelang

uageandthecodefragmentin(1),weget:

CODE CreateForAllInFile (CODE filename,

CODE actions)

{ CODEmfp = gensym();return„{

FILE*$mfp;

if (($mfp= fopen($filename, “r”)) ==

NULL)FatalError(FILE_OPEN_ERROR);

while (feof($mfp) == FALSE) {intbyte =

fgetc($mfp);

$actions;

}

}

} (2)

For typical software generators, where

many code fragments are created and com-posed,

this solution is clearly unsatisfactory. The code

becomes immediately harder toread and maintain,

with many alternations between generated (quoted)

and

evaluated(unquoted)code.Theintentionthatthemfp(f

ormeta-file-pointer)variableholdsasin-gle variable

name (and not an entire expression) is not enforced

at the language level.Furthermore, understanding

Bandita Das Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6, (Part -III) June 2018, pp.63-71

www.ijera.com DOI: 10.9790/9622-0806036371 65 | P a g e

the code generated by code fragment (2) requires

under-standingthecontrol flow of (2) (e.g., to ensure

that the value ofmfpnever changes).

Themostimportantdisadvantageofthe“man

ual”creationofuniqueidentifiers, however, is that

the generator programmer has to anticipate which

identifiers maycause name clashes and need to be

hidden. The most likely problem with code frag-

ment (2) is that the generated code will be used in a

lexical environment where anidentifier like FILE,

FatalError, etc., does not have the meaning

intended by theauthor of (2). The only way to avoid

this problem is to use unique symbol names forall

definitions. Then the new names will have to be

passed around in the generatorcode so that only

their legitimate clients have access to them. For

instance, one can

imaginethattheactualnameforprocedureFatalErrorwi

llneedtobeanew,uniquesymbol (to avoid accidental

capture), which is then passed as a parameter to

Create-ForAllInFile,resulting in a more

complicated code fragment:

CODE CreateForAllInFile (CODE mFatalError,

CODE filename, CODEactions)

{ CODEmfp = gensym();return„{

FILE*$mfp;

if(($mfp=fopen($filename, “r”))== NULL)

$mFatalError(FILE_OPEN_ERROR);while(

feof($mfp) ==FALSE) {

intbyte= fgetc($mfp);

$actions;

}

}

} (3)

Ifwetakethisapproachtoanextreme(e.g.,doi

ngthesameforFILE_OPEN_ERROR, FALSE, and

all other generated variables), the code will

becomecompletelyunreadableandtheprogrammerwi

llhaveanobligationtokeepclosetrackof all generated

declarations as well as their clients.

Second Approach: Hygienic Macros. Another

way to satisfy the scoping require-ments for the

two generated variables, is through a hygienic

mechanism, such as thoseproposed in the work on

hygienic macro expansion (e.g., [5], [7], [8], [10],

[11]).Hygienicmechanismsworkbymakinggenerate

ddeclarationsbydefaultinvisibleout-side the pattern

or template (e.g., macro) that introduced them. In

the example of (1),this would mean that both the

declaration of fpand that of byte will be invisible

tocode in actions. Since this is not desirable in the

case of byte, the hygiene must

beexplicitlybroken.Inthehygienicmacroswork,thisc

aseisconsideredtobearare

exception.
3
 Carl‟s hygienic mechanism [5] even

attempts to automatically detect com-

monpatternsthatrequirebreakingthehygiene.Additio

nally,lexically-scopedhygienic macros [7][8] use

the lexical environment of the generation site as the

lexicalenvironmentofthegeneratedcode(apropertyca

lledreferentialtransparency).

The problem with using this approach in software

generators is that it is not possi-ble to reliably

deduce the scope of a variable from the lexical

location of the code thatgenerates its declaration. In

particular there are two important differences

betweenmacrosand software generators:

1. Macros are (more or less) self-contained units.

There is a clear distinction betweenthe macro

code and the code that is passed as a parameter

to the macro. This is not thecase with software

generators. The code generating a declaration

is not, in general, incloselexical proximity of

the code generating a referenceto that

declaration.

