
Sai Subhashree Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 4, (Part -3) April 2018, pp.126-134

www.ijera.com DOI: 10.9790/9622-080403126134 126 | P a g e

The Impact of Context on Continuous Delivery

Mandakini Priyadrshini Behera, Sai Subhashree
Gandhi Institute of Excellent Technocrats, Bhubaneswar, India

 Nigam Institute of Engineering and Technology, Bhubaneswar, Odisha, India

ABSTRACT

This paper will evaluate how the properties of production environment and software, which is

continuously delivered, have influence on the implementation of Continuous Deliv- ery. The

evaluation is based on three case studies from dif- ferent software development domains. The first

case study deals with the way the software engineers at Etsyuse Con- tinuousIntegration for the

delivery of their App. The second example is about Box’s decision to introduce Continuous

Deployment in order to continuously deploy their desktop software Box Sync to its customers. The

last example is about the Hewlett-Packard LaserJet Firmware Team which implemented Continuous

Delivery with great success.

These case studies will show that UI (user interface) com- plexity, the lack of control over the

production environment and the quality of software simulators, which simulate the production

environments, are properties or derived proper-

tieswhichhaveimpactontheimplementationofContinuous Delivery.

Categories and Subject Descriptors

D.2.7 [SoftwareEngineering]: Distribution, Maintenance, andEnhancement

Keywords: Continuous Delivery, Production Environment

I. INTRODUCTION
Continuous Delivery is a software

development discipline which enables

“Reliable Software Releases through Build,

Test, and DeploymentAutomation”[9].

This paper will evaluate the impact of

context on Continu- ous Delivery

implementation for software development do-

mainswhicharedifferentfromtheclassicaldomai

nsofnone UI heavy backend and web

applications. Software and pro- duction

environment properties present the context

evalu- ated in this paper. The evaluation is

based on threedifferent

Permission to make digital or hard copies

of all or part of this work for personal or classroom

use is granted without fee provided that copies are

not made or distributed for profit or commercial

advantage and that copies bear this notice and the

full citation on the first page. To copy otherwise,to

republish,topostonserversortoredistributetolists,req

uirespriorspecific permission and/or afee.

.

case studies.

The structure of the paper is as

follows. Section 2 provides all important

definitions and a short introduction to Con-

tinuous Delivery. Section 3 covers the three

case studies, which are first described and then

analyzed. The first case study is about the way

Etsy, “often trotted out as a poster child for

Devops” [3], introduced Continuous Delivery

for their Apps (mobile applications). The

second one comes from the company Box

which recently implemented Contin- uous

Deployment for their desktop software Box

Sync. The last example is the very well

documented case of the HP LaserJet Firmware

Team, which increased their productiv- ity

dramatically by implementing Continuous

Delivery.

After the analysis and description of all three

examples they are compared to each other in

section 4 in order to identify similarities of

properties which impact the Continuous De-

livery implementation. The last section 5 will

conclude the paper and provide ideas for

future work.

TERMDEFINITIONS

In this section the most important

terms are briefly intro- duced. More detailed

information can be found in the cited sources.

Continuous Delivery and the Deployment Pipeline

The three terms Continuous

Integration, Continuous Deliv- eryand

Continuous Deployment and their coherences

are easily confused and will therefore be

defined in this section. The process of

Continuous Delivery starts with continuously

integratingcode.ContinuousIntegration“isaso

ftware development practice where members

of a team integrate their work frequently, [...].

RESEARCH ARTICLE OPEN ACCESS

Sai Subhashree Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 4, (Part -3) April 2018, pp.126-134

www.ijera.com DOI: 10.9790/9622-080403126134 127 | P a g e

Each integration is verified by an automated

build (including test) to detect integration

errors as quickly as possible.” Continuous

Delivery goes one step further and ensures

that“software is build in such a way that the

software can be released to production at any

time” and the software is deployable

throughout its whole life cy- cle. The last step

towards complete automation is Contin- uous

Deployment. “Continuous Deployment means

that every change goes through the pipeline

and automatically gets put into production,

resulting in many production de- ployments

every day.”[12]

