
Dr. K. Anup Kumar Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 4, (Part -I) April 2018, pp.90-100

www.ijera.com DOI: 10.9790/9622-08040190100 90 | P a g e

A Novel Method of Encryption Using Variable Block Sizes in

Different Rounds.

Dr. K. Anup Kumar
Professor, Department of Computer Science and Engineering,

Sreenidhi Institute of Science and Technology,

Ghatkesar, Hyderabad, 501301, Telangana, India.

ABSTRACT
we know that the strength of any cipher depends on the degree of confusion and diffusion induced in it. Since

most of the transformations used for this purpose are well known to every one, it gives scope for cryptanalysis.

This is mainly because of the block sizes remaining constant in all the rounds; which will introduce linearity in

the cipher. This helps the crypt analyzer in breaking the cipher. Therefore, we have investigated on a new

technique and found that, during encryption the block cipher sizes can be varied in different rounds depending

on round key. Such that, a crypt analyzer cannot analyze the transformations used due to variable block sizes

being unknown in different rounds. The cryptanalysis carried out in this regard shows that the cipher obtained

through this process is a strong one and cannot be broken by any crypt analytic attack.

Index Terms — Cipher Text, Decryption, Encryption, Key, Permutation, Plaintext, Substitution, Variable

block size.

Date of Submission: 31-03-2018 Date of acceptance: 16-04-2018

I. INTRODUCTION
In the survey of literature, majority of block

ciphers are based on the feistel cipher (Tavares and

Heys, 1995; Stallings, 2003). In this process, bits of

plaintext undergo a series of permutations, substitutions

and exclusive OR operations. This creates confusion

and diffusion in cipher which is achieved by the

classical round function F of feistel structure.

 In our recent papers published, see

references [4, 5, 6], we have discussed how key

based random permutations, key based random

substitutions, interlacing, and decomposition helps

us in generating the feistel cipher of good strength.

We have used these features in the current paper

also. In the present research work, our interest is to

develop a stronger version of encryption technique by

which one can counter attack the crypt analyzer. This is

accomplished by using a new technique called key

based variable block sizes in different rounds. As feistel

cipher uses same number of bits in a block in all the 16

rounds, there is a scope for cryptanalysis. Because, one

can analyze on ―how many bits are permuted? XORed?

and which set of bits are going into which substitution

box etc‖. Due to key based variable block sizes in

different rounds. A crypt analyzer has no information

on ―what is the block size used in each round?‖.

Hence he cannot decode the transformations applied

during encryption.

II. USING KEY BASED VARIABLE

BLOCK SIZES IN DIFFERENT ROUNDS

Let ‗K‘ be the key containing 16 integers. Let di = Ki

mod 4. Such that di Є{0, 1, 2, 3}. These values of di

help us in permuting the block sizes in respective

rounds.

Let us consider a block of plaintext ‗P‘ of 256 bits.

Let C
0
 = P be the initial plaintext. Let b

i
 = { 32, 48,

80, 96 } be the different block sizes used in i
th

round. Such that, in every i
th

 round before

encryption, the 256 bit block C
i -1

 is decomposed

into 4 blocks B
i
0, B

i
1, B

i
2 and B

i
3 which are

encrypted separately. In every round, the block size

of B
i
n can be varied based on the corresponding

round key value.

Illustration of variable block sizes

Let C
i -1

 be the 256 bit intermediate cipher obtained

as the input to the i
th

 round encryption process.

Such that C
i -1

 = { c1 c2 c3 …. c255 c256 }

Let b
i -1

 = { 32, 48, 80, 96 } be the order of the block

sizes used in (i -1)
th

 round. Such that, B
i -1

0 used 32

bits, B
i -1

1 used 48 bits,

B
i-1

2 used 80 bits and B
i-1

3 used 96 bits for

encryption respectively. Let di be the value obtained

RESEARCH ARTICLE OPEN ACCESS

Dr. K. Anup Kumar Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 4, (Part -I) April 2018, pp.90-100

www.ijera.com DOI: 10.9790/9622-08040190100 91 | P a g e

from the key for the i
th

 round. Now using the value

di , permute the block sizes in bi -1 to get the new

block sizes order b
i
 to be used in i

th
 round. See

algorithm (IV. h).

