RESEARCH ARTICLE

OPEN ACCESS

A Novel Method of Encryption Using Variable Block Sizes in Different Rounds.

Dr. K. Anup Kumar

Professor, Department of Computer Science and Engineering, Sreenidhi Institute of Science and Technology, Ghatkesar, Hyderabad, 501301, Telangana, India.

ABSTRACT

we know that the strength of any cipher depends on the degree of confusion and diffusion induced in it. Since most of the transformations used for this purpose are well known to every one, it gives scope for cryptanalysis. This is mainly because of the block sizes remaining constant in all the rounds; which will introduce linearity in the cipher. This helps the crypt analyzer in breaking the cipher. Therefore, we have investigated on a new technique and found that, during encryption the block cipher sizes can be varied in different rounds depending on round key. Such that, a crypt analyzer cannot analyze the transformations used due to variable block sizes being unknown in different rounds. The cryptanalysis carried out in this regard shows that the cipher obtained through this process is a strong one and cannot be broken by any crypt analytic attack.

Index Terms — Cipher Text, Decryption, Encryption, Key, Permutation, Plaintext, Substitution, Variable block size.

Date of Submission: 31-03-2018	Date of acceptance: 16-04-2018

I. INTRODUCTION

In the survey of literature, majority of block ciphers are based on the feistel cipher (Tavares and Heys, 1995; Stallings, 2003). In this process, bits of plaintext undergo a series of permutations, substitutions and exclusive OR operations. This creates confusion and diffusion in cipher which is achieved by the classical round function F of feistel structure.

In our recent papers published, see references [4, 5, 6], we have discussed how key based random permutations, key based random substitutions, interlacing, and decomposition helps us in generating the feistel cipher of good strength. We have used these features in the current paper also. In the present research work, our interest is to develop a stronger version of encryption technique by which one can counter attack the crypt analyzer. This is accomplished by using a new technique called key based variable block sizes in different rounds. As feistel cipher uses same number of bits in a block in all the 16 rounds, there is a scope for cryptanalysis. Because, one can analyze on "how many bits are permuted? XORed? and which set of bits are going into which substitution box etc". Due to key based variable block sizes in different rounds. A crypt analyzer has no information on "what is the block size used in each round?". Hence he cannot decode the transformations applied during encryption.

II. USING KEY BASED VARIABLE BLOCK SIZES IN DIFFERENT ROUNDS

Let 'K' be the key containing 16 integers. Let $d_i = K_i \mod 4$. Such that $d_i \in \{0, 1, 2, 3\}$. These values of d_i help us in permuting the block sizes in respective rounds.

Let us consider a block of plaintext 'P' of 256 bits. Let $C^0 = P$ be the initial plaintext. Let $b^i = \{32, 48, 80, 96\}$ be the different block sizes used in ith round. Such that, in every ith round before encryption, the 256 bit block C^{i-1} is decomposed into 4 blocks B^i_{0} , B^i_{1} , B^i_{2} and B^i_{3} which are encrypted separately. In every round, the block size of B^i_n can be varied based on the corresponding round key value.

Illustration of variable block sizes

Let C^{i -1} be the 256 bit intermediate cipher obtained as the input to the ith round encryption process.

Such that $C^{i-1} = \{ c_1 c_2 c_3 \dots c_{255} c_{256} \}$

Let $b^{i-1} = \{ 32, 48, 80, 96 \}$ be the order of the block sizes used in (i -1)th round. Such that, B^{i-1}_{0} used 32 bits, B^{i-1}_{1} used 48 bits,

 B^{i-1}_{2} used 80 bits and B^{i-1}_{3} used 96 bits for encryption respectively. Let d_i be the value obtained

Dr. K. Anup Kumar Int. Journal of Engineering Research and Application www.ijera.com ISSN: 2248-9622, Vol. 8, Issue 4, (Part -I) April 2018, pp.90-100

from the key for the ith round. Now using the value d_i , permute the block sizes in b_{i-1} to get the new block sizes order bⁱ to be used in ith round. See algorithm (*IV. h*).

