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ABSTRACT: This paper shows the total transportation time problem regarding the time of the active 

transportation routes. If the multiple optimal solutions exist, it is possible to include other criteria as second 

level of criteria and find the corresponding solutions. Furthermore, if there is a multiple solution, again, the third 

objective can be optimized in lexicographic order. The methods of generation of the optimal solution in selected 

cases are developed. The numerical example is included. 
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I. INTRODUCTION 
The problem of minimization of the total 

transportation cost is commonly treated in literature 

as a basic single objective linear transportation 

model. The transportation time is relevant in a 

variety of real transportation problems, too. There 

are two types of problems regarding the 

transportation time 10]: (i) minimization of the 

total transportation time (linear function, as 

aggregate the products of transportation time and 

quantity), called minimization of 1st transportation 

time, and (ii) minimization of the transportation 

time of the longest active transporting route 

(nonlinear function), called minimization of 2nd 

transportation time or problem of Barasov2. 

For (ii), the total number of units on transportation 

operation with longest time is minimized in 4]. 

An 

importantvariantofthetotaltransportationtimeproble

msisformulatedandresolvedin 

5wich are on whole included in 11 pp. 258-

260. 

The transportation time of the longest 

active transportation route(s) in problems where all 

destinations do not have the same importance are 

analyzed as the three classes single criteria and 

multi criteria problems of the transportation time. 

The corresponding algorithms are developed in 

case of problems with priority according to 

demands of the subset of the destinations 7]. 

Some bicriteria problems of transportation 

problems are shown, too 1], 6]. Another typical 

transportation problems are exposed in 8] and a 

research directive in 3]. Theoretical approach of 

Multi-Objective Programming and Goal 

Programming are shown in 9]. 

In this paper are formulated some variants of the 

total transportation time problem. The algorithms 

developed for determination theirs optimal 

solutions are presented and implementations are 

illustrated by means of a numerical example. 

 

FORMULATION OF THEPROBLEM 

Let us consider the standard balanced 

transportation problem, with m sources Ai (with 

supplies ai), iI=1,2,..,m, and n destinations Bj 

(with demands bj), jJ=1,2,..,n. If xij = the 

number of load units moving from Ai to Bj, the 

feasible solution (x) and set of feasible solutions 

(X) is: 

X 


x xa,iI; x  b ,jJ;x 

 

 

 

 0, (i, j); 

⎨  ij i ij j ij 

⎩ jJ iI 

a  b
⎫

 

(1) 

i j⎬  

 
Suppose tij = the time required for transporting all 

xij units using corresponding routes (i,j) for all iI 

and jJ. 

In the literature, instead of the total transportation 

time, often, is observed the “transportation 

efficiency” and minimized as following criterion: 

F (x) t jixij 

iIjJ 

(2) 

But, we prefer that in many real life problems is mostly natural to focus to minimization only the 
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ij 

is 

ij is 

ij is 
ij is 

ij 

ij 




ij 

ij 

ij 

th



time of active transportation routes (i,j), as next objective 

T (x) t jihij 

iIjJ 

if xij 0if xij 0 

Indicative and clear example of this kind of total 

transportation time is in a military problem where 

is of primary importance to analyze the total time 

of all means of transportation which may be 

exposed to danger of the enemy attacks. This two 

types of 

 

measure of the transportation efficiency (2) and (3) 

will be called Variant A (linear function) and 

Variant B (nonlinear function) of the total time 

transportation problem, respectively. 

If multiple optimal solutions exist with T* as 

minimal value of (3), it is recommended to 

optimize an another criteria retain T*, like the 

transportation efficiency (2), the time of the longest 

active transportation operation, the number of units 

on transportation operation with longest time, the 

total transportation cost e.t.c. 

 

SOLUTIONMETHODS 

Let x
(k)

 and x
(k+1)

 are two basis neighbouring 

feasible solutions, where x 
(k)

 is 

entering basis variable and x 
(k)

 is leaving basis 

variable forx
(k)

: 

 

x
(k)

 contain:  x 
(k)

=0 and x 
(k)

> 0 x
(k+1)

 contain:  x 
(k+1)

>0 and x  
(k+1)

 =0 

there is: x 
(k+1)

 = x 
(k)

. 

 

In moving from x
(k)

 to x
(k+1)

 the total time T(x) 

given as (3) will be changed with the following 

values: 

q(k ) t t . (5) 

ij ij is 

 

The characteristic qij is the change of the 

transportation time in problem (3). 

