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ABSTRACT. A well-known problem in program generation is scoping. When iden-tifiers (i.e., symbolic 

names) are used to refer to variables, types, or functions,program generators must ensure that generated 

identifiers are bound to theirintended declarations. This is the standard scoping issue in programming lan-

guages, only automatically generated programs can quickly become too com-

plexandmaintainingbindingsmanuallyishard.Inthispaperwepresentgeneration scoping: a language mechanism to 

facilitate the handling of scopingconcerns. Generation scoping offers control over identifier scoping beyond 

thescoping mechanism of the target programming language (i.e., the language inwhich the generator output is 

expressed). Generation scoping was originallyimplemented as an extension of the code template operators in the 

IntentionalProgrammingplatform,underdevelopmentbyMicrosoftResearch.Subse-quently, generation scoping 

has also been integrated in the JTS language exten-sibility tools. The capabilities of generation scoping were 

invaluable in theimplementation of two actual software generators: DiSTiL (implemented usingthe Intentional 

Programming system), and P3 (implemented using JTS). 

Keywords:softwaregenerators,programtransformations,generationscoping,hygienicmacro expansion 

 

I. INTRODUCTION 
Programgenerationistheprocessofgeneratin

gcodeinahigh-levelprogramminglanguage. A well-

known problem with program generation has to do 

with the resolu-tion of names used to refer to 

various entities (e.g., variables, types, and 

functions) inthe generated program. This is the 

standard scoping issue of programming 

languagesbutscopingproblemsareexacerbatedwhenp

rogramsaregeneratedautomatically.Forinstance, 

often the same macro or template is used to create 

multiple code 

fragments,whichallexistinthesamescopeofthegenera

tedprogram.Inthatcase,careshouldbetaken so that 

the generated fragments do not contain declarations 

that conflict (e.g.,variableswith the same name in 

the samelexical scope). 

Avoidingscopingproblemsinprogramgenerationcan

bedonemanually:Lisppro-grammers are familiar 

with the gensymfunction for creating new symbols. 

Usinggensymto create unique names for generated 

variable declarations is one of the com-monly 

recommended practices for Lisp programmers. 

Unfortunately, this practice istedious; it 

complicates program generation and makes the 

generator code harder toread and maintain. 

Mechanisms have been invented to relieve the 

programmer of theobligation to keep track of 

declared variables and generate new symbols for 

theirnames.Thesemechanismsfallunderthegeneralhe

adingofhygienicmacro-

expansion(e.g.,[7],[8],[10])andaddressthescopingpr

oblemformacros:self-containedtrans- 

formationsthatarebothspecifiedandappliedinthesam

eprogram.Adesirableprop-

ertyinthissettingisreferentialtransparency:identifiers

introducedbyatransformationrefertodeclarationslexi

callyvisibleatthesitewherethetransforma-

tionisdefined—

notwhereitisapplied.Inthispaperweadapttheideasofh

ygienicmacro-

expansiontoamoregeneralprogramgenerationsetting

,wherereferentialtransparencyisnotmeaningful.Our

mechanismcanbeusedforsoftwaregenerators,whicha

reessentiallystand-

alonecompilers.Thedefinitionoftransformationsinso

ft-

waregeneratorshasnolexicalconnectiontotheprogra

mgeneratedbythesetransfor-

mations(forinstance,thegeneratorprogramandthegen

eratedprogrammaybeindifferentprogramminglangu

ages).Ourmechanismiscalledgenerationscopingand

givesthegeneratorprogrammerexplicitandconvenien

tcontroloverthescopingofthegeneratedcode.(Infact,t

hegenerationscopingideawasinventedindependently

ofhygienicmacro-

expansiontechniques,butintheprocessweessentiallyr

e-

inventedtheprinciplesthatarecommontobothgenerati

onscopingandhygienicmacroexpansion.)Generation

scopinghasbeenimplementedontwolanguageextensi

bilityplat-

forms:MicrosoftResearch‟sIntentionalProgrammin

gsystem[13]andtheJakartaToolSuite(JTS)[1].Twoc

omponent-

basedsoftwaregenerators,DiSTiL[14]andP3[1],were

builtusinggenerationscoping.Inbothcases,generatio

nscopingprovedinvaluable,asitsimplifiedthegenerat
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orcodeandaccentuatedthedistinctionbetween 

executedandgeneratedcode. 