Let the b
i
 obtained through this process be b

i
 = { 96,

80, 48, 32 }. Therefore, we notice that in (i -1)
th

round B
i-1

0 block had 32 bits for encryption

whereas; in i
th

 round B
i
0 block has 92 bits for

encryption. Similarly, block sizes of B
i
1, B

i
2 and B

i
3

will also vary in i
th

 round when compared with

block sizes of B
i-1

1, B
i-1

2 and B
i-1

3 of the previous (i

-1)
th

 round. Therefore, through this process, we are

actually introducing greater confusion and

nonlinearity in the process of encryption which

enables us in counter attacking the crypt analyzer.

Dr. K. Anup Kumar Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 4, (Part -I) April 2018, pp.90-100

www.ijera.com DOI: 10.9790/9622-08040190100 92 | P a g e

Dr. K. Anup Kumar Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 4, (Part -I) April 2018, pp.90-100

www.ijera.com DOI: 10.9790/9622-08040190100 93 | P a g e

III. DEVELOPMENT OF CIPHER
Let us consider a block of plaintext ‗P‘ consisting of 32

characters. By representing each character with 8 bits,

we get a block of plaintext of 256 bits and denote

them as C
0
.

Let ‗K‘ be the key containing 16 integers. Then the 8

bit binary equivalent of these integers will give us a

block of 128 bit key represented as ‗k‘.

Let b
0
 = {32, 48, 80, 96} be the initial order of block

sizes.

Let di = Ki mod 4.

Using the algorithm (IV.h). Permute b
0
 to get the

new order of block sizes to be used in respective

rounds and denote them as b
1
 b

2
 b

3
 ….. b

16
.

Next, generate the respective round keys.

Consider i
th

 round and let i = 1.

Then the first block key of round 1 contains b
1

1

divided by 2 number of bits from ‗k‘ and treat it as

k1.

The second block key of round 1 contains b
1

2

divided by 2, number of bits from ‗k‘ and treat it as

k2.

Similarly, we get two more block keys of round one

as ‗k3‘ and ‗k4‘.

By performing the transformation on k1, k2, k3 and

k4 published in our previous paper, we get the final

block keys of respective rounds. Treat them as kr
1

1,

kr
1

2, kr
1
3, kr14. See reference [4] for these

transformations.

As we use four different blocks B0, B1, B2, B3

during encryption, kr
1

1, kr
1
2, kr

1
3, kr

1
4 are used as

the respective keys for these blocks.

Now decompose the plaintext C
0
 into four blocks

B0, B1, B2, and B3. Start the process of

decomposition beginning with (Bdi)
th

 block.

Collect the bits from C
0
 in sequential manner and

place them in Bdi in respective order.The number of

bits collected into the block Bdi is equal to the block

size denoted by b
1

di. Similarly, we get the other

three variable size blocks of this round. See

algorithm (IV.e) for key based random

decomposition; fig 01and fig 02.

Let the blocks obtained after key based random

decomposition be represented as B
1
0, B

1
1, B

1
2, and

B
1
3. Therefore, Let

Dr. K. Anup Kumar Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 4, (Part -I) April 2018, pp.90-100

www.ijera.com DOI: 10.9790/9622-08040190100 94 | P a g e

B
m+1

i = C
m

 Here, ‗m‘ indicates the round after

which decomposition is performed, ‗i‘ indicates the

block number;

i = 0 to 3 and C
m

 indicates key based random

decomposition.

Encryption in the n
th

 round is done in the following

way.

c
n

i = Fkr
n
i+1 (B

n
i) ;

i = 0 to 3 indicates i
th

 block.

‗F‘ indicates encryption and kr
n

i+1 indicates the

round key for ‗n
th

‘ round on i
th

 block and n = m+1.

Next, we perform the process of interlacing after

encryption.

After encryption in n
th

 round, we get cipher text as

four blocks c
n

0, c
n
1, c

n
2, c

n
3.

Combine the four blocks c
n
0, c

n
1, c

n
2, c

n
3 to get the 256

bit

intermediate block cipher.

C
n
 = > c

n
i < ;

Here i = 0 to 3 , indicates the cipher block. n = 1 to

16.

Indicates the round after which interlacing is

performed.

> c
n

i <, represents interlacing. See Fig 01, Fig 02

and algorithm (IV.c) for interlacing during

encryption. Similarly, by following the steps of Fig

01, Fig 02 and algorithm (IV.a). We get the final

cipher C
16

 after encryption of 16 rounds. Similarly,

during decryption, the receiver follows the steps of

Fig 03, fig 04 and algorithm (IV.b) for sixteen

rounds to get back the original plaintext.

IV. ALGORITHMS

a) Algorithm for Encryption.