Let the b^{i} obtained through this process be $b^{i} = \{96,$ 80, 48, 32 }. Therefore, we notice that in (i -1)th round B_{0}^{i-1} block had 32 bits for encryption

whereas; in i^{th} round B_0^i block has 92 bits for encryption. Similarly, block sizes of B_1^i , B_2^i and B_3^i will also vary in ith round when compared with block sizes of B_1^{i-1} , B_2^{i-1} and B_3^{i-1} of the previous (i -1)th round. Therefore, through this process, we are actually introducing greater confusion and nonlinearity in the process of encryption which enables us in counter attacking the crypt analyzer.

Let $K_{i - 1} = 56$; $d = K_{i - 1} = \{32, 48, 80, 96\}; m = K_{i - 1}\%2$; order for d;th block=left to right if m=0 otherwise from right to left; order for next block if from right to left and vise versa for remaining blocks in cyclic fashion.

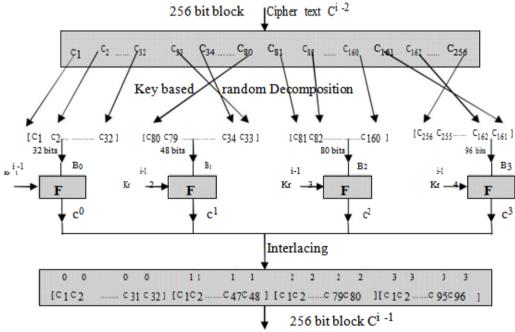
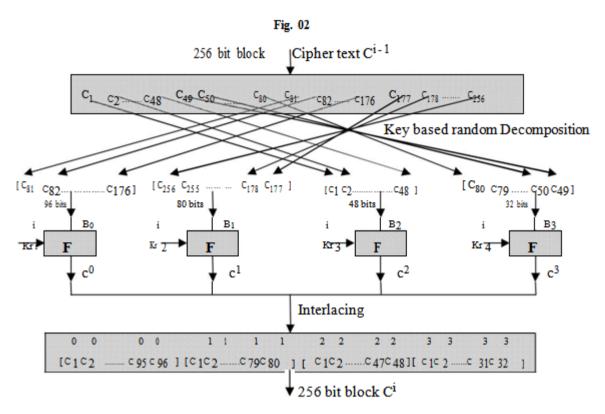


Fig.01

Let $K_i = 58$; $d_i = K_i \% 4 = 2$; $b^i = \{96, 80, 48, 32\}$; $m = K_i \% 2$; order

for dith block= left to right if m=0 otherwise from right to left;

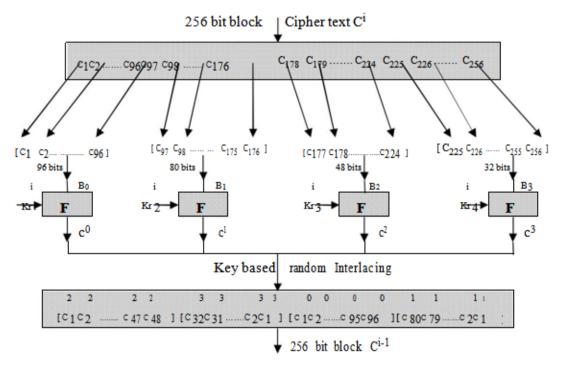
order for next block is from right to left and vise versa for remaining blocks in cyclic fashion.



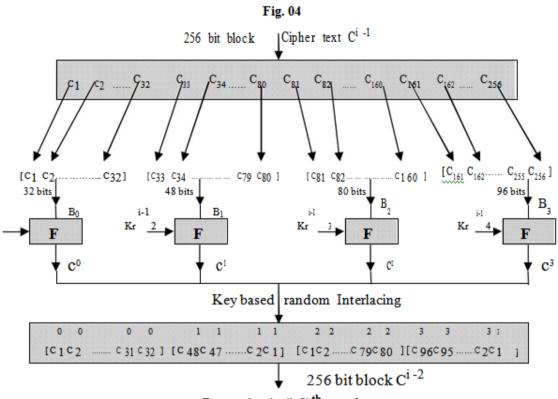
Variable block sizes in two consecutive rounds during encryption.