 

Background:ScopingforGeneratedPrograms 

Foraquickillustrationofsomeofthescopingissuesinpr

ogramgeneration,we 

will use an (imaginary
1
) extension of the C 

language with code template 

operators.Weintroducetwosuchoperators:quote(abbr

eviatedas„)andunquote(abbreviatedas$).quotedesign

atesthebeginningofacodetemplateandunquoteescape

sfrom 

it to evaluate a code generating expression.
2
 

Consider generating code to iterate over 

atextfileandperformsomeactionsonitsdata.Apossible

implementationinourexam-plelanguageis 

shownbelow,with thequoted codeappearingin bold: 

CODE CreateForAllInFile (CODE filename, 

CODE actions) 

{return „{FILE *fp; 

if ((fp = fopen($filename, “r”)) == 

NULL)FatalError(FILE_OPEN_ERROR); 

while ( feof(fp) == FALSE) {intbyte = fgetc(fp); 

$actions; 

} 

} 

} 

 

The first scoping issue in the above code 

has to do with the scope used to bind thereferences 

in the generated code fragment. That is, the 

generated code fragment onlyhas meaning in a 

lexical environment where FILE, FatalError, fopen, 

etc., 

aredefined.Wewilldisregardthisissuefornowandcon

centrateonthescopeofgenerateddeclarations. 

In the above example, two declarations are 

generated (these are underlined in thecode). The 

scope of these declarations should be quite 

different. The first is the decla-ration of file pointer 

fp. This variable should be invisible to user code—

the code frag-mentrepresented by actions should 

not be able to refer to fp. This is the rule 

ofhygienicprogramgenerationanditensuresthatnoacc

identalcaptureofreferencescanoccur:thecodefragment

representedbyactions maycontainareferencetosomefp, 

but this will never be confused with the fpgenerated 

by the code above. Obvi-ously, this is a good 

property to guarantee. The fpvariable is just an 

implementationdetail and its name should be 

protected from accidental clashes with other names 

thatmay be in use. 

The generated declaration of variable byte, 

on the other hand, demonstrates theneed for 

breaking the hygiene. Variable byte represents the 

current character beingread from the text file. The 

code represented by actions should be able to 

accessbyte—

infact,byteistheonlyinterfaceforexploitingthefunctio

nalityoftraversingthetext file. 

To illustrate the above points, consider an example 

use of the CreateForAllIn-Filefunction.Aprogram 

can haveafile pointer,fp,thatpoints toatext 

file.Wemaywanttogeneratecodethatdetermineswhet

herafileisaprefixofthefilepointedtobyfp: 

CreateForAllInFile(„(“prefix.txt”), 

„{if (byte != fgetc(fp)) return -1;}); 

The fpidentifier above is not the same as 

the fpintroduced accidentally by 

theCreateForAllInFilefunction in (1). Nevertheless, 

a naive generation process willresultintofp(above) 

accidentally referring to the internal variable 

ofCreateForAl-lInFile. This is a scoping problem 

that we want to avoid, so that the client of Cre-

ateForAllInFilecan be oblivious to the choice of 

name used for the internal filepointer variable. On 

the other hand, the reference to byte should refer to 

the variablewhose declaration is generated in (1). 

Clearly, it is hard to satisfy both requirementswith 

code fragment (1), as the two declarations are never 

differentiated. We now dis-cuss two existing 

approaches to scoping and why they are not 

sufficient for our pur-poses. 

 

First Approach: Generating Unique Symbols 

Manually. The simplest way to sat-isfy this dual 

requirement is manually. We can generate a unique 

symbol for all decla-

rationsthatshouldbehiddenfromothercode.Thisis,for

instance,acommonpracticefor Lisp programmers, 

who can use the gensymfunction to create unused, 

uniquenamesingeneratedcode.Withourexamplelang

uageandthecodefragmentin(1),weget: 

 

CODE CreateForAllInFile (CODE filename, 

CODE actions) 

{ CODEmfp = gensym();return„{ 

FILE*$mfp; 

if (($mfp= fopen($filename, “r”)) == 

NULL)FatalError(FILE_OPEN_ERROR); 

while ( feof($mfp) == FALSE) {intbyte = 

fgetc($mfp); 

$actions; 

} 

} 

} (2) 

For typical software generators, where 

many code fragments are created and com-posed, 

this solution is clearly unsatisfactory. The code 

becomes immediately harder toread and maintain, 

with many alternations between generated (quoted) 

and 

evaluated(unquoted)code.Theintentionthatthemfp(f

ormeta-file-pointer)variableholdsasin-gle variable 

name (and not an entire expression) is not enforced 

at the language level.Furthermore, understanding 
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the code generated by code fragment (2) requires 

under-standingthecontrol flow of (2) (e.g., to ensure 

that the value ofmfpnever changes). 