Let K be an array containing 16 integers.

Let di be an array containing 16 numbers. Such that,

di = Ki mod 4 such that, di = { 0, 1, 2, 3}.

BEGIN

C
0
 = P // initialize 256 bits plaintext

for i = 1 to 16

{

for j = 1 to 4

{ B
i -1

 j -1 = C
i -1
// Key based random

}
 Decomposition

for j = 0 to 3

{ C
j

= Fkr
i
 j +1 (B

i -1
j) // Encryption

}

for j = 0 to 3

// Interlace { C
i

= > C
j
 <

}
}

END

b) Algorithm for Decryption

C
16

 = cipher text // initialize 256 bits cipher text

BEGIN

for i = 16 to 1

{

for j = 0 to 3

{ B
i

j = < C
i
 > } // Decompose

for j = 0 to 3

{ C
i

j = Fkr
i
j+1 (B

i
 j) // Decryption

}

for j = 0 to 3

{ Ci -1 = C
j
// Key based random Interlacing.

}
}

END

c) Algorithm for Interlacing during

Encryption

> C
i
 j <

BEGIN

p = 0

s = di

While (s is not equal to j)

{ p = p + b
i
s

s = (s + 1) mod 4

}

for n = 1 to b
i
j

{ C
i
 [p + n] = C

i
 j [n]

}

END

d) Algorithm for Decomposition during

Decryption

< C
i
 > // during i

th
 round

BEGIN

Dr. K. Anup Kumar Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 4, (Part -I) April 2018, pp.90-100

www.ijera.com DOI: 10.9790/9622-08040190100 95 | P a g e

p = 0

for j = 0 to 3

{

for n = 1 to b
i
j

{ B
i
 j [n] = C

i
[p + n]

}
p = p+n

END

e) Algorithm for Key based random

Decomposition during Encryption.

 C
i -1

 // during i
th

 round

BEGIN

t = 0 p = 0 s = di

While (t is not equal to j) {p=p + b
i
s

s = (s + 1) mod 4

}

j = di

if ((Ki mod 2) = = 0) { order = 0

}

else

{ order = 1

} // 1: R L and 0: L R order

for m = 1 to 4

{

if (order = = 0)

{ for n = 1 to b
i
j

 { B
i
j [n] = C

i-1
[p + n]

 }
p = p + n

j = (j + 1) mod 4

}

else

{ for n = b
i
j to 1

{

B
i
j [n] = C

i-1
[p + n]

}

p = p + b
i
j

j = (j + 1) mod 4

}

}

END

f) Algorithm for Key based random

Interlacing during Decryption

 C
j
 // during i

th
 round

BEGIN

p = 0

s = di

While (s is not equal to j)

{ p = p + b
i
s

s = (s + 1) mod 4

}

if ((Ki mod 2) = = 0)

{ order = 0

}

else

{ order = 1

} // 1: R L and 0: L R order

if (order = = 0)

{

for n = 1 to b
i
j

{ C
i -1

 [p + n] = C
i
j[n]

}

}

else

{ for n = 1 to b
i
j

{ C
i -1

[p + b
i
j – (n-1)]= C

i
j[n]

}

}

END

g) Algorithm for Key generation of Variable

sizes for respective blocks in different

rounds.

kr
i
j

Dr. K. Anup Kumar Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 4, (Part -I) April 2018, pp.90-100

www.ijera.com DOI: 10.9790/9622-08040190100 96 | P a g e

BEGIN

for i = 1 to 16

{ p = 1

Left shift (k
i-1

)

k
i
<=Permute (k

i-1
, di) // permutations used are

published in our previous papers. see reference[4]

for j = 1 to 4

{ for n = 1 to (b
i
j) / 2

{

kr
i
j[n] = k[p]

p = p + 1

}

}

}

END

h) Algorithm for generating Variable block sizes

for corresponding rounds.

Let b
0
 = {32, 48, 80, 96} be the initial order of

block sizes. By permuting this block size order in

respective rounds, we get the random block size

orders for corresponding sixteen rounds.

Let the order of variable block sizes obtained

through this process be,

b
1
 = {32,48,80,96}, b

2
 = {96,80,48,32}, b

3
 =

{80,32,48,96}, b
4
 = {96,48,32,80}, b

5
 = {32,96,80,48},

b
6
 = {48,80,96,32}, b

7
 = {80,32,96,48}, b

8
 =

{48,96,32,80}, b
9
 = {32,96,48,80}, b

10
=

{96,32,80,48},b
11

= {32,48,96,80}, b
12

={48,32,80,96},

b
13

= {80,96,48,32},b
14

= {48,32,96,80},

b
15

={32,48,80,96}, b
16

= {80, 32, 48, 96}.