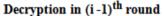
The corresponding variable block sizes and its related operations during decryption in ith round and (i -1)th round is demonstrated in the following diagrams.

Fig.03



Decryption in ith round





III. DEVELOPMENT OF CIPHER

Let us consider a block of plaintext 'P' consisting of 32 characters. By representing each character with 8 bits, we get a block of plaintext of 256 bits and denote them as C^0 .

Let 'K' be the key containing 16 integers. Then the 8 bit binary equivalent of these integers will give us a block of 128 bit key represented as 'k'.

Let $b^0 = \{32, 48, 80, 96\}$ be the initial order of block sizes.

Let $d_i = K_i \mod 4$.

Using the algorithm (IV.h). Permute b⁰ to get the new order of block sizes to be used in respective rounds and denote them as $b^1 b^2 b^3 \dots b^{16}$. Next, generate the respective round keys. Consider i^{th} round and let i = 1.

Then the first block key of round 1 contains b_{1}^{1} divided by 2 number of bits from 'k' and treat it as k1.

The second block key of round 1 contains b_{2}^{1} divided by 2, number of bits from 'k' and treat it as k₂.

Similarly, we get two more block keys of round one as ' k_3 ' and ' k_4 '.

By performing the transformation on k_1 , k_2 , k_3 and k₄ published in our previous paper, we get the final block keys of respective rounds. Treat them as kr_{1}^{1} , kr_{2}^{1} , kr_{3}^{1} , kr_{3}^{1} , kr_{4}^{1} . See reference [4] for these transformations.

As we use four different blocks B₀, B₁, B₂, B₃ during encryption, kr¹₁, kr¹₂, kr¹₃, kr¹₄ are used as the respective keys for these blocks.

Now decompose the plaintext C^0 into four blocks B_0 , B_1 , B_2 , and B_3 . Start the process of decomposition beginning with (B_{di}) th block. Collect the bits from C^0 in sequential manner and place them in B_{di} in respective order. The number of bits collected into the block B_{di} is equal to the block size denoted by b¹_{di}. Similarly, we get the other three variable size blocks of this round. See based algorithm (IV.e)for key random decomposition; fig 01and fig 02.

Let the blocks obtained after key based random decomposition be represented as B_{0}^{1} , B_{1}^{1} , B_{2}^{1} , and B¹₃. Therefore, Let

Dr. K. Anup Kumar Int. Journal of Engineering Research and Application www.ijera.com ISSN: 2248-9622, Vol. 8, Issue 4, (Part -I) April 2018, pp.90-100

 $B^{m+1}_{i} = \leftarrow C^{m} \rightarrow$ Here, 'm' indicates the round after which decomposition is performed, 'i' indicates the block number;

i = 0 to 3 and $\leftarrow C^m \rightarrow$ indicates key based random decomposition.

Encryption in the nth round is done in the following way.

 $c_{i}^{n} = F_{kr_{i+1}}^{n} (B_{i}^{n});$

i = 0 to 3 indicates i^{th} block.

'F' indicates encryption and kr_{i+1}^{n} indicates the round key for 'nth, round on ith block and n = m+1. Next, we perform the process of interlacing after encryption.

After encryption in n^{th} round, we get cipher text as four blocks c_{0}^{n} , c_{1}^{n} , c_{2}^{n} , c_{3}^{n} .

Combine the four blocks c_{0}^{n} , c_{1}^{n} , c_{2}^{n} , c_{3}^{n} to get the 256 bit

intermediate block cipher.

 $C^n = > c^n_i < ;$

Here i = 0 to 3, indicates the cipher block. n = 1 to 16.