The Core of a Continuous Delivery

implementation is the

DeploymentPipeline,whichmodelstheprocess

ofget- ting “software from version control into

the hands of your users” [7]. As figure 1,

which illustrates a basicdeployment

pipeline,showssomestagesofaDeploymentPipel

ineareau-

Figure 1: Basic Deployment Pipeline[8]

tomatedandsomeneedmanualinteraction.Thet

hreecase

studiesinsection3willshowthatthelevelofauto

mationis

differentforeachspecificimplementation.Thef

irststageis

thecommitstage.Thefollowingtwostages,auto

matedac-

ceptancetestsandamanualtestingstage,canbee

xecuted

inparallel.Thelastthreestagesareparallelagain

andcon- sist of the UAT (user acceptance

tests), capacity tests and going into

production stage[8].

The term classical Continuous Delivery refers

to Continu- ous Delivery for web or backend

applications with none or very littleUI.

Environment

An environment in the context of

software development is one specific

combination of hardware properties and soft-

ware properties which build a platform to run

software on. Through the Continuous Delivery

process the following en- vironments may

occur.

In traditional software development there are

four differ- ent environments for a software

from development to pro-

duction.Thefirstoneisthedevelopmentenviron

ment, which represents the working

environment of the developer.

Afterthedevelopmentenvironmentcomestheint

egration

environmentwherethecodechangesfromalldev

elopers are combined and integrated. For

smaller projects the first two environments

could be the same. The staging envi-

ronmentshouldbeassimilaraspossible,ideallyid

entical, to the production environment. It is

used to simulate pro- duction. The production

environment is the environ- ment the software

was developed for[14].

CASESTUDIES

This section covers the three case

studies on which the evaluation in section 4 is

based on. Each case is briefly de-

scribedandfollowedbyananalysis.Thegoalofthe

analysis

istofindoutwhichpropertiesoftheproductionenvi

ronment and the software had most impact on

the specific implemen- tation of Continuous

Delivery. The analysis part itself will focus on

the following two questions:

Which properties of the production

environment and the software have influence

on Continuous Delivery?

How is this reflected in the implementation of

Contin- uous Delivery?

The results of the analyses are

•

•

Sai Subhashree Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 4, (Part -3) April 2018, pp.126-134

www.ijera.com DOI: 10.9790/9622-080403126134 128 | P a g e

compared to each other in section 4 to identify

similarities and determine what had the biggest

impact regarding difficulties and unresolved

prob- lems.

Mobile Application:Etsy

The first case study is taken from an article

which de- scribes how Continuous Delivery is

implemented for an App at Etsy. “Etsyis a

marketplace where people around the

worldconnect,bothonlineandoffline,tomake,sel

landbuy unique goods.” [4] The example was

chosen since it points out the challenges of

Continuous Delivery in the context of an App.

The article mainly focuses on the iOS

Continuous Delivery stack because at the time

of writing the Android stack wasn’t as well

developed as its iOScounterpart[13].

Description

Etsy decided to use Continuous

Integration since “through Continuous

Integration, they can detect and fix major de-

fects in the development and validation phase

of the project, before they negatively impact

user experience”.

Automated Continuous Delivery at

Etsy for mobile apps can be summarized in

one sentence: “Every commit builds the

mainline on special integration machines”. So

after every commit by a developer an

integration server (Jenkins [10])

executesabuildplanwhichconsistsofmorethan15

jobsby using the integration machines and

notifies the developers in case of a failure.

There is also a simple homegrown dash- board

which “communicates the current test status

across all configurations” [15]. The whole CI

infrastructure from Etsyis illustrated in

figure2.

The biggest challenge was to setup an

integration and test environment which covers

all important devices. For iOS every build has

to be tested on “seven different iPads, five

iPhones and a few iPods” [15]. But for

Android it is even worse because because the

number of Android devices to cover by tests is

overwhelming. As integration and test en-

vironmentthereisa“fleetofMacminis”whichare

allnearly fully automatically provisioned.

Additionally real devices in

thecloudfromAWSdevicefarm[1]areusedfortest

ing.The setup of the integration machines

could not be fully auto- mated because of the

“inability to automate the installation of some

software dependencies”. Especially the

installation and setup of the iOSIDE Xcodestill

needs some manual interaction.

With these integration machines the

code is build and tested after each push to the

repository to get immediate feedback.

Regression test are run nightly on a broader

range of real devices [15].