2. The lexical environment of a program-

generating code fragment cannot be identi-fied

with the lexical environment of the generated

code in software generators. (Inhygienic macro

terminology: referential transparency is not

meaningful.) For instance,we could even have

the generator be in a different language than

the generated code(e.g., unquoted code could

be in Java, quoted code in C). In contrast,

lexically

scopedmacrosusethelexicalenvironmentofthem

acrodefinitiontodeterminethebindingofall

references generated by the macro.

Thefirstpointisaresultofobservation.Thetra

nsformationsinmostsoftwaregen-erators interleave

generating code with arbitrary computation more

often than macros.In this way, it is hard to identify

a self-contained program fragment in the

generatorthat will be identified with a scope in the

generated program.

To see the second point, consider again code

fragment (1), reproduced below foreasy reference.

CODE CreateForAllInFile (CODE filename,

CODE actions)

{return „{

FILE*fp;

if ((fp = fopen($filename, “r”)) ==

NULL)FatalError(FILE_OPEN_ERROR);

while (feof(fp) == FALSE) {

intbyte = fgetc(fp);

$actions;

}

}

}

CreateForAllInFilehasseveraldependenciestootherg

eneratedcode(e.g.,theFILEtypeidentifier,theFatalErr

orfunction,theFALSEconstant,etc.).Inthecaseoflexi

Bandita Das Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6, (Part -III) June 2018, pp.63-71

www.ijera.com DOI: 10.9790/9622-0806036371 66 | P a g e

cally-

scopedmacrossuchdependenciesareresolvedatthesit

eofthemacrodef-inition. This would be equivalent

to trying to find bindings for FILE,

FatalError,etc.,intheprogramsitewhereCreateForAllI

nFileisdefined.Thisapproachisnotvalid for software

generators. For instance, the FatalErrorroutine may

not bedeclared as a routine in the generator or a

standard library, but instead exist only inthe

generated program. Hence, the declaration of

FatalErrormust be non-hygienicso that the code

fragment generated by CreateForAllInFilecan

access it.

Generation Scoping

GenerationEnvironments

Because of the differences between

macros and software generators, we

cannothopetoachievethesamedegreeofautomationfo

rsoftwaregeneratorsaswithhygienic lexically-

scoped macros. Nevertheless, we can still do better

than manuallygenerating new symbols, as in

example (3) of Section 2. This is the purpose of

genera-tion scoping. Generation scoping is a

mechanism that represents lexical

environmentsinthegeneratedprogramasfirst-

classentities.Inthisway,thegeneratorhascontrolofthe

scoping of the generated program, beyond that

offered by the target programminglanguage.

To support lexical environments as first-class

entities, generation scoping adds anew keyword,

environment, to the language in which the program

generator is writ-ten. Its syntax is:

environment (<generation-environment>)

<statement>;

wherestatement contains one or more

quoted expressions. The generation-environment is

an expression that yields a value of type ENV. ENV

is a type used torepresent environments and only

has a constructor and equality function defined

(i.e.,we can only create newvaluesoftype

ENVandcomparethemwithexistingones).Theconstr

uctor for environments, new_env, can take an

arbitrary number of argumentswhose values are

other environments. These environments become

the parents of thenewly created environment (the

child). All variable declarations in a parent

becomevisible to the child environment. Like

traditional scoping mechanisms, variable bind-ings

of the child eclipse bindings with the same name in

the parent.

An example use of environment in code

implementing our example text file tra-

versalfollows below:

CODE CreateForAllInFile (ENV p, CODE mtbyte,

CODE filename,

CODE actions)

{

environment(new_env(p))return„{

FILE *fp;

if ((fp = fopen($filename, “r”)) ==

NULL)FatalError(FILE_OPEN_ERROR);

while (feof(fp) == FALSE) {int$mtbyte=

fgetc(fp);

$actions;

}

}

} (4)

To generate code using the quote operator, an

environment needs to be specified.In this way, the

code represented by actions can never access

variable fp(as fpisgenerated in a new

environment—which becomes a child of an

environment passedinto the function). At the same

time, if the variable represented by mtbyteis gener-

ated in the same environment as actions, they are

visible to each other. This is thecasewith most

straightforward uses of this function. Forinstance:

environment(e)result =

CreateForAllInFile(global_env,„byte,„(“file.txt”),

„putchar(byte)); (5)