Then the solution x
(k+1)

 has: 

T(k1) T(k)q(k). (6) 

Clearly, the total time T
(k+1)

 is determined by values 

q 
(k)

 as following: 

⎧T (k ) 

T (k 1) ⎪T ( k) 

⎪T (k ) 

if q
(k)

0 

if q
(k)

0 

if q
(k)

0 

 

 

(7) 

 

Let T* is minimum value of T(x), x* is the optimal 

solution of (3) and XT is a set of multiple optimal 

solutions of(3): 
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

T 

T*min
⎧
 

 

(x)  

ijij⎬  

(8) 

 

 

X⎪ 

iI jJ ⎪ 

 

x *


x T* 
⎪ 

 

t h
⎪ 

 

(9) 

 

T ⎨  min ⎨T(x) 

ijij⎬⎬  

 

 X  ⎪ 
iI jJ 

⎪ 

 

 

XT*xT*. (10) 

 

Above discussion makes possible to develop the 

solving methods for defined transportation problem 

(3). If this problem has multiple optimal solution 

(10), undoubtedly, maybe required to optimize 

some of next criteria: 

 

Minimize the transpiration efficiency from (2) 

 

Min 

⎧
F(x) t x

⎫
 

 

(11) 

⎨  ijij⎬  

T(x) T*⎪ iIjJ ⎪ 

Minimize the time of the longest active 

transportation operation 

⎧  ⎫  

Min 
⎪

t(x)  max t
⎪
 

(12) 

⎨  

T(x)T*⎪ 

xij 0 

ij⎬  

 

Minimize the number of units on transportation 

operation with longest time 
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

ij 

ij 

th 

ij 

ij 

ij 

ij 

ij 

 

Min 

⎧ 
Q(x)  

 

⎫ 

 

(13) 

 

 

⎨  

T( x)T*⎪ 

 

tijt(x)   

ij⎬  

 

 

Minimize the total transportation cost 

 

Min 

⎧
F( x) cx

⎫
 

 

(14) 

 

 

 

⎨  ijij⎬  

 

 

T( x)T*⎪ 
iIjJ ⎪ 

 

wherecij = the units transportation costs. 

Algorithm 1 finds the optimal solution and 

minimum total transportation time (3). Algorithm 2 

continue the solving process using the multiple 

optimal solution of problem (3), if exist, and 

minimize chosen criteria (11) to (14). 

Algorithm 1. 

Step 0: Find the basic feasible solution x
(1)

. Set 

number of iteration k = 1. 

Step 1: Determine the indicators h 
(k)

 of active 

transportation routes x 
(k)

> 0, and 

ij ij 

the total time T
(k)

=T(x
(k)

). 

 

h(k) 
1, 

if x
(k)

 0 

 

(15) 

 

⎪0, 

if x
(k)

 0 

 

 

T (k ) 

 

iIjJ 

 

(k ) 

ijij 

(16) 

 

Step 2: Determine the characteristics q 
(k)

 for all 

nonbasic variables x 
(k)

 = 0 using 

ij ij 

(5).  Use  the  changing  path  of  the  basic  solution  

(as  in  a  Stepping-Stone  method)and 

corresponding  leavingbasic  variable,  e.g.  x
(k)

>  0  

become  x 
(k+1)

=  0,  if  enteringbasic 

is is 

variable would be x 
(k+1)

> 0. 

 

Step 3: Check the optimality of the total time (3), 

using (7). If all q 
(k)

 0, the 

optimal solution x* is found. Stop. Otherwise, go to 

Step 4. 

Step4: Determine  next basic solution, using entering 

variable xij with minimum   

q
(k)

,regardingq
(k)

<0.Setk=k+1and gotoStep1. 

ij ij 

If the optimal solution x* in last Step 3 has q 
(k)

 = 0 

for nonbasic variables x 
(k)

 = 0, there is 

ij ij 

no unique optimal solution and exist a set of 

multiple optimal solutions XT*. Each of these 

variables gives an alternative optimal solution for 

(3), go to optimize other criteria. 

Algorithm 2. 

Step 0: Chose one of criteria from (11) to (14) and 

calculate his increase 
(k)

 for each nonbasic 

variable x 
(k)

 = 0 with q 
(k)

 = 0 in multiple optimal 

solution on end of 

ij ij 

Algorithm 1. For 
(k)

 use the known solving 

process for regarded criteria. 

Step 1: If there are negative increase, 
(k)

< 0, for 

regarded criterion, chose minimum of them and 

minimize this criterion in set of multiple optimal 

solution for (3). 

Step 2: Repeat Step 1 with each of negative 

increase for regarded criterion and choose solution 

with minimum criterion value. 

 

ANEXAMPLE 

Let us consider the following 

transportation problem with m = 4 sources Ai, 

iI=1,2,3,4, and n = 5 destinations Bj, 

jJ=1,2,3,4,5. The initial data are presented in 

TABLE 1. Each row corresponds to a supply point 

and each column to a demand point. The total 

supply 65 is equal to the total demand. In each cell 

(i,j), top left corner represents the time tij required 



ij 
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ij 

ij 

ij 

for transporting xij units from source Ai to 

destination Bj. The basic variables xij are presented 

in the middle of corresponding cells and the 

increase qij of time in bottom right corner of each 

cell (i,j) with nonbasicvariable. 