Since “most of the core logic of Etsy’s Apps

relies on the UI layer” the software engineers

at Etsy focus on functional testing which

mimics the steps of an actual user. The test

includeactionslike“searchingforlistingsandshop

s”,“regis- tering new accounts” and

“purchasing an item with a credit card or a gift

card”. One example for a concrete functional

tests is the checkout test. For this test a buyer

and seller test account is created and a real

credit card is used [15]. The test is asfollows:

1. “Signingintotheappwithatestbuyerac

count.”[15]

2. “Searchingforanitem(inthesellertestacc

ountshop).” [15]

Sai Subhashree Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 4, (Part -3) April 2018, pp.126-134

www.ijera.com DOI: 10.9790/9622-080403126134 129 | P a g e

Figure 2: Etsy’sCI infrastructure overview[15]

3. “Adding it to the cart.”[15]

4. “Paying for the item using the prepaid

credit card.” [15]

These tests run on simulators and real

devices. Integration tests, executed after every

push, are run in simulators on the integration

machines of Etsy. Nightly Regression tests are

outsourced to AWS device farm [1]

(previously known as Appthwack), which

provides the possibility to test Apps on a broad

range of real mobile devices [15]. Since it is

nearly impossible to test on all possible device

configura- tions, devices are chosen based on

Google Analytics data. Since the integration

happened only recently there were still

someproblemsrelatedtotestingonphysicaldevic

esandthe challenges of aggregating and

reporting test status from all the devices when

the article was published[13].

In addition to the automatic

integration testing there are layers of manual

QA (quality assurance). An internal build is

released daily which Etsy employees are

encouraged to install on their devices [15].

Another manual test is called “app rotations”:

“Eight volunteers gather in a room, accom-

paniedby a QA facilitator and a mix of

devices. The goal is to find as many bugs as

possible in a predefined timebox.” [13]

After all automated and manual tests

are passed the App is submitted to the App

Store for approval which will take around five

days [15]. So if a bug slips through all the tests

and is discovered while the App is already

running on the users devices, it takes a

minimum five days to get an update to

theusers.

Analysis

The goal of the software engineers at

Etsywas to implement fully automated

Continuous Delivery for their Apps. They

automated the process as far as possible from

pushing the code into the repository to

submitting the App to the App Store. During

the implementation of Continuous Delivery

they were faced with two major challenges.

The first challenge was the setup of

the environments for integration and testing.

For testing the Android and iOS Apps, either a

software simulators or real devices is neces-

sary to run the Apps on. Simulators for

Android and

iOSdon’tmodelrealdevicescloselyenoughandpr

ovedtobein- sufficient [17], thus simulators are

only used for integration tests and real devices

have to be used for regressiontests. So the first

property with influence on the Continuous

Delivery implementation is the inability to

properly model mobilede- vices with

softwaresimulators.

The need to use real devices for tests results in

the next problem. Which devices should be

used for the tests? The possible production

environments are all iOSand Android devices

Sai Subhashree Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 4, (Part -3) April 2018, pp.126-134

www.ijera.com DOI: 10.9790/9622-080403126134 130 | P a g e

with an App Store or Google Play Store

installed. While for iOSthere is a limited

number of different devices and versions, the

number of Android devices and versions is far

to big to run tests on all of them, because that

would lead to unmanageable number of

devices to run tests on. Opensignalreports

there are over “24,000 distinct Android devices

seen in 2015” [16]. So it’s impossible to cover

all existing devices with tests and a specific set

of iOSand An- droid has to be chosen for tests.

Thus the second property with influence on the

implementation of Continuous Deliv- eryis a

to big variety of possible production

environments which have to be covered

withtests.

The second challenge was the

automated testing of the UI. The functional

tests used for this purpose will only discover

basic bugs and App crashes. Additionally the

aggregation and evaluation of the test data

from the AWS device farm devices used for

regression testing is still an unsolved prob-

lem, which is again a result of the variety of

possible pro- duction environments. These

problems made it necessary to add the

described manual QA stages. So one identified

property of the production environment which

has impact on Continuous Delivery is UI

complexity. It results in the inability to fully

automate tests, which makes manual qual- ity

assurancenecessary.