BEGIN

for i = 1 to 16

{

b
i
 <= Permute (b

i-1
, di)

}

// permutations used are published in our previous

papers. see reference[4]

Dr. K. Anup Kumar Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 4, (Part -I) April 2018, pp.90-100

www.ijera.com DOI: 10.9790/9622-08040190100 97 | P a g e

V. ILLUSTRATION OF CIPHER

Consider the plaintext

P = {transfer energy from one to many}.

Let the key be K = {Do u like it sir}.

Let the 8 bit binary representation of plaintext P be

011101000111001001100001011011100111001101

100110

011001010111001000100000011001010110111001

100101

011100100110011101111001001000000110011001

110010

011011110110110100100000011011110110111001

100101

001000000111010001101111001000000110110101

100001 0110111001111001.

Let the 8 bit binary representation of key ‗k‘ be

010001000110111100100000011101010010000001

101100

011010010110101101100101001000000110100101

110100 00100000011100110110100101110010.

Initialize the plaintext C
0
 = P.

Let di =Ki mod 4

We get d1 = 0, this indicates that key based random

decomposition begins with B
1

0 in first round. As K1

is an even number, the order for B
1
0 is from left to

right, order for B
1

1 is from right to left, and order for

B
1
2 is from left to right and right to left for B

1
3.

Let the initial order of variable block sizes be

denoted as b
0
 = { 32, 48, 80, 96 }.

Now permute the order of variable block sizes in

first round. Let the new order of variable block sizes

in first round be denoted as b
1
 = {96, 32, 48, 80}.

As we use four different blocks B0, B1, B2, B3 of

variable block sizes for encryption, B0 contains 96

bits, B1 contains 32 bits, B2 contains 48 bits, and B3

contains 80 bits. Use algorithm (IV.e) to get these

four blocks. Also see Fig.01.

B
1
0={0111010001110010011000010110111001110

011011

001100110010101110010001000000110010101101

110011 00101}

B
1
1 = {00000100100111101110011001001110}

B
1
2={0110011001110010011011110110110100100

000011

01111}

Dr. K. Anup Kumar Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 4, (Part -I) April 2018, pp.90-100

www.ijera.com DOI: 10.9790/9622-08040190100 98 | P a g e

B
1
3={1001111001110110100001101011011000000

100111

1011000101110000001001010011001110110}

Now, Permute the bits in key ‗k‘ by using the

random key based permutations published in our

previous paper. See reference [4].

Let the key ‗ k‘ be divided into four blocks of

variable sizes used as round keys kr
1

1, kr
1

2, kr
1

3,

kr
1

4 for blocks B0, B1, B2, B3 respectively. See

algorithm (IV.g).

Now, we encrypt these four blocks with their

respective round keys with the help of round

function ‗F‘. Key based random permutations and

key based random substitutions used in a round are

similar to the one we derived in our previous paper

published. See reference [4].

Let the corresponding cipher blocks obtained after first

round

be c
1
0, c

1
1, c

1
2, c

1
3.

c
1

0={01100110011001010111001000100000011001

011000

010100010101101101101100100001000001000001

001001 1110}

c
1

1 = {11100110010011101010011001110110}

c
1

2={1000101000101011110100001001001000100100

0000 0110}\

c
1

3={0010000001110100000101010001111110110110

0000 010011110110101010000001010001110000}

We get the 256 bit cipher block C
1
 after first round

by applying interlacing described in Fig.01and

Fig.02. See algorithm (IV.c).

C
1
={01100110011001010111001000100000011001

011000

010100010101101101101100100001000001000001

001001

111011100110010011101010011001110110100010

100010

101111010000100100100010010000000110001000

000111

010000010101000111111011011000000100111101

101010 10000001010001110000.

Similarly, we continue the encryption process up to

16 rounds and we get the final cipher as

C
16

={1000111100100011101111000010010011100

111101

001000111011111000111101100111101011001011

010111

100011110110011010111010110110101110101110

011000

100001011011110011010011001100011011100001

010011

111101000011101000110110010001100011000101

101100 000110000011001100111}

In order to decrypt the cipher text, we follow the

transformations described in Fig.03 and Fig.04 for

sixteen rounds and use algorithm (IV.b). Thus, we

get back the required original plaintext.