Themostimportantdisadvantageofthe“man

ual”creationofuniqueidentifiers, however, is that 

the generator programmer has to anticipate which 

identifiers maycause name clashes and need to be 

hidden. The most likely problem with code frag-

ment (2) is that the generated code will be used in a 

lexical environment where anidentifier like FILE, 

FatalError, etc., does not have the meaning 

intended by theauthor of (2). The only way to avoid 

this problem is to use unique symbol names forall 

definitions. Then the new names will have to be 

passed around in the generatorcode so that only 

their legitimate clients have access to them. For 

instance, one can 

imaginethattheactualnameforprocedureFatalErrorwi

llneedtobeanew,uniquesymbol (to avoid accidental 

capture), which is then passed as a parameter to 

Create-ForAllInFile,resulting in a more 

complicated code fragment: 

CODE CreateForAllInFile (CODE mFatalError, 

CODE filename, CODEactions) 

{ CODEmfp = gensym();return„{ 

FILE*$mfp; 

if(($mfp=fopen($filename, “r”))== NULL) 

$mFatalError(FILE_OPEN_ERROR);while( 

feof($mfp) ==FALSE) { 

intbyte= fgetc($mfp); 

$actions; 

} 

} 

} (3) 

Ifwetakethisapproachtoanextreme(e.g.,doi

ngthesameforFILE_OPEN_ERROR, FALSE, and 

all other generated variables), the code will 

becomecompletelyunreadableandtheprogrammerwi

llhaveanobligationtokeepclosetrackof all generated 

declarations as well as their clients. 

 

Second Approach: Hygienic Macros. Another 

way to satisfy the scoping require-ments for the 

two generated variables, is through a hygienic 

mechanism, such as thoseproposed in the work on 

hygienic macro expansion (e.g., [5], [7], [8], [10], 

[11]).Hygienicmechanismsworkbymakinggenerate

ddeclarationsbydefaultinvisibleout-side the pattern 

or template (e.g., macro) that introduced them. In 

the example of (1),this would mean that both the 

declaration of fpand that of byte will be invisible 

tocode in actions. Since this is not desirable in the 

case of byte, the hygiene must 

beexplicitlybroken.Inthehygienicmacroswork,thisc

aseisconsideredtobearare 

exception.
3
 Carl‟s hygienic mechanism [5] even 

attempts to automatically detect com-

monpatternsthatrequirebreakingthehygiene.Additio

nally,lexically-scopedhygienic macros [7][8] use 

the lexical environment of the generation site as the 

lexicalenvironmentofthegeneratedcode(apropertyca

lledreferentialtransparency). 

The problem with using this approach in software 

generators is that it is not possi-ble to reliably 

deduce the scope of a variable from the lexical 

location of the code thatgenerates its declaration. In 

particular there are two important differences 

betweenmacrosand software generators: 

 

1. Macros are (more or less) self-contained units. 

There is a clear distinction betweenthe macro 

code and the code that is passed as a parameter 

to the macro. This is not thecase with software 

generators. The code generating a declaration 

is not, in general, incloselexical proximity of 

the code generating a referenceto that 

declaration. 

 

2. The lexical environment of a program-

generating code fragment cannot be identi-fied 

with the lexical environment of the generated 

code in software generators. (Inhygienic macro 

terminology: referential transparency is not 

meaningful.) For instance,we could even have 

the generator be in a different language than 

the generated code(e.g., unquoted code could 

be in Java, quoted code in C). In contrast, 

lexically 

scopedmacrosusethelexicalenvironmentofthem

acrodefinitiontodeterminethebindingofall 

references generated by the macro. 