Comparing code fragments (4) and (3), we can see

why using environments

ismoreconvenientthanmanuallyhandlingvariablesby

creatingnewsymbols.Inpartic-ular,there are

severalimportant advantages:

1. The generator programmer does not need

to explicitly state which variables get“closed” in

the right lexical environment. All declarations

generated under an envi-ronmentstatement will be

automatically added to the corresponding

environment.Additionally,thegeneratorprogrammer

doesnotneedtoexplicitlyretrievethebindingfor a

certain identifier. All references (e.g., to fp, but

also to FILE, FatalError,fopen, etc., above) are

interpreted relative to that environment. This means

that, if acode fragment is generated in the intended

environment, it can later be used

withoutproblemsinalocalcontext,evenifthelocalcont

extcontainsdifferentbindingsforthesame identifiers.

For example, in code fragment (5), above, if

global_envhas theintended declaration for, e.g.,

FILE, it will not subsequently matter if the

generatedcode fragment is output in the middle of a

function where FILE means something dif-ferent. The

reference will always be to the FILE type variable

defined in the environ-mentrepresented by

global_env.

2. The alternation between executed and

generated code is avoided. There is no needto

unquote code just to supply a unique symbol name.

3. Declarationsaretreatedasagroup,insteadofi

Bandita Das Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6, (Part -III) June 2018, pp.63-71

www.ijera.com DOI: 10.9790/9622-0806036371 67 | P a g e

ndividually.Intheaboveexample

there is only one variable declared, so this is not

really an advantage. In quoted codewith several

generated declarations, however, handling

environments is easier thanhandling all new

symbols individually. Of course, the same grouping

effect could beachieved by using a mapping data

structure in the generator code. The advantage

ofgeneration scoping is that the data structure is

now integrated in the language andinsertions and

lookups are implicit (i.e., the programmer never

has to specify them—seethe first point above).

Implementation Issues

Itisperhapsworthstressingagainthatthemain

advantageofgenerationscopingisthat the generator

programmer is relieved of the responsibility of

adding declarations to environments and looking

up identifier bindings in those environments. That

is, theimplementation of quote will determine

whether a generated identifier is actually

adeclaration(ofavariable,function,type,etc.)orarefer

encetoanexistingentity.Eachenvironment has a

symbol table and a collection of pointers to the

parent environ-ments. In case an identifier

represents a declared entity, it is added to the

current envi-ronment‟s symbol table together with

a corresponding generated unique name for

thedeclared entity. When a generated identifier is a

reference, it will be looked up in

theappropriateenvironment‟stableand,ifitisnotthere,

intheparentenvironmentsrecur-

sively.
4
 The result of the identifier lookup is the

unique generated name for the match-ing

declaration. In this way, no accidental reference to

the wrong variable,

type,function,etc.,canoccur,aslongas

theenvironmentsaresetupproperly.

As is well-documented in the work on hygienic

macros [7][10], determining thesyntactic role of an

identifier (i.e., whether it is a declaration or a

reference) is hardwhen the entire program has not

yet been generated. For instance, consider the pro-

gram-generating function:

CODE CreateDclOrRef (CODE type)

{return„{$typenewvar = 10 };

}

Inmostprogrammingenvironments,
5
itisimpossibleto

tellbeforethecodeisgen-

eratedwhetherthegeneratedcodedeclaresnewvarorref

erstoanexistingvariableofthe same name. If the

parameter type holds the type specifier„int, then

newvarisbeing declared. If, on the other hand, it

holds the operator „*, it is not. This problemhas

been studied extensively in the hygienic macro

community and the commonapproach is to employ

a “painting” algorithm that marks each identifier

with the envi-

ronmentwhereitwascreated.Itiseasytoadaptthisappro

achtogenerationscoping:

After all the code has been generated, the marked

declarations can be matched tomarked references

(assuming they came from the same environment).