Indicates the round after which interlacing is performed.

 $> c_{i}^{n} <$, represents interlacing. See Fig 01, Fig 02 and algorithm (*IV.c*) for interlacing during encryption. Similarly, by following the steps of Fig 01, Fig 02 and algorithm (*IV.a*). We get the final cipher C¹⁶ after encryption of 16 rounds. Similarly, during decryption, the receiver follows the steps of Fig 03, fig 04 and algorithm (*IV.b*) for sixteen rounds to get back the original plaintext.

IV. ALGORITHMS

a) Algorithm for Encryption.

Let K be an array containing 16 integers.

Let d_i be an array containing 16 numbers. Such that, $d_i = K_i \mod 4$ such that, $d_i = \{0, 1, 2, 3\}$.

BEGIN $C^0 = P$ // initialize 256 bits plaintext for i = 1 to 16 { for j = 1 to 4 { $B^{i-1}_{j-1} = \leftarrow C^{i-1} \rightarrow$ // Key based random Decomposition } for j = 0 to 3 { $c^j = F_{kr j+1}^{i} (B^{i-1}_j)$ // Encryption }

for j = 0 to 3
{
$$C^{i} \Rightarrow c^{j} < //$$
 Interlace
}

END

b) Algorithm for Decryption

 $C^{16} = \text{cipher text} \qquad // \text{ initialize 256 bits cipher text}$ BEGIN for i = 16 to 1 { for j = 0 to 3 { Bⁱ j = < Cⁱ > } // Decompose

for j = 0 to 3 { $c^{i}j = F_{krj+1}^{i}(B^{i}j)$ // Decryption } for j = 0 to 3 { $C^{i-1} = \Rightarrow c^{j} \leftarrow$ // Key based random Interlacing. }

END

c) Algorithm for Interlacing during Encryption

$$> c^{i}_{j} <$$

$$\begin{split} p &= 0\\ s &= d_i\\ \text{While (s is not equal to j)}\\ \{ p &= p + b^i_s\\ s &= (s+1) \text{ mod } 4 \end{split}$$

}

for
$$n = 1$$
 to b_j^i
{ $C^i [p+n] = c_j^i [n]$

}

END

d) Algorithm for Decomposition during Decryption < Cⁱ > // during ith round

BEGIN

Dr. K. Anup Kumar Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 8, Issue 4, (Part -I) April 2018, pp.90-100 BEGIN // permutations used are published in our

for i = 1 to 16

{ p = 1Left shift (k^{i-1})

 k^{i} <=Permute (k^{i-1} , d_{i}) // permutations used are published in our previous papers. see reference[4]

for j = 1 to 4 { for n = 1 to (b^{i}_{j}) / 2 { $kr^{i}_{j}[n] = k[p]$ p = p + 1} }

END

h) Algorithm for generating Variable block sizes for corresponding rounds.

Let $b^0 = \{32, 48, 80, 96\}$ be the initial order of block sizes. By permuting this block size order in respective rounds, we get the random block size orders for corresponding sixteen rounds.

Let the order of variable block sizes obtained through this process be,

BEGIN

```
for i = 1 to 16
{
b^{i} \le Permute (b^{i-1}, d_{i})
```

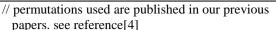
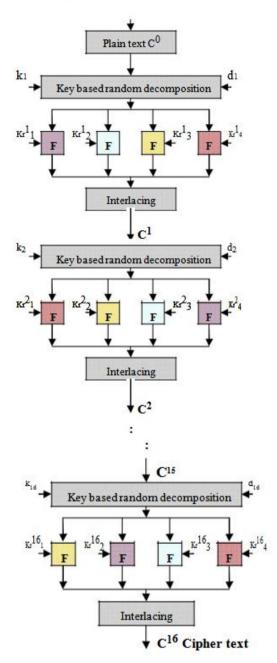
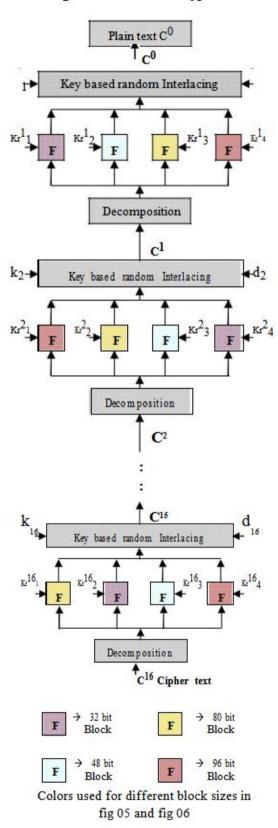