Thefirstpointisaresultofobservation.Thetra

nsformationsinmostsoftwaregen-erators interleave 

generating code with arbitrary computation more 

often than macros.In this way, it is hard to identify 

a self-contained program fragment in the 

generatorthat will be identified with a scope in the 

generated program. 

 

To see the second point, consider again code 

fragment (1), reproduced below foreasy reference. 

CODE CreateForAllInFile (CODE filename, 

CODE actions) 

{return „{ 

FILE*fp; 

if ((fp = fopen($filename, “r”)) == 

NULL)FatalError(FILE_OPEN_ERROR); 

while ( feof(fp) == FALSE) { 

intbyte = fgetc(fp); 

$actions; 

} 

} 

} 

CreateForAllInFilehasseveraldependenciestootherg

eneratedcode(e.g.,theFILEtypeidentifier,theFatalErr

orfunction,theFALSEconstant,etc.).Inthecaseoflexi
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cally-

scopedmacrossuchdependenciesareresolvedatthesit

eofthemacrodef-inition. This would be equivalent 

to trying to find bindings for FILE, 

FatalError,etc.,intheprogramsitewhereCreateForAllI

nFileisdefined.Thisapproachisnotvalid for software 

generators. For instance, the FatalErrorroutine may 

not bedeclared as a routine in the generator or a 

standard library, but instead exist only inthe 

generated program. Hence, the declaration of 

FatalErrormust be non-hygienicso that the code 

fragment generated by CreateForAllInFilecan 

access it. 

 

Generation Scoping 

GenerationEnvironments 

Because of the differences between 

macros and software generators, we 

cannothopetoachievethesamedegreeofautomationfo

rsoftwaregeneratorsaswithhygienic lexically-

scoped macros. Nevertheless, we can still do better 

than manuallygenerating new symbols, as in 

example (3) of Section 2. This is the purpose of 

genera-tion scoping. Generation scoping is a 

mechanism that represents lexical 

environmentsinthegeneratedprogramasfirst-

classentities.Inthisway,thegeneratorhascontrolofthe 

scoping of the generated program, beyond that 

offered by the target programminglanguage. 

To support lexical environments as first-class 

entities, generation scoping adds anew keyword, 

environment, to the language in which the program 

generator is writ-ten. Its syntax is: 

environment (<generation-environment>) 

<statement>; 

wherestatement contains one or more 

quoted expressions. The generation-environment is 

an expression that yields a value of type ENV. ENV 

is a type used torepresent environments and only 

has a constructor and equality function defined 

(i.e.,we can only create newvaluesoftype 

ENVandcomparethemwithexistingones).Theconstr

uctor for environments, new_env, can take an 

arbitrary number of argumentswhose values are 

other environments. These environments become 

the parents of thenewly created environment (the 

child). All variable declarations in a parent 

becomevisible to the child environment. Like 

traditional scoping mechanisms, variable bind-ings 

of the child eclipse bindings with the same name in 

the parent. 

An example use of environment in code 

implementing our example text file tra-

versalfollows below: 

 

CODE CreateForAllInFile (ENV p, CODE mtbyte, 

CODE filename, 

CODE actions) 

{ 

environment(new_env(p))return„{ 

FILE *fp; 

if ((fp = fopen($filename, “r”)) == 

NULL)FatalError(FILE_OPEN_ERROR); 

while ( feof(fp) == FALSE) {int$mtbyte= 

fgetc(fp); 

$actions; 

} 

} 

} (4) 

To generate code using the quote operator, an 

environment needs to be specified.In this way, the 

code represented by actions can never access 

variable fp(as fpisgenerated in a new 

environment—which becomes a child of an 

environment passedinto the function). At the same 

time, if the variable represented by mtbyteis gener-

ated in the same environment as actions, they are 

visible to each other. This is thecasewith most 

straightforward uses of this function. Forinstance: 

environment(e)result = 

CreateForAllInFile(global_env,„byte,„(“file.txt”), 

„putchar(byte)); (5) 

Comparing code fragments (4) and (3), we can see 

why using environments 

ismoreconvenientthanmanuallyhandlingvariablesby

creatingnewsymbols.Inpartic-ular,there are 

severalimportant advantages: 

 

1. The generator programmer does not need 

to explicitly state which variables get“closed” in 

the right lexical environment. All declarations 

generated under an envi-ronmentstatement will be 

automatically added to the corresponding 

environment.Additionally,thegeneratorprogrammer

doesnotneedtoexplicitlyretrievethebindingfor a 

certain identifier. All references (e.g., to fp, but 

also to FILE, FatalError,fopen, etc., above) are 

interpreted relative to that environment. This means 

that, if acode fragment is generated in the intended 

environment, it can later be used 

withoutproblemsinalocalcontext,evenifthelocalcont

extcontainsdifferentbindingsforthesame identifiers. 