Remaining ref-

erencescanthenbejustunmarked,sothattheybecomefr

eereferencesandcanrefertoexternally declared

symbols. A more thorough discussion on

implementing a “paint-ing” algorithm for program

generation can be found in [11].

GenerationScopinginDiSTiL

Generationscopingwasimplementedaspart

ofIP(IntentionalProgramming)[13],ageneral

purposetransformationsystemunderdevelopmentby

MicrosoftResearch.Itwas subsequently used to

build the DiSTiL software generator [14] as a

domain-spe-cific extension to IP. DiSTiL is a

generator that follows the GenVoca [3] design

para-

digm.GenVocageneratorsareaclassofsophisticateds

oftwaregeneratorsthatsynthesize high-performance,

customized programs by composing pre-written

compo-nents called layers. Each layer encapsulates

the implementation of a primitive featurein a target

domain. The DiSTiL generator is essentially a

compiler for the domain ofcontainer data

structures. Complex container data structures are

synthesized by com-posing primitive layers, where

each layer implements either a primitive data

structure(e.g., ordered linked lists, binary trees,

etc.) or feature (sequential or random

storage,logical element deletion, element

encryption, etc.). Code for each data structure

opera-tion is generated by having each layer

manufacture a code fragment (that is specific

totheoperationwhosecodeisbeinggenerated)andbyas

semblingthesefragmentsintoacoherent algorithm.

Generationscopingwasindispensableintheimplemen

tationofDiSTiL.Evenrela-tively short DiSTiL

specifications (around 10-20 lines) could generate

thousands oflines of optimized code. Due to the

complexity of the generated code, as well as

theflexibility of parameterization (a layer could be

composed with a wide variety of otherlayers),

maintaining correct scoping for generated code

would have been a nightmare

without generation scoping. In fact,

initially we had attempted to implement

DiSTiLwith manual resolution of generated

references (by generating unique symbols, as

incode fragment (3)). The sheer difficulty of this

task was what motivated generationscopingin the

first place.

Generation scoping is used in DiSTiL not

only to ensure the correctness of refer-ences to

Bandita Das Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6, (Part -III) June 2018, pp.63-71

www.ijera.com DOI: 10.9790/9622-0806036371 68 | P a g e

global declarations (e.g., library functions) but also

to overcome the scopinglimitations of the target

language (C). With generation scoping, DiSTiL

effectivelymanages different namespaces for every

layer in a composition. In this way, there areno

clashes between identically named variables

introduced by different layers (or dif-ferent

instances of the same layer). At the same time, the

code is simplified by havingnamespaces connected

appropriately so that generated code can access all

the requireddeclarationswithout explicit

qualification.

DiSTiL data structures consist of three distinct

entities: a container, elements, anditerators (called

cursors). Generated variables are grouped together

into a

commonenvironmentaccordingtotheentitytowhicht

heyarerelated.Forinstance,alldeclara-tions related to

the cursor part of a doubly linked list will belong in

a single

generationenvironment.Thesevariablesneednotbelo

ngtoasinglelexicalcontext.Forexample,variablesina

nenvironmentmaybeglobal,orlocal,orfieldsofarecor

dtype.Thus,

variablesofanenvironmentcouldbelongtoslicesofma

nydifferentlexicalcontextsinthe generated program.

In this way, the environment acts as a generator-

managednamespacemechanism for the target

language.

Consider the following organization used in

DiSTiL (and, in fact, also in P3). Ingeneral, there is

a many-to-one relationship between cursors and

containers (i.e., therecan be many cursors—each

with a different retrieval predicate—per container).

Sousing a single generation environment to

encapsulate both cursor and container datamembers

is not possible. Instead, separate environments are

defined for every cursorand container. The

ContGenericenvironment encapsulates element data

members(because element types are in one-to-one

correspondence with container types) andgeneric

container-related variables (including the container

identifier). The Curs-Generic environment

encapsulates generic cursor-related variables

(including thecursor identifier). By making

ContGenerica parent of CursGeneric, code

foroperations on containers (which do not need

cursors) can be generated using

theContGenericenvironment, while code for

operations on cursors (which also refer-ence

container fields) is generated using the

CursGenericenvironment. Figure 1(a)depicts this

relationship.