Another property is control over the

deployment process. The five days approval

process of the App Store was one reason for an

additional manual test stage. So the inability

todeployahotfiximmediatelyresultsinevenmore

accurate testing.

Desktop Application:Box

Box is a company which provides

“secure content and on- line file sharing for

businesses”[2]. One part of theirproduct is

their desktop software Box Sync which syncs

their cus- tomers desktop computers with Box

’s online services. “In an effort to maintain the

agility of our startup days and deliver the best

software possible, Box has been moving to-

wards Continuous Deployment”. Since the

software engi- neers at Box had huge success

with Continuous Deployment and web

development they decided to use their

experience and knowledge and adapt it for

their desktop software[18].

Description

“In order to do Continous Deployment

you must be doing Continous Delivery” [12].

Therefore the team at Box imple- mented

“automated acceptance testing” in a first step.

Basicfunctionality of Box Sync, syncing files

from one computer

toanother,iseasytotestsincenetworkandfilesyste

mcould easily be simulated [18]. They used

standard best practice for webdevelopment:

5. “Every time a developer pushes a new

commit, the ap- plication is built in its

entirety (“continuous integra- tion”) and the

full suite of tests is run.”[18]

6. “If a test fails, the build cannot be

deployed and fur- ther commits are

rejected until the test failure is fixed (“stop

the line”).”[18]

SincetheBoxSyncsoftware“islightonUIanditsba

sicjob-

ensuringtwosetsoffilesintwodifferentplaces

match-isvery easy for a computer to

verify” [18] there is full code cover- age

through unit tests. They have three types

of automatic integrationtests:

1. Full code coverage via unittests.[18]

2. “Themainsyncingalgorithmiscoveredbyint

egration- style tests which simulate the

network and file system called B to Y (the

local file system is A, and the net- work is

Z).”[18]

3. “Full-scale integration tests that launch

the builtver-

sionofSync(thefull.appor.exe,depending

onplat-

form),playwithfilesonthelocalharddriveo

ronBox,

andverifytherightthingsendupintherightpl

aceat the end. They call this

“chimp”.”[18]

All of the described tests are run on

each supported plat- form and operating

system. Since the Box Sync software relies

heavily on the Box web API, another suit of

integra- tion tests called “chimp-staging” is

run to ensure compati- bility. But “deploying

client software is completely unlike deploying

a web app, so their first goal was to make

thepro- cess as consistent as possible, while

respecting the different domain requirements

and maintaining high user experience

standards”[18].

As a result of Continuous Deployment of Box

Sync all up- dates had to be backward

compatible to a lot of prior ver- sions since the

production environment of Box Sync are

desktopcomputerswhichmightbeofflinefordays

orweeks. The risk of rendering a client useless

with a failed update is too high and therefore

older versions of Box Sync are manu- ally

updated with consecutive updates before the

release of a new version[18].

Sai Subhashree Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 4, (Part -3) April 2018, pp.126-134

www.ijera.com DOI: 10.9790/9622-080403126134 131 | P a g e

To make sure that there are no problems

during the auto- mated deployment the Box

Sync clients are monitored re-

motelyandbadthingslike“exceptions,errors,or

warnings

theclientsencounter”arereported.Butalsothin

gslikeup- loads, downloads, and

authentication session renewalsare

monitoredtoassurethattheclientsdon’tstopwor

kingcom-

pletely.Allthedataisaggregatedbytheclientand

sendto

theserversinabandwidthsavingmanortopreve

ntDenial- of-service attacks by the own

client[18].

But there are still three problems to be solved

for real Con- tinuous Deployment:

1. “Shipping a complete copy of the

application multiple times a day would

saturate bandwidth. Differential updates could

solve this problem.”[18]

2. TheUIelementsofBoxSyncarestillchec

kedmanually for each platform[18].

3. The reading of feedback from the

clients is not auto- mated[18].

The author of the article summarizes

the implementation of Continuous Deployment

for Box Sync as follows: “One of the things

we learned while building Box Sync is that

even if we cannot reach true continuous

deployment for technical reasons, having it as

a goal makes a strong, positive impact on our

culture and development practices.”[18]

Analysis

The Box team had a lot of experience

with Continuous Deployment for web

applications and tried to apply their knowledge

to the delivery and deployment of their

desktop software Box Sync. This worked out

very well for the Con- tinuous Integration

stages of their pipeline because the core

functionality of Box Sync was easy to verify

and the imple- mentation was very similar to

an implementation for classi- calContinuous

Integration.