First basic feasible solution in the Step 0 

of Algorithm 1 maybe determined using north-west 

corner method or another method. In TABLE 1 is 

chosed the optimal solution x
(1)

 of criteria F(x) with 

minimum value F* = F
(1)

 = 222 and increases d 
(1)

 

in TABLE 2 which verify the unique optimal 

solution. The corresponding total time T
(1)

 = 

32iscalculatedinStep1withindicatorsh
(1)

(TABLE1sh

owsonlyindicatorswith 

value 1 for active transportation routes). 

In Step 2 are calculated increases q
(1)

 of the total 

transportation time T(x) for nonbasic variables. Let 

demonstrate them for chel (1,1). 

x
(1)

= 0, L 
(1)

 = (1,1), (1,5), (4,5),(4,1) 

11 11 

d(1) = t 

–t +t –t 

= 11-5+5-9 = 2 

11 11 15 4541 

x
(2)

> 0, x 
(2)

 = min x 

(1), x 
(1)

 = min 1, 2 = 1 = x 

(1), x 

(2) = 0 
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21 21 

21 21 25 14 41 14 14 

11 11 

15 41 

15 15 

 

q 
(1)

 = t –t 

= 11-5 = 6. 

 

11 1115 

 

The changing path L 
(1)

for Stepping-Stone method is used for calculate d 

(1) 

 

and indicate that x 

11 
(1)

is leaving variable if x 
(1)

is entering variable. Then is q 

11 

(1) = t – 

 

15 11 

t15 = 11-5 = 6. 

11 11 

On changing path L 

(1)
 = (2,5), (4,5), (4,1), (2,1) for x 

(1)
 = 0 there are x 

(2) 

 

= min x 

(1), x 

25 
(1)

 = min 14, 13 = 13 = x 
(1)

 and x 

25 
(2)

 = 0. Value q 
(1)

 = t –t 

25 

= 1-2 

 

15 21 

21 21 

2525   21 

 

= –1 shown that x
(1)

 is no optimal solution for T(x). 

Entering basic variable x25 with 

solution x
(2)

 decrease T
(1)

 = 32 to T
(2)

 = T
(1)

 + t 
(1)

 = 

32-1 = 31 (TABLE 3). This solution 

25 

is no optimal, too, because for no basic variable x 

(2)
on path L 

(2)
 = (4,4), (1,4), (1,5), 

(4,5) exists x 
(3)

 = min x 

(2), x 

44 
(2)

 = min 10, 1 = 1 = x 

44 
(2)

 and t 
(2)

 = t –t 

= 3-5 = 

44 14 45 

45 44 

44 45 

–2. After entering this variable, the optimal 

solution x* = x
(3)

 is finding (TABLE 4). 

Minimum of total transportation time T* = T
(2)

 = 

29 has multiple optimal 

solution x
(3)

 with d 

(3) 

21 

(3)
 = 0. Keeping minimum of T(x) maybe it is 

possible to 

optimize some another criteria using Algorithm 2 

regarding corresponding changing paths with their 

entering and leavingvariables: 

x
(3)

= 0, L 
(3)

 = (2,1), (2,5), (1,5), (1,4),(4,4) 

x
(4)

> 0, x
(4)

 =minx
(3)

,x
(3)

, x
(3)

= min13, 9,15 

=9 = x
(3)

,x
(4)

= 0 

x
(3)

= 0, L 
(3)

 = (2,3), (3,3), (3,2),(1,2) 

23 23 

x
(5)

> 0, x 
(5)

 = min x 

(3), x 

(3)
 = min 15, 3 = 3 = x 

(3), x 

(5) = 0. 

23 23 

33 12 

12 12 

= d 23 
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ij 

ij 

 

Table 1: Initial data, optimal solution x
(1)

 for F(x) and indicators q 
(1)

 for T(x) 

 Destinations Supplies, ai 

 i \ j B1 B2 B3 B4 B5 

 

 

 

 

Sources 

A1 11 

6 

3  

3 

10 

7 

2  

10 

5  

1 

 

14 

A2 2 (-) 

13 

7 

4 

3 

0 

8 

6 

1 

-1 

(+)  

13 

A3 12 

7 

2  

7 

4  

15 

5 

3 

7 

2 

 

22 

A4 9 (+) 

2 

4 

1 

6 

3 

3 

1 

5 (-) 

14 

 

16 

Demands, bj 15 10 15 10 15 65 \ 65 

F
(1)

 = 33 + 210 + 51 + 213 + 27 + 415 + 92 + 514 = 222 h (1) = h (1) = h 

(1) = h (1) = h (1) = h (1) = h (1) = h (1) = 1 

12 14 15 21 32 33 41 45 

T
(1)

 = 31 + 21 + 51 + 21 + 2 + 41 + 9 + 51 = 32 

 

Let analyze the longest time on the separable active 

transportation routes (12) and corresponding 

number of transported units (13): 

t(3)  

max 

xij0 

tij 

= max (t12, t14, t15, t25, t32, t33, t41, t44) 

 

= max (3, 5, 1, 2, 4, 9, 3) = 9 = t41 

 

 

Q
(3)

x = 15. 