VI. CRYPTANALYSIS

To asses the strength of our encryption algorithms,

we analyze the following aspects.

 Why brute force attack is not possible on our

cipher?

 Why known plaintext attack is not possible

on our cipher? And how can variable block

sizes counter attack known plaintext attack?

 How variable block can sizes counter attack

brute force attack?

 How is the avalanche effect when variable

block sizes are introduced in feistel cipher?

a) Brute force attack

According to brute force attack, if key

space is small, then one can test all possible

combinations of keys on encryption-decryption

algorithms in a definite time which is acceptable to

break the cipher. Therefore, key space should be

large enough so that testing of all possible key

combinations will take lot of time which is not

acceptable in breaking a cipher.

As we have used 128 bit key in each round, the key

space is

2
128

 ≈ (2
10

)
13

 ≈ (10
3
)
13

 ≈ 10
39

Let us assume testing of one key on a

computer takes 1 nano second. Then testing of 10
39

keys will take [(10
39

) / (10
9
 x 60 x 60 x 24 x 365)

] years. Since one cannot spend so much time in

breaking the cipher, brute force attack is not possible

on our algorithm.

Dr. K. Anup Kumar Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 4, (Part -I) April 2018, pp.90-100

www.ijera.com DOI: 10.9790/9622-08040190100 99 | P a g e

b) Known Plaintext attack
According to known plaintext attack, if

enough number of plaintext – cipher text pairs are

available then, one can understand the transformation

used in developing the cipher. Our classical feistel

cipher with fixed block sizes is prone to known

plaintext attack due to the linearity that exists in

transformations during encryption. Since we have used

variable block sizes in every round, we have restricted

the bits to get into different random blocks of different

sizes basing upon the key and the round. Through this

process, we have introduced a high degree of

nonlinearity in our encryption algorithm. Due to this,

more confusion and diffusion is added in the cipher.

Thus, known plaintext attack is not possible on our

algorithm as an attacker is clueless about the number of

bits used in different blocks in different rounds.

Therefore, bits permuted, XOR‘ed and entering into

substitution boxes are not clear to the crypt analyzer.

c) How variable block sizes counter attack the

brute force attack?

During encryption, in every round, we have used the

variable block sizes b
i
 = {32, 48, 80, 96 } that

means, in every round 4!= 24 different block size

orders are possible. Similarly, in two rounds 4! x 4!

= 24 x 24 = 576 different block size orders are

possible. Therefore, in sixteen rounds, the number of

block size orders that are possible is

4! x 4! x 4!............. x 4!(sixteen times)

This is equal to

12116574790945106558976 ≈ (10)
22

Therefore, if one follows the brute force attack and

tries to guess the block sizes in various rounds. They

have to test (10)
22

 possibilities. If testing takes 1

nano second for a single possibility on a computer,

one would spend time equal to (10)
22

 / [10
9
 * 60 *

60 * 24 * 365] years, to understand the exact block

size order. Therefore brute force attack is not

possible in this case also.

d) Avalanche effect

According to avalanche effect, for a plaintext P, if

C
1
 is an equivalent cipher then by keeping the key

constant, if there is one bit change in plaintext P and

we get an equivalent cipher as C
2
. Then the strength

of the cipher is good if C
1
 and C

2
 differ by around

50% of the bits. Similarly, the algorithm can be

tested for a one bit change in key. Let the plaintext

be

P = {transfer energy from one to many}.

Let the key K = {Do u like it sir}

Then by following the process of encryption

described in algorithm () and in Fig 01 and Fig 02.

We get the following cipher after 16 rounds as

1C
16

={100011110010001110111100001001001110

011110

100100011101111100011110110011110101100101

101011

110001111011001101011101011011010111010111

001100

010000101101111001101001100110001101110000

101001

111110100001110100011011001000110001100010

110110

0000110000011001100111}

Now, Let us change the plaintext by one bit. This

can be done by changing the first letter in plaintext

from ‗t‘ to ‗s‘ as the ASCII values of ‗t‘ and ‗s‘

differ by one. Keep the key as constant.

We get the new cipher text for this new plaintext

after 16 rounds of encryption as

2C
16

={001011001001001111110111101011111100

101110

100001110111111010101010111010011111001100

100100

110001111101111011110011110000101010101000

010110

010010011011001010011001101001110111011110

111111

011111101000100100011001110011101001100010

010000

0101001110001011100110}

From 1C
16

 and 2C
16

 we find that 120 bits differ out of

256 bits. Since around 50% of the bits differ in

corresponding ciphers for a one bit change in plaintext;

we say that the strength of the cipher is good when

variable block sizes are used.