The regression test stage, which was

executed on “real com- puters”, however could

only be partly automated. The core

functionality was again easy to test since there

was no com- plex UI and the result of an test

could easily be verified automatically on real

computers. UI tests in contrast were too

complex for the Box Sync team to implement

and there- fore the UI is tested manually

before each release. So again the UI couldn’t

be tested fully automated.

But the major challenge for the Box

Sync team was to keep each release backward

compatible to prior releases. This problem was

a result of no control over the production en-

vironment since it’s an decision of the

customer when the client is online and can

update itself. This is a big difference to web

servers, the target environment for classical

Contin- uous Delivery, which are fully owned

and are mostly incre- mentally updated. This

problem couldn’t be solved with automated

tests instead they had to add a manual approval

stage.

Embedded System: HP PrinterFirmware

The last case study is about the HP

LaserJet Firmware

Teamwhichmadetheirwayoutofacrisisandincrea

sedpro- ductivityby implementing Continuous

Delivery. The whole

processisverywelldocumentedinthebook“APra

cticalAp- proachtoLarge-

ScaleAgileDevelopment”[6]bytheproject

leader Gary Gruver, which I recommend for

further details. This case study was selected

since it’s completely different from the other

two case studies and shows that fully auto-

matedContinuousDeliveryispossibleforsoftwar

edevelop- ment domains different from web

andbackend.

When Gary Gruver joined the HP

LaserJet Firmware Team

theyspentonly5%oftheirresourcesondeveloping

newfea- tures and the average time of one

regression test cycle was six weeks. This is

why they decided to implement Continu- ous

Delivery and changed the architecture of their

software. We will focus on the implementation

of Continuous Integra- tionas described in

chapter 6 of Gruver’s book[6].

Description

Before they implemented Continuous

Delivery they had to change the structure of

the code first. They reorganized

theircodebaseandchangedfrommultiplebranche

s,one

Sai Subhashree Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 4, (Part -3) April 2018, pp.126-134

www.ijera.com DOI: 10.9790/9622-080403126134 132 | P a g e

Figure 3: Continuous Delivery system at HP [6]

for each printer model, to one single branch.

Instead of defining the specific capabilities for

each printer with a C #ifdefdirective [5] they

used XML configuration files for the

definition of the capabilities. For the

integration tests they developed their own

printer simulators and deployed them on 2000

virtual servers. For the later test stages they

used hardware emulators to get more accurate

results [11]. Figure 3 shows the Continuous

Integration and test setup of the HP LaserJet

Firmware Team. The system has four different

levels of testing[6]:

L1: Is executed after each commit. If there is a

failure it will be automatically reverted.

L2: More detailed tests, which run every 2

hours and use last working commit from L1. If

a test fails an email with everything needed to

replicate the failure is sent to the developer

who committed the code.

L3: Same as L2 but runs on dedicated

emulator hard- ware every 4 hours.

L4: All automated tests are combined to a

regression test suite and run daily around

midnight. “Provides a complete view of the

quality of the system” and is an indicator for

the release readiness of the firmware.

With the introduction of Continuous

Delivery the HP LaserJet Firmware Team

could strikingly decrease the time and

resources needed for code integration and

tests. While the team spent 10 % of their

resources for code integration before the

changes now it’s only 2 %. They could

decrease the resources needed for testing from

15 % to 5 %. This allowed them to spend 40 %

instead of 5 % on new features and

innovations [6].

Analysis

The HP team also had the challenge of

covering multiple production environments

with tests. But in contrast to the other two case

studies, their models of the simulators are very

good and they have full control over each

possible pro- duction environment. This way

they could reach full cover- age of all possible

production environments. Additionally,

since there was no complex UI, all the test

data could be evaluated automatically and

for some tests there was also automated

feedback to the developers. But there was

also

theproblemofsoftwaresimulatorsnotbeinggoo

denough

andthereforetheyusedhardwaresimulatorsfort

heregres- sion teststage.

EVALUATION

This section sums up and evaluates the results

of the anal- ysis parts in Section 3.