For example, in code fragment (5), above, if 

global_envhas theintended declaration for, e.g., 

FILE, it will not subsequently matter if the 

generatedcode fragment is output in the middle of a 

function where FILE means something dif-ferent. The 

reference will always be to the FILE type variable 

defined in the environ-mentrepresented by 

global_env. 

 

2. The alternation between executed and 

generated code is avoided. There is no needto 

unquote code just to supply a unique symbol name. 

 

3. Declarationsaretreatedasagroup,insteadofi
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ndividually.Intheaboveexample 

there is only one variable declared, so this is not 

really an advantage. In quoted codewith several 

generated declarations, however, handling 

environments is easier thanhandling all new 

symbols individually. Of course, the same grouping 

effect could beachieved by using a mapping data 

structure in the generator code. The advantage 

ofgeneration scoping is that the data structure is 

now integrated in the language andinsertions and 

lookups are implicit (i.e., the programmer never 

has to specify them—seethe first point above). 

 

Implementation Issues 

Itisperhapsworthstressingagainthatthemain

advantageofgenerationscopingisthat the generator 

programmer is relieved of the responsibility of 

adding declarations to environments and looking 

up identifier bindings in those environments. That 

is, theimplementation of quote will determine 

whether a generated identifier is actually 

adeclaration(ofavariable,function,type,etc.)orarefer

encetoanexistingentity.Eachenvironment has a 

symbol table and a collection of pointers to the 

parent environ-ments. In case an identifier 

represents a declared entity, it is added to the 

current envi-ronment‟s symbol table together with 

a corresponding generated unique name for 

thedeclared entity. When a generated identifier is a 

reference, it will be looked up in 

theappropriateenvironment‟stableand,ifitisnotthere,

intheparentenvironmentsrecur- 

sively.
4
 The result of the identifier lookup is the 

unique generated name for the match-ing 

declaration. In this way, no accidental reference to 

the wrong variable, 

type,function,etc.,canoccur,aslongas 

theenvironmentsaresetupproperly. 

As is well-documented in the work on hygienic 

macros [7][10], determining thesyntactic role of an 

identifier (i.e., whether it is a declaration or a 

reference) is hardwhen the entire program has not 

yet been generated. For instance, consider the pro-

gram-generating function: 

CODE CreateDclOrRef (CODE type) 

{return„{$typenewvar = 10 }; 

} 

Inmostprogrammingenvironments,
5
itisimpossibleto

tellbeforethecodeisgen- 

eratedwhetherthegeneratedcodedeclaresnewvarorref

erstoanexistingvariableofthe same name. If the 

parameter type holds the type specifier„int, then 

newvarisbeing declared. If, on the other hand, it 

holds the operator „*, it is not. This problemhas 

been studied extensively in the hygienic macro 

community and the commonapproach is to employ 

a “painting” algorithm that marks each identifier 

with the envi-

ronmentwhereitwascreated.Itiseasytoadaptthisappro

achtogenerationscoping: 

 

After all the code has been generated, the marked 

declarations can be matched tomarked references 

(assuming they came from the same environment). 

Remaining ref-

erencescanthenbejustunmarked,sothattheybecomefr

eereferencesandcanrefertoexternally declared 

symbols. A more thorough discussion on 

implementing a “paint-ing” algorithm for program 

generation can be found in [11]. 