Figure1:HierarchicalOrganizationsofEnvironmentsi

nDiSTiL

Asmentionedearlier,ahallmarkofGenVocal

ayersisthattheyencapsulaterefine-ments of multiple

classes. Each DiSTiL layer refines cursor,

container, and elementtypesbyaddinglayer-

specificdatamembers.Thedatamembersaddedtothec

ontainer

and element types by layer Li are encapsulated by

environment Conti which is a

childofContGeneric.Similarly,datamembersaddedb

yLitothecursortypeareencapsu-

latedbyenvironmentCursiwhichisachildofbothCurs

GenericandConti(because cursors of layer Li

reference layer-specific container-data members as

well aslayer-specific cursor data members). Figure

1(b) shows this hierarchical

organizationofenvironments.

To illustrate these ideas, consider an ordered

doubly-linked list layer. This

layerwouldrefineelementsbyaddingnextandprevfiel

ds,andwouldrefinecontainersbyaddingfirstandlastfiel

ds.ThisrefinementcanbeaccomplishedbyaRefine-

Types()method:elem_type,cont_type,andcurs_typea

recodefragmentsthatrespectively define the set of

variables (data members) in element, container, and

cur-

sorclasses.WhenRefineTypes()iscalledwiththesecodefr

agmentsasparameters,thenext,prev,first, andlastfields

areadded totheelement andcontainer

types.Asthesefieldsarealwaysusedtogether,theyared

eclaredwithinasingleenvironmentCont(which is

equal to some Contiof Figure 1):

voidRefineTypes(CODE *elem_type, CODE

*cont_type, ENV Cont) {environment(Cont) {

*elem_type=„{$(*elem_type);element *next,

*prev; };

*cont_type=„{$(*cont_type);element *first, *last;

Bandita Das Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6, (Part -III) June 2018, pp.63-71

www.ijera.com DOI: 10.9790/9622-0806036371 69 | P a g e

};

}

}

ItiscommoninacompositionofGenVocalayersthatasi

nglelayerappearsmulti-

ple times. An example in DiSTiL would be linking

elements of a container onto two(or more) distinct

ordered lists, where each list has a unique sort key.

Every list layeradds its own fields to the element

and container types. Maintaining the

distinctionamong these fields (so that the code for

the j-th list will only reference its own fieldsnextj,

prevj, etc.) is simple using generation environments

as organized in Figure

1.Eachcopyofthelistlayerwillhaveitsowngeneratione

nvironmentsContjandCursj,andallcodegeneratedbyt

hatcopywouldalwaysusetheseenvironmentvariables.

For an example, consider the Remove method for

ordered doubly-linked lists,appearing below. Let

Remove_Codebe the code that is to be generated

for

removinganelementfromacontainer.TheRemovemet

hodforordereddoubly-

linkedlistsaddsitscode(tounlinktheelement)whenitis

called(thecodethatactuallydeletestheele-

mentisaddedbyanotherlayer).Thus,givenRemove_C

odeandtheenvironmentCurs(equal to some Cursiof

Figure 1), Remove() adds the unlinking code where

thenext,prev,etc. identifiersarebound totheircorrect

variabledefinitions.

void Remove(CODE *Remove_Code, ENV Curs)

{environment(Curs) {

*Remove_Code=„{ Element*next_el = cursor-

>next;

Element*prev_el = cursor->prev;

$(*Remove_Code);

if (next_el != null)next_el->prev=prev_el;

if (prev_el != null)prev_el->next=next_el;

if (container->first == cursor.obj)container-

>first = next_el;

if (container->last == cursor.obj)container-

>last= prev_el; };

}

}

Notethatthebindingsofidentifierscursor,container,an

dnextinthistem-

plateexistinthreedifferentgenerationenvironments:co

ntainerisinContGen-

eric,cursorinCursGeneric,andnextinConti.Neverthel

ess,allofthemcanbe

accessed from environment Curs (following its

parent links), so this is the only envi-ronment that

needs to be specified. Note also that there are two

generated

temporarydeclarationsinthiscodefragment,whichare

completelyprotectedfromaccidentalref-erence.