Fig 05. Process of Encryption



}

Fig 06. Process of Decryption



V. ILLUSTRATION OF CIPHER

Consider the plaintext

 $P = \{$ transfer energy from one to many $\}.$

Let the key be $K = \{Do u | ike it sir\}.$

Let the 8 bit binary representation of plaintext P be 011101000111001001100001011011100110111001101 1001101 100110

011100100110011101111001001000000110011001 110010

011011110110110100100000011011110110111001 100101

Initialize the plaintext $C^0 = P$. Let $d_i = K_i \mod 4$

We get $d_1 = 0$, this indicates that key based random decomposition begins with B_0^1 in first round. As K_1 is an even number, the order for B_0^1 is from left to right, order for B_1^1 is from right to left, and order for B_2^1 is from left to right and right to left for B_3^1 .

Let the initial order of variable block sizes be denoted as $b^0 = \{32, 48, 80, 96\}$.

Now permute the order of variable block sizes in first round. Let the new order of variable block sizes in first round be denoted as $b^1 = \{96, 32, 48, 80\}$.

As we use four different blocks B_0 , B_1 , B_2 , B_3 of variable block sizes for encryption, B_0 contains 96 bits, B_1 contains 32 bits, B_2 contains 48 bits, and B_3 contains 80 bits. Use algorithm (*IV.e*) to get these four blocks. Also see Fig.01.

001100110010101110010001000000110010101101 110011 00101}

 $\begin{array}{l} B^{1}_{1} = \{00000100100111101110011001001110\} \\ B^{1}_{2} = \{0110011001110010011011110110110100100 \\ 000011 \end{array}$

```
01111}
```

Dr. K. Anup Kumar Int. Journal of Engineering Research and Application www.ijera.com ISSN: 2248-9622, Vol. 8, Issue 4, (Part -I) April 2018, pp.90-100

$B_{3}^{1} = \{1001111001110110100001101011011000000$	010111
100111	10001111011001101011101011
100111	

1011000101110000001001010011001110110}

Now, Permute the bits in key 'k' by using the random key based permutations published in our previous paper. See reference [4].

Let the key 'k' be divided into four blocks of variable sizes used as round keys kr_{1}^{1} , kr_{2}^{1} , kr_{3}^{1} , kr_{4}^{1} for blocks B₀, B₁, B₂, B₃ respectively. See algorithm (*IV.g*).

Now, we encrypt these four blocks with their respective round keys with the help of round function 'F'. Key based random permutations and key based random substitutions used in a round are similar to the one we derived in our previous paper published. See reference [4].

Let the corresponding cipher blocks obtained after first round

be $c_0^1, c_1^1, c_2^1, c_3^1$.

 $c^{1}_{0} = \{01100110011001010111001000100000011001 \\ 011000$

We get the 256 bit cipher block C^1 after first round by applying interlacing described in Fig.01and Fig.02. See algorithm (*IV.c*).

 $C^{1} = \{01100110011001010111001000100000011001 \\ 011000$

1110111001100100111010011001110110100010 100010

 $10111101000010010010010010000000110001000\\000111$

Similarly, we continue the encryption process up to 16 rounds and we get the final cipher as

 $C^{16} = \{1000111100100011101111000010010010011100 \\ 111101$

010011

In order to decrypt the cipher text, we follow the transformations described in Fig.03 and Fig.04 for sixteen rounds and use algorithm (*IV.b*). Thus, we get back the required original plaintext.