 

GenerationScopinginDiSTiL 

Generationscopingwasimplementedaspart

ofIP(IntentionalProgramming)[13],ageneral 

purposetransformationsystemunderdevelopmentby

MicrosoftResearch.Itwas subsequently used to 

build the DiSTiL software generator [14] as a 

domain-spe-cific extension to IP. DiSTiL is a 

generator that follows the GenVoca [3] design 

para-

digm.GenVocageneratorsareaclassofsophisticateds

oftwaregeneratorsthatsynthesize high-performance, 

customized programs by composing pre-written 

compo-nents called layers. Each layer encapsulates 

the implementation of a primitive featurein a target 

domain. The DiSTiL generator is essentially a 

compiler for the domain ofcontainer data 

structures. Complex container data structures are 

synthesized by com-posing primitive layers, where 

each layer implements either a primitive data 

structure(e.g., ordered linked lists, binary trees, 

etc.) or feature (sequential or random 

storage,logical element deletion, element 

encryption, etc.). Code for each data structure 

opera-tion is generated by having each layer 

manufacture a code fragment (that is specific 

totheoperationwhosecodeisbeinggenerated)andbyas

semblingthesefragmentsintoacoherent algorithm. 

Generationscopingwasindispensableintheimplemen

tationofDiSTiL.Evenrela-tively short DiSTiL 

specifications (around 10-20 lines) could generate 

thousands oflines of optimized code. Due to the 

complexity of the generated code, as well as 

theflexibility of parameterization (a layer could be 

composed with a wide variety of otherlayers), 

maintaining correct scoping for generated code 

would have been a nightmare 

without generation scoping. In fact, 

initially we had attempted to implement 

DiSTiLwith manual resolution of generated 

references (by generating unique symbols, as 

incode fragment (3)). The sheer difficulty of this 

task was what motivated generationscopingin the 

first place. 

Generation scoping is used in DiSTiL not 

only to ensure the correctness of refer-ences to 
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global declarations (e.g., library functions) but also 

to overcome the scopinglimitations of the target 

language (C). With generation scoping, DiSTiL 

effectivelymanages different namespaces for every 

layer in a composition. In this way, there areno 

clashes between identically named variables 

introduced by different layers (or dif-ferent 

instances of the same layer). At the same time, the 

code is simplified by havingnamespaces connected 

appropriately so that generated code can access all 

the requireddeclarationswithout explicit 

qualification. 

DiSTiL data structures consist of three distinct 

entities: a container, elements, anditerators (called 

cursors). Generated variables are grouped together 

into a 

commonenvironmentaccordingtotheentitytowhicht

heyarerelated.Forinstance,alldeclara-tions related to 

the cursor part of a doubly linked list will belong in 

a single 

generationenvironment.Thesevariablesneednotbelo

ngtoasinglelexicalcontext.Forexample,variablesina

nenvironmentmaybeglobal,orlocal,orfieldsofarecor

dtype.Thus, 

variablesofanenvironmentcouldbelongtoslicesofma

nydifferentlexicalcontextsinthe generated program. 

In this way, the environment acts as a generator-

managednamespacemechanism for the target 

language. 

Consider the following organization used in 

DiSTiL (and, in fact, also in P3). Ingeneral, there is 

a many-to-one relationship between cursors and 

containers (i.e., therecan be many cursors—each 

with a different retrieval predicate—per container). 

Sousing a single generation environment to 

encapsulate both cursor and container datamembers 

is not possible. Instead, separate environments are 

defined for every cursorand container. The 

ContGenericenvironment encapsulates element data 

members(because element types are in one-to-one 

correspondence with container types) andgeneric 

container-related variables (including the container 

identifier). The Curs-Generic environment 

encapsulates generic cursor-related variables 

(including thecursor identifier). By making 

ContGenerica parent of CursGeneric, code 

foroperations on containers (which do not need 

cursors) can be generated using 

theContGenericenvironment, while code for 

operations on cursors (which also refer-ence 

container fields) is generated using the 

CursGenericenvironment. Figure 1(a)depicts this 

relationship. 

 

 

 

 

 

 

 
Figure1:HierarchicalOrganizationsofEnvironmentsi

nDiSTiL 

 

Asmentionedearlier,ahallmarkofGenVocal

ayersisthattheyencapsulaterefine-ments of multiple 

classes. Each DiSTiL layer refines cursor, 

container, and elementtypesbyaddinglayer-

specificdatamembers.Thedatamembersaddedtothec

ontainer 

and element types by layer Li are encapsulated by 

environment Conti which is a 

childofContGeneric.Similarly,datamembersaddedb

yLitothecursortypeareencapsu-

latedbyenvironmentCursiwhichisachildofbothCurs

GenericandConti(because cursors of layer Li 

reference layer-specific container-data members as 

well aslayer-specific cursor data members). Figure 

1(b) shows this hierarchical 

organizationofenvironments. 