This example is convenient for demonstrating the

benefits of generation

scoping.Weattempttoshowthesebenefitsbyspeculati

ngonthealternatives.Clearlytheabovecode fragment

has many external generated references, so default

hygiene is not reallyan option. The generator writer

has to explicitly create new symbols (as in code

frag-ment (3)) for the declarations of container,

cursor, etc. (not shown). Instead ofmanaging all the

new symbols individually, the generator writer

could set up a datastructure in the generator

(unquoted) code to maintain the mappings of

identifiers tovariables. Then the writer could use

explicit unquotes to introduce the right

bindings.Given that declarations need to be inserted

in the data structure explicitly and refer-

encesneedtobelookedupexplicitly,thecodewouldbe

muchmorecomplicated.Onecan add some syntactic

sugar to make the code more appealing. For

instance, we canuse $$(ds, id) to mean “unquote and

lookup identifier id in bindings data structureds”.

Similarly, we can use $%(ds, id) to mean “unquote

and add variable id inbindingsdata structure

ds”.Even then, thecode would bepractically

unreadable:

void Remove(CODE *Remove_Code, BindingDS

ds) {

*Remove_Code =

„{$$(ds, Element)*$%(ds, next_el)=

$$(ds,cursor)->$$(ds,next);

$$(ds,Element)*$%(ds, prev_el)=

$$(ds,cursor)->$$(ds,prev);

$(*Remove_Code);

if($$(ds, next_el)!= null)

$$(ds, next_el)->$$(ds, prev) = $$(ds,

prev_el);if($$(ds, prev_el)!= null)

$$(ds, prev_el)->$$(ds, next) = $$(ds,

next_el);if($$(ds, container)->$$(ds, first)==

$$(ds,cursor).$$(ds,obj))

$$(ds, container)->$$(ds, first) = $$(ds,

next_el);if($$(ds, container)->$$(ds, last)==

$$(ds,cursor).$$(ds,obj))

$$(ds,container)->$$(ds,last)=$$(ds,prev_el); };

}

Asoutlinedearlier,generationscopingimprovesovert

hiscodeinthreeways:

First,noexplicitdatastructureinsertions/lookupsneedt

obeperformed(e.g.,thereareno$$and $%operators).

Second,noexplicitescapesareintroduced—

thereisnoalter-

nationbetweenquotedandunquotedcode.Third,thegr

oupingofvariablesisimplicit—thereis no need to

repeatedly refer to a data structure likeds.

Related Work

Givenourpriordiscussionofhygienicmacros,herewe

willonlytouchuponafewotherpieces of related work.

Theenvironmentsusedingenerationscopingaresimila

Bandita Das Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6, (Part -III) June 2018, pp.63-71

www.ijera.com DOI: 10.9790/9622-0806036371 70 | P a g e

rtosyntacticenvironments

inthesyntacticclosureswork[4][9].Insyntacticclosure

s,environmentsarefirst-

classentitiesandcodefragmentscanbeexplicitly“close

d”inalexicalenvironment.Never-theless, there are

significant differences between the two approaches:

Syntactic clo-

suresenvironmentscanonlycapturethesetofvariablest

hatarelexicallyvisibleata

specific point in a program.
6
 In contrast, our

environments can be arbitrary collectionsof

bindings (i.e., smaller sets of lexically visible

variables) and can be organized hier-archically.

More importantly, however, declarations are added

to generation scopingenvironments implicitly by

generating (quoting) code that declares new

variables.Thus, our approach is much more

automated than syntactic closures and is

ideallysuited to software generators (where the

lexical environment is being built while codeis

generated). Also, generation scoping can be used to

implement the hygienic, lexi-cally-scoped macros

of [7], unlike syntactic closures, which cannot be

used to imple-menthygienic macro expansion, as

explained in [7].

Generation scoping is concerned only with

maintaining correct scoping for gener-ated code

fragments. Other pieces of work deal with various

other correctness proper-ties of composed code

fragments. Selectively, we mention some work on

the

problemofensuringtypecorrectnessforgeneratedprog

rams,bothfortwo-stagecode[12](i.e.,generator and

generated code) and multi-stage code [15] (i.e.,

code generating codethat generates other code,

etc.).