UI complexity

The first two case studies showed that

the level of UI com- plexity of the software

has a big influence on the degree of manual

test stages required for Continuous Delivery.

To

reachfulltestcoverageforanUIheavysoftwareall

possible input paths have to be covered and

each result has to be ver- ified. User Input can

be simulated with the help of scripts. The

problem is the automated aggregation and

evaluation of the test data from all devices.

The software engineers at Etsycan only detect

crashes and low level bugs with au- tomated

UI tests. The UI of Box Sync is tested

manually because implementing tests would

be too complex. Thecase study from HP, in

contrast, is a good example for software with

very little UI and UI interaction of the user. As

•

•

•

•

Sai Subhashree Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 4, (Part -3) April 2018, pp.126-134

www.ijera.com DOI: 10.9790/9622-080403126134 133 | P a g e

a result they could completely automate

theirtests.

Therefore UI complexity is one property of the

software which has an impact on the

implementation of Continuous delivery.

Lack of control over the production environment

The impact of lack of control over the

production environ- ment showed itself in

three different variants.

The first one comes from the Etsycase

study which showed that if there are no

constraints on the configuration of the

production environments, that could lead to a

fragmenta- tion of the production environment.

This might result in an unmanageable number

of possible productionenvironments. This

again results in the problem how to implement

the in- tegration and test environments, since it

is impossible to run tests on all possible

production environments. The HP case study

in contrast shows that it is possible to cover all

production environments with tests, even if

there is a big number ofthem.

The second variant about lack of

control over the production environments is

the lack of control over when and how up-

dates are deployed to the production

environment. The Box Sync case shows that if

you continuously deploy your soft- ware into

production there might be problems because

some clients skip updates and therefore

updates have to be com- patible to all prior

versions. So the lack of control over the

production environment could lead to an

additional manual approval stage

The last one is a result of no control

over the deployment process. Bugs that slip

into production can’t be immedi- ately fixed

with a hotfix. This makes it necessary to test

several nightly builds manually before every

release.

So the lack of control over the production

environments has a lot of impact on all stages

which are connected to tests.

Quality of software simulators

The HP and Etsycase studies showed

that quality of soft- ware simulators, which

simulate the production environ-

ment,haveimpactontheteststagesofContinuous

Delivery. Tests with simulators are mostly not

sufficient since simu- lators are unable to

properly imitate some properties of the

production environment. Therefore the

software running on simulators won’t show the

same behavior and performance as on the real

devices. As a consequence, tests in simula-

tors won’t discover all bugs that are found

with tests on real devices. For this reason in

both case studies from HP and Etsysimulators

are only used for early test stages. But with the

use of hardware based simulators or real

devices the ag- gregation and evaluation of test

data is more complex. This results in more

effort for the implementation of tests or even

inability to process the dataautomatically.

So with decreasing quality of software

emulators for an pro- duction environment the

complexity of tests increases.

II. CONCLUSION & FUTUREWORK
The analysis of the case studies

showed some of the pos- sible impacts of

production environment and software prop-

erties on the implementation of Continuous

Delivery.

The following three properties were extracted

from theanal- ysis of the casestudies:

With increasing UI complexity the test data

from UI tests can’t be processed automatically

and manual test stages are necessary.

The Lack of control over parts or the whole of

the

productionenvironmentinfluencestheimplemen

tation of the different teststages.

Qualityofsoftwaresimulatorsisconnectedtocom-

plexity of the teststages.

Sincethispapercouldonlyevaluatealimitednumb

erofcase studies examples from other software

development domains

shouldbeexaminedtoconfirmandexpandtheresu

lts.

One of the consequence of the found

properties is the need for additional test stages

which require manual interaction. Especially

the evaluation and feedback for UI tests are

done manually for two of the three case

studies. In order to solve this problem further

investigation of UI testing is necessary to

identify the reasons which prevent the full

automation. The lack of control over the

production environment com- bined with an

unmanageable number of possible production

environments made it impossible to reach full

test coverage for them. There are two problems

suitable for further inves- tigation. The first

one is how to prevent the fragmentation of a

production environment which leads to an

uncontrol- lable number of possible production

environments. And if it

can’tbepreventedhowtomaximizethecoverageo

frelevant productionenvironments.