To illustrate these ideas, consider an ordered 

doubly-linked list layer. This 

layerwouldrefineelementsbyaddingnextandprevfiel

ds,andwouldrefinecontainersbyaddingfirstandlastfiel

ds.ThisrefinementcanbeaccomplishedbyaRefine- 

Types()method:elem_type,cont_type,andcurs_typea

recodefragmentsthatrespectively define the set of 

variables (data members) in element, container, and 

cur-

sorclasses.WhenRefineTypes()iscalledwiththesecodefr

agmentsasparameters,thenext,prev,first, andlastfields 

areadded totheelement andcontainer 

types.Asthesefieldsarealwaysusedtogether,theyared

eclaredwithinasingleenvironmentCont(which is 

equal to some Contiof Figure 1): 

voidRefineTypes( CODE *elem_type, CODE 

*cont_type, ENV Cont) {environment(Cont) { 

*elem_type=„{$(*elem_type);element *next, 

*prev; }; 

*cont_type=„{$(*cont_type);element *first, *last; 
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}; 

} 

} 

ItiscommoninacompositionofGenVocalayersthatasi

nglelayerappearsmulti- 

ple times. An example in DiSTiL would be linking 

elements of a container onto two(or more) distinct 

ordered lists, where each list has a unique sort key. 

Every list layeradds its own fields to the element 

and container types. Maintaining the 

distinctionamong these fields (so that the code for 

the j-th list will only reference its own fieldsnextj, 

prevj, etc.) is simple using generation environments 

as organized in Figure 

1.Eachcopyofthelistlayerwillhaveitsowngeneratione

nvironmentsContjandCursj,andallcodegeneratedbyt

hatcopywouldalwaysusetheseenvironmentvariables. 

For an example, consider the Remove method for 

ordered doubly-linked lists,appearing below. Let 

Remove_Codebe the code that is to be generated 

for 

removinganelementfromacontainer.TheRemovemet

hodforordereddoubly-

linkedlistsaddsitscode(tounlinktheelement)whenitis

called(thecodethatactuallydeletestheele-

mentisaddedbyanotherlayer).Thus,givenRemove_C

odeandtheenvironmentCurs(equal to some Cursiof 

Figure 1), Remove() adds the unlinking code where 

thenext,prev,etc. identifiersarebound totheircorrect 

variabledefinitions. 

void Remove( CODE *Remove_Code, ENV Curs ) 

{environment(Curs) { 

*Remove_Code=„{ Element*next_el = cursor-

>next; 

Element*prev_el = cursor->prev; 

$(*Remove_Code); 

if (next_el != null)next_el->prev=prev_el; 

if (prev_el != null)prev_el->next=next_el; 

if (container->first == cursor.obj)container-

>first = next_el; 

if (container->last == cursor.obj)container-

>last= prev_el;  }; 

} 

} 

 

Notethatthebindingsofidentifierscursor,container,an

dnextinthistem- 

plateexistinthreedifferentgenerationenvironments:co

ntainerisinContGen-

eric,cursorinCursGeneric,andnextinConti.Neverthel

ess,allofthemcanbe 

accessed from environment Curs (following its 

parent links), so this is the only envi-ronment that 

needs to be specified. Note also that there are two 

generated 

temporarydeclarationsinthiscodefragment,whichare

completelyprotectedfromaccidentalref-erence. 

This example is convenient for demonstrating the 

benefits of generation 

scoping.Weattempttoshowthesebenefitsbyspeculati

ngonthealternatives.Clearlytheabovecode fragment 

has many external generated references, so default 

hygiene is not reallyan option. The generator writer 

has to explicitly create new symbols (as in code 

frag-ment (3)) for the declarations of container, 

cursor, etc. (not shown). Instead ofmanaging all the 

new symbols individually, the generator writer 

could set up a datastructure in the generator 

(unquoted) code to maintain the mappings of 

identifiers tovariables. Then the writer could use 

explicit unquotes to introduce the right 

bindings.Given that declarations need to be inserted 

in the data structure explicitly and refer-

encesneedtobelookedupexplicitly,thecodewouldbe

muchmorecomplicated.Onecan add some syntactic 

sugar to make the code more appealing. For 

instance, we canuse $$(ds, id) to mean “unquote and 

lookup identifier id in bindings data structureds”. 