Now let us keep the plaintext as constant and change

the key by one bit. This can be accomplished by

changing the key character from ‗D‘ to ‗E‘ as their

ASCII values differ by one bit. Let the

corresponding cipher obtained after 16 rounds of

encryption be

3C
16

={110000000000010101000011110110000100

010001

Dr. K. Anup Kumar Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 8, Issue 4, (Part -I) April 2018, pp.90-100

www.ijera.com DOI: 10.9790/9622-08040190100 100 | P a g e

110111111011001001001110111100000110010011

111111

111001100100111111101000101000110001101001

111010

101011000011101001010011001101011010000000

111100

101101011101100111001101010111000100101100

100111

0110001100001011101101}

From 1C
16

 and 3C
16

, we readily notice that

146 bits differ out of 256 bits. Therefore for a

change in one bit in a key, there is a difference of

around 50% of bits in the corresponding ciphers.

Thus, the avalanche effect is good for our ciphers

when variable block sizes are used in different

rounds of encryption-decryption algorithms.

VII.CONCLUSION

In conventional feistel cipher, we observed

that known plaintext attack is possible because a set

of bits will undergo into similar transformations and

enter into same substitution box in each round. Due

to this linearity, cryptanalysis becomes easy. In our

recent research work, see reference [4, 5], we proved

how ―random key based permutations and

substitutions‖ and ―key based random interlacing

and decomposition‖ bring variable transformations

in each round. In the present paper, we have used the

strategy of ―key based variable block sizes in

different rounds‖ to strengthen the cipher further.

This new strategy helps us in making the

cryptanalysis more difficult and impossible. The

results of avalanche effect discussed in this paper

indicates that the ―key based variable block sizes‖

introduced to counter attack the known plaintext

attack provides good strength to the cipher.

ACKNOWLEDGMENT

The author is very thankful to the

management of Sreenidhi Institute of Science and

Technology, for their support and encouragement

given during this research work.

REFERENCES
Books:

[1]. William Stallings, ―Cryptography and

Network Security: Principles & Practices‖,

Third edition, 2003, Chapter 2 & 3.

Journals:
[2]. ―Avalanche Characteristics of Substitutions –

permutation Encryption Networks‖ Tavares S.

Heys H. IEEE Transactions on Computers 44

(9): 1131 – 1139, 1995.
"http://ieeexplore.ieee.org/Xplore/login.jsp?url=

http%3A%2F%2Fieeexplore.ieee.org%2Fiel1%

2F12%2F9728%2F00464391.pdf%3Farnumber

%3D464391&authDecision=-203"

[3]. Shakir M. Hussain and Naim M. Ajilouni,

―Key based random permutation‖, ―Journal of

Computer Science 2(5): 419 – 421, 2006.

ISSN 1549 -3636.

"http://www.scipub.org/fulltext/jcs/jcs25419-

421.pdf"

[4]. K. Anup Kumar and S. Udaya Kumar,

―Block cipher using key based random

permutations and key based random

substitutions‖, ―International Journal Of

Computer Science and Network Security‖,

Seoul, South Korea. ISSN: 738-7906. Vol.

08, No. 3, March 2008. pp. 267-277.
"http://paper.ijcsns.org/07_book/20080
3/20080339.pdf"

[5]. K. Anup Kumar and V.U.K. Sastry,

―Modified Feistel cipher involving Interlacing

and Decomposition‖, ―International Journal of

Computer and Network Security‖, Austria,

Vienna. ISSN Print: 2076 – 2739; ISSN

online: 2076 – 9199. Vol. 1, No. 2, November

2009. pp. 77-

82."http://ijcns.org/papers/Vol.1_No.2/091112.pdf

"

[6]. K. Anup Kumar and V.U.K. Sastry, ―Block

cipher involving key based random

Interlacing and key based random

Decomposition‖, ―Journal of Computer

Science‖, NewYork. , ISSN Print: 1549 –

3636; Vol.6, No.2, 2010. pp.133-140

http://www.scipub.org/fulltext/jcs/jcs62133-

140.pdf

Dr. K. Anup Kumar"A Novel Method of Encryption Using Variable Block Sizes in

Different Rounds."InternationalJournal of Engineering Research and Applications

(IJERA) , vol. 8, no. 4, 2018, pp. 90-100