The case studies also showed that if the

production environ- ment is fully under control

of the team and UI complexity is low it’s

•

•

•

Sai Subhashree Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 4, (Part -3) April 2018, pp.126-134

www.ijera.com DOI: 10.9790/9622-080403126134 134 | P a g e

possible to implement fully automated

Continuous Delivery.

REFERENCES
[1] Amazon. Aws device

farm.http://aws.amazon.com/device-

farm/?nc1=f_ls,2015. Retrieved December

03,2015.

[2] box. box.com. https://www.box.com,

2015. Retrieved December 06,2015.

[3] L. Chen. Continuous delivery: Huge

benefits, but challenges too. Software,

IEEE, 32(2):50–54, Mar 2015.

[4] Etsy. About etsy.

https://www.etsy.com/de/about/, 2015.

Retrieved December 06,2015.

[5] gnu.org. Ifdef, 2015. Retrieved

December 16,2015.

[6] G. Gruver, M. Young, and P. Fulghum. A

Practical Approach to Large-Scale Agile

Development: How HP Transformed

LaserJet FutureSmartFirmware.

Addison-Wesley Professional, 1st

edition,2012.

[7] J. Humble. Continuous delivery: Anatomy

of the deployment pipeline.

http://www.informit.com/articles/article.as

px?p=1621865, 2010. Retrieved December

11,2015.

[8] J. Humble. Deployment pipeline anti-

patterns.http://continuousdelivery.com/2010

/09/ deployment-pipeline-anti-patterns/,

2010. Retrieved December 12,2015.

[9] J. Humble and D. Farley. Continuous

Delivery: Reliable Software Releases

Through Build, Test, and Deployment

Automation. Addison-Wesley

Professional, 1st edition,2010.

[10] W. Jenkins. Meet jenkins, 2015.

Retrieved December 15,2015.

[11] G. Kim. The amazing devops

transformation of the hplaserjet firmware

team

(garygruver).http://itrevolution.com/the-

amazing-devops- transformation-of-the-

hp-laserjet-firmware- team-gary-gruver/,

2015. Retrieved December 06, 2015.

[12] F. Martin. Continuousdelivery. http://

martinfowler.com/bliki/ContinuousDelivery.

html, 2013. Retrieved November 22,2015.

[13] J. Miranda. How etsy does continuous

integration for mobile

apps.http://www.infoq.com/news/2014/11/c

ontinuous-integration-mobile, 2014.

Retrieved December 03, 2015.

[14] P. Murray. Traditional

development/integration/staging/produc

tion practice for software development,

2006. Retrieved December 18,2015.

[15] K. Nassim. Etsy’s journey to continuous

integration for mobile

apps.https://codeascraft.com/2014/02/28/etsy

s-journey-to- continuous-integration-for-

mobile-apps/, 2014.

 Retrieved November 22, 2015.

[16] opensignal. Android fragmentation

visualized (august

2015).http://opensignal.com/reports/2015/08

/android-fragmentation/, 2015. Retrieved

December 19,2015.

[17] M. Poschenrieder. Testing on emulators

vs real devices, 2015. Retrieved

December 17,2015.

[18] B. Smith. Continuous deployment in

desktop software.

https://www.box.com/blog/continuous-

deployment-in-desktop-software/, 2013.

Retrieved December 03,2015.

http://aws.amazon.com/device-farm/?nc1=f_ls
http://aws.amazon.com/device-farm/?nc1=f_ls
http://www.box.com/
http://www.box.com/
http://www.box.com/
http://www.etsy.com/de/about/
http://www.informit.com/
http://continuousdelivery.com/2010/09/
http://continuousdelivery.com/2010/09/
http://continuousdelivery.com/2010/09/
http://itrevolution.com/the-amazing-devops-
http://itrevolution.com/the-amazing-devops-
http://www.infoq.com/news/2014/11/continuous-
http://www.infoq.com/news/2014/11/continuous-
http://www.infoq.com/news/2014/11/continuous-
http://opensignal.com/reports/2015/08/android-
http://opensignal.com/reports/2015/08/android-
http://opensignal.com/reports/2015/08/android-
http://www.box.com/blog/continuous-
http://www.box.com/blog/continuous-