VI. CRYPTANALYSIS

To asses the strength of our encryption algorithms, we analyze the following aspects.

- ✓ Why brute force attack is not possible on our cipher?
- Why known plaintext attack is not possible on our cipher? And how can variable block sizes counter attack known plaintext attack?
- How variable block can sizes counter attack brute force attack?
- How is the avalanche effect when variable block sizes are introduced in feistel cipher?

a) Brute force attack

According to brute force attack, if key space is small, then one can test all possible combinations of keys on encryption-decryption algorithms in a definite time which is acceptable to break the cipher. Therefore, key space should be large enough so that testing of all possible key combinations will take lot of time which is not acceptable in breaking a cipher.

As we have used 128 bit key in each round, the key space is

$$2^{128} \approx (2^{10})^{13} \approx (10^3)^{13} \approx 10^{39}$$

Let us assume testing of one key on a computer takes 1 nano second. Then testing of 10^{39} keys will take [(10^{39})/(10^{9} x 60 x 60 x 24 x 365)] years. Since one cannot spend so much time in breaking the cipher, brute force attack is not possible on our algorithm.

www.ijera.com

b) Known Plaintext attack

According to known plaintext attack, if enough number of plaintext - cipher text pairs are available then, one can understand the transformation used in developing the cipher. Our classical feistel cipher with fixed block sizes is prone to known plaintext attack due to the linearity that exists in transformations during encryption. Since we have used variable block sizes in every round, we have restricted the bits to get into different random blocks of different sizes basing upon the key and the round. Through this process, we have introduced a high degree of nonlinearity in our encryption algorithm. Due to this, more confusion and diffusion is added in the cipher. Thus, known plaintext attack is not possible on our algorithm as an attacker is clueless about the number of bits used in different blocks in different rounds. Therefore, bits permuted, XOR'ed and entering into substitution boxes are not clear to the crypt analyzer.

c) How variable block sizes counter attack the brute force attack?

During encryption, in every round, we have used the variable block sizes $b^i = \{32, 48, 80, 96\}$ that means, in every round 4!= 24 different block size orders are possible. Similarly, in two rounds $4! \times 4! = 24 \times 24 = 576$ different block size orders are possible. Therefore, in sixteen rounds, the number of block size orders that are possible is

4! x 4! x 4!.... x 4!(sixteen times)

This is equal to

 $12116574790945106558976 \approx (10)^{22}$

Therefore, if one follows the brute force attack and tries to guess the block sizes in various rounds. They have to test $(10)^{22}$ possibilities. If testing takes 1 nano second for a single possibility on a computer, one would spend time equal to $(10)^{22} / [10^9 * 60 * 60 * 24 * 365]$ years, to understand the exact block size order. Therefore brute force attack is not possible in this case also.

d) Avalanche effect

According to avalanche effect, for a plaintext P, if C^1 is an equivalent cipher then by keeping the key constant, if there is one bit change in plaintext P and we get an equivalent cipher as C^2 . Then the strength of the cipher is good if C^1 and C^2 differ by around 50% of the bits. Similarly, the algorithm can be tested for a one bit change in key. Let the plaintext be

 $P = \{$ transfer energy from one to many $\}.$

Let the key $K = \{Do u | ike it sir\}$

Then by following the process of encryption described in algorithm () and in Fig 01 and Fig 02. We get the following cipher after 16 rounds as

 ${}_{1}C^{16} = \{100011110010001110111100001001001110 011110$

0000110000011001100111}

Now, Let us change the plaintext by one bit. This can be done by changing the first letter in plaintext from 't' to 's' as the ASCII values of 't' and 's' differ by one. Keep the key as constant.