Similarly, we can use $%(ds, id) to mean “unquote 

and add variable id inbindingsdata structure 

ds”.Even then, thecode would bepractically 

unreadable: 

void Remove( CODE *Remove_Code, BindingDS 

ds ) { 

*Remove_Code = 

„{$$(ds, Element)*$%(ds, next_el)= 

$$(ds,cursor)->$$(ds,next); 

$$(ds,Element)*$%(ds, prev_el)= 

$$(ds,cursor)->$$(ds,prev); 

$(*Remove_Code); 

if($$(ds, next_el)!= null) 

$$(ds, next_el)->$$(ds, prev) = $$(ds, 

prev_el);if($$(ds, prev_el)!= null) 

$$(ds, prev_el)->$$(ds, next) = $$(ds, 

next_el);if($$(ds, container)->$$(ds, first)== 

$$(ds,cursor).$$(ds,obj)) 

$$(ds, container)->$$(ds, first) = $$(ds, 

next_el);if($$(ds, container)->$$(ds, last)== 

$$(ds,cursor).$$(ds,obj)) 

$$(ds,container)->$$(ds,last)=$$(ds,prev_el); }; 

} 

Asoutlinedearlier,generationscopingimprovesovert

hiscodeinthreeways: 

First,noexplicitdatastructureinsertions/lookupsneedt

obeperformed(e.g.,thereareno$$and $%operators). 

Second,noexplicitescapesareintroduced—

thereisnoalter-

nationbetweenquotedandunquotedcode.Third,thegr

oupingofvariablesisimplicit—thereis no need to 

repeatedly refer to a data structure likeds. 

 

Related Work 

Givenourpriordiscussionofhygienicmacros,herewe

willonlytouchuponafewotherpieces of related work. 

Theenvironmentsusedingenerationscopingaresimila
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rtosyntacticenvironments 

inthesyntacticclosureswork[4][9].Insyntacticclosure

s,environmentsarefirst-

classentitiesandcodefragmentscanbeexplicitly“close

d”inalexicalenvironment.Never-theless, there are 

significant differences between the two approaches: 

Syntactic clo-

suresenvironmentscanonlycapturethesetofvariablest

hatarelexicallyvisibleata 

specific point in a program.
6
 In contrast, our 

environments can be arbitrary collectionsof 

bindings (i.e., smaller sets of lexically visible 

variables) and can be organized hier-archically. 

More importantly, however, declarations are added 

to generation scopingenvironments implicitly by 

generating (quoting) code that declares new 

variables.Thus, our approach is much more 

automated than syntactic closures and is 

ideallysuited to software generators (where the 

lexical environment is being built while codeis 

generated). Also, generation scoping can be used to 

implement the hygienic, lexi-cally-scoped macros 

of [7], unlike syntactic closures, which cannot be 

used to imple-menthygienic macro expansion, as 

explained in [7]. 

Generation scoping is concerned only with 

maintaining correct scoping for gener-ated code 

fragments. Other pieces of work deal with various 

other correctness proper-ties of composed code 

fragments. Selectively, we mention some work on 

the 

problemofensuringtypecorrectnessforgeneratedprog

rams,bothfortwo-stagecode[12](i.e.,generator and 

generated code) and multi-stage code [15] (i.e., 

code generating codethat generates other code, 

etc.). 

 

II. CONCLUSIONS 
Program generation is a valuable 

technique for software development that 

willbecome progressively more important in the 

future. In this paper we have shown 

howtoaddressthescopingissuesthatariseinsoftwareg

enerators.Wehavepresentedgen-eration scoping: a 

general-purpose, domain-independent mechanism 

to address 

allscopingneedsofgeneratedprograms.Generationsc

opingcanmakewritingandmain-taining software 

generators easier. Its capabilities were proven in the 

implementationofthe DiSTiL [14] and P3 [1] 

generators. 

The future of software engineering lies in the 

automated development of well-understood 

software. Program generators will play an 

increasingly important role infuture software 

development. We consider generation scoping to be 

a valuable lan-guage mechanism for generator 

writers and hope that it will be adopted in even 

moreextensiblelanguages and transformation 

systems in the future. 
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