II. CONCLUSIONS
Program generation is a valuable

technique for software development that

willbecome progressively more important in the

future. In this paper we have shown

howtoaddressthescopingissuesthatariseinsoftwareg

enerators.Wehavepresentedgen-eration scoping: a

general-purpose, domain-independent mechanism

to address

allscopingneedsofgeneratedprograms.Generationsc

opingcanmakewritingandmain-taining software

generators easier. Its capabilities were proven in the

implementationofthe DiSTiL [14] and P3 [1]

generators.

The future of software engineering lies in the

automated development of well-understood

software. Program generators will play an

increasingly important role infuture software

development. We consider generation scoping to be

a valuable lan-guage mechanism for generator

writers and hope that it will be adopted in even

moreextensiblelanguages and transformation

systems in the future.

REFERENCES
[1] D.Batory,G.Chen,E.Robertson,andT.Wang,“

WebAdvertisedGeneratorsandDesignWizard

s”,InternationalConference onSoftware

Reuse(ICSR), 1998.

[2] D. Batory, B. Lofaso, and Y. Smaragdakis,

“JTS: Tools for Implementing Domain-

SpecificLanguages”,International

ConferenceonSoftware Reuse(ICSR), 1998.

[3] D. Batory and S. O‟Malley, “The Design

and Implementation of Hierarchical

SoftwareSystems with Reusable

Components”, ACM Transactions on

Software Engineering

andMethodology,October 1992.

[4] A. Bawden and J. Rees, “Syntactic

Closures”. In Proceedings of the SIGPLAN

„88 ACMConferenceon Lispand Functional

Programming,86-95.

[5] S. P. Carl, “Syntactic Exposures—A

Lexically-Scoped Macro Facility for

ExtensibleLanguages”. M.A. Thesis,

University of Texas, 1996. Available

through the Internet

atftp://ftp.cs.utexas.edu/pub/garbage/carl-

msthesis.ps.

[6] W.Clinger,J.Rees(editors),“TheRevised
4
Rep

ortontheAlgorithmicLanguageScheme”.Lisp

Pointers IV(3),July-September 1991, 1-55.

[7] W. Clinger and J. Rees, “Macros that

Work”. inConference Record of the

EighteenthAnnual ACM Symposium on

Principles of Programming Languages,

January 1991, 155-162.

[8] R.K. Dybvig, R. Hieb, and C. Bruggeman,

“Syntactic Abstraction in Scheme”, in

Lispand Symbolic Computation, 5(4),

December 1993, 83-110.

[9] C.Hanson,“ASyntacticClosuresMacroFacilit

y”,LispPointersIV(4),October-December

1991, 9-16.

[10] E. Kohlbecker, D.P. Friedman, M. Felleisen,

and B. Duba, “Hygienic Macro

Expansion”,inProceedingsoftheSIGPLAN„8

6ACMConferenceonLispandFunctionalProg

ramming,151-161.

[11] J. Rees, “The Scheme of Things:

Implementing Lexically Scoped Macros”,

Lisp PointersVI(1), January-March 1993.

[12] T. Sheard and N. Nelson, “Type Safe

Abstractions Using Program Generators”,

OregonGraduateInstitute Tech. Report 95-

013.

[13] C. Simonyi,“TheDeath of

ComputerLanguages,theBirth

Bandita Das Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 6, (Part -III) June 2018, pp.63-71

www.ijera.com DOI: 10.9790/9622-0806036371 71 | P a g e

ofIntentionalProgramming”,

NATOScienceCommitteeConference,1995.

[14] Y.SmaragdakisandD.Batory,“DiSTiL:aTrans

formationLibraryforDataStructures”,USENI

XConferenceonDomain-

SpecificLanguages(DSL),1997.

[15] W. Taha and T. Sheard, Multi-stage

programming with explicit annotations,

ACM Symp.PartialEvaluationandSemantics-

BasedProgramManipulation(PEPM„97),199

7.