We get the new cipher text for this new plaintext after 16 rounds of encryption as

 $_{2}C^{16} = \{001011001001001111110111101011111100 \\ 101110$

0111111010001001000110011100111001100010 010000

0101001110001011100110}

From ${}_{1}C^{16}$ and ${}_{2}C^{16}$ we find that 120 bits differ out of 256 bits. Since around 50% of the bits differ in corresponding ciphers for a one bit change in plaintext; we say that the strength of the cipher is good when variable block sizes are used.

Now let us keep the plaintext as constant and change the key by one bit. This can be accomplished by changing the key character from 'D' to 'E' as their ASCII values differ by one bit. Let the corresponding cipher obtained after 16 rounds of encryption be

111010

0110001100001011101101}

From ${}_{1}C^{16}$ and ${}_{3}C^{16}$, we readily notice that 146 bits differ out of 256 bits. Therefore for a change in one bit in a key, there is a difference of around 50% of bits in the corresponding ciphers. Thus, the avalanche effect is good for our ciphers when variable block sizes are used in different rounds of encryption-decryption algorithms.

VII.CONCLUSION

In conventional feistel cipher, we observed that known plaintext attack is possible because a set of bits will undergo into similar transformations and enter into same substitution box in each round. Due to this linearity, cryptanalysis becomes easy. In our recent research work, see reference [4, 5], we proved how "random key based permutations and substitutions" and "key based random interlacing and decomposition" bring variable transformations in each round. In the present paper, we have used the strategy of "key based variable block sizes in different rounds" to strengthen the cipher further. This new strategy helps us in making the cryptanalysis more difficult and impossible. The results of avalanche effect discussed in this paper indicates that the "key based variable block sizes" introduced to counter attack the known plaintext attack provides good strength to the cipher.

ACKNOWLEDGMENT

The author is very thankful to the management of Sreenidhi Institute of Science and Technology, for their support and encouragement given during this research work.

REFERENCES

Books:

[1]. William Stallings, "Cryptography and Network Security: Principles & Practices", Third edition, 2003, Chapter 2 & 3.

Journals:

- [2]. "Avalanche Characteristics of Substitutions permutation Encryption Networks" Tavares S. Heys H. IEEE Transactions on Computers 44 (9): 1131 1139, 1995. "http://ieeexplore.ieee.org/Xplore/login.jsp?url= http%3A%2F%2Fieeexplore.ieee.org%2Fiel1% 2F12%2F9728%2F00464391.pdf%3Farnumber %3D464391&authDecision=-203"
- [3]. Shakir M. Hussain and Naim M. Ajilouni, "Key based random permutation", "Journal of Computer Science 2(5): 419 – 421, 2006. ISSN 1549 -3636. "http://www.scipub.org/fulltext/jcs/jcs25419-421.pdf"
- [4]. K. Anup Kumar and S. Udaya Kumar, "Block cipher using key based random permutations and key based random substitutions", "International Journal Of Computer Science and Network Security", Seoul, South Korea. ISSN: 738-7906. Vol. 08, No. 3, March 2008. pp. 267-277. "http://paper.ijcsns.org/07_book/20080 3/20080339.pdf"
- [5]. K. Anup Kumar and V.U.K. Sastry, "Modified Feistel cipher involving Interlacing and Decomposition", "International Journal of Computer and Network Security", Austria, Vienna. ISSN Print: 2076 – 2739; ISSN online: 2076 – 9199. Vol. 1, No. 2, November 2009. pp. 77-82."http://ijcns.org/papers/Vol.1_No.2/091112.pdf
- [6]. K. Anup Kumar and V.U.K. Sastry, "Block cipher involving kev based random Interlacing and key based random Decomposition", "Journal of Computer Science", NewYork. , ISSN Print: 1549 -3636; Vol.6, No.2, 2010. pp.133-140 http://www.scipub.org/fulltext/jcs/jcs62133-140.pdf

Dr. K. Anup Kumar"A Novel Method of Encryption Using Variable Block Sizes in Different Rounds."InternationalJournal of Engineering Research and Applications (IJERA), vol. 8, no. 4, 2018, pp. 90-100