 

tij9 

Solutionx
(4)

keept
(4)

=t
(3)

=9anddecreaseQ
(3)

tovalueQ
(4)

=Q
(3)

x 

 
(4)

 = 15-6 

 

= 9 (TABLE 5). So, x
(4)

 is better than x
(3)

. With x 

21 
(5)

in x
(5)

 (TABLE 6) both of criteria has 

 

23 

same values as x
(3)

, and x
(5)

 is not better solution. 

 

Table 2. 

Nonbasic variables, x 

(1) = 0 

ij 

Indicators dij
(1)

 for F(x) Indicators qij
(1)

 for T(x) 

x (1) = 0 

11 

d (1) = 2 

11 

q 
(1)

 = t –t 

11

 11

15 

= 11-5 = 6 

x (1) = 0 d (1) = 5 q13 
(1)

 = t13–t12 = 10-3 = 7 

13 13 

x (1) = 0 

22 

d 
(1)

 = 11 

22 
q22 

(1)
 = t22–t12 = 7-3 = 4 

x (1) = 0 d (1) = 5 q23 
(1)

 = t23–t13 = 3-3 = 0 

23 23 

x (1) = 0 

24 

d 
(1)

 = 13 

24 
q24 

(1)
 = t24–t14 = 8-2 = 6 

x (1) = 0 d (1) = 3 q25 
(1)

 = t25–t21 = 1-2 = –1 



Journal of Engineering Research and Application                                                         www.ijera.com 

ISSN : 2248-9622, Vol. 8, Issue 2, ( Part -II) February 2018, pp.102-111 

 

 
www.ijera.com                                   DOI: 10.9790/9622-080202102111                   109 | P a g e  

 

 

 

 

25 44 

25 25 

x (1) = 0 d (1) = 4 q31 
(1)

 = t31–t14 = 12-5 = 7 

31 31 

x (1) = 0 d (1) = 4 q31 
(1)

 = t31–t14 = 12-5 = 7 

34 34 

x (1) = 0 d (1) = 3 q35 
(1)

 = t35–t15 = 7-5 = 2 

35 35 

x (1) = 0 d (1) = 1 q42 
(1)

 = t42–t12 = 4-3 = 1 

42 42 

x (1) = 0 d (1) = 1 q43 
(1)

 = t43–t12 = 6-3 = 3 

43 43 

x (1) = 0 d (1) = 1 q44 
(1)

 = t44–t14 = 3-2 = 1 

44 44 

 Unique optimal solution, 

all d 
(1)

> 0 

ij 

No optimal solution, q 
(1)

 = –1 

25 

 

Table 3: Solution x
(2)

, T
(2)

>T* Table 4: Solution x
(3)

,T* 

  
 

T
(2)

 = T
(1)

 + t   
(1)

 = 32-1=31 T
(3)

 = T
(2)

 + t 
(2)

 

= 31-2 =29   
Regarding in x

(3)
 on total cost C(x) defined as (14) 

and unique cost in following matrix C, the total 

cost are C
(3)

 = 428. The increase of total cost of 

variables for multiple 

 

optimal solution in minimum total time T* = 29 are 

C 
(3)

= -1 (for x 
(3)

= 0 with q 

(3) = 0) 

 

 

21 21 21 

 

andC 
(k)

= 4 (for x 
(3)

 = 0 with q 
(3)

 = 0). If x 

is entering basic variable, solution is x
(4)

 

 

23 23 23 21 

withminimum total cost C
(5)

= 419 for minimum total 

time T* = 29. However, the minimum 

totalcostC*=383withoutminimumtotaltimeT(x)would 

beobtain withx
(6)

 whenthetotal time is T
(6)

=46. 

The optimal solutions of some basic single criteria 

cost and time in transportation problems are 

compared in TABLE 7. Using the optimal solution 

of each of them, the values of others criteria are 

calculated. All solutions with time contain an 

identical time of the longest route (12) in this trivial 

example. Clearly, it is not a general rule. 

After conditional optimization for 

objective (12), the objective (13) was minimized 

for the total quantity of goods which is transported 

with longest time t*, in the sense of Hammers 

“real” solution for optimal solution (12). However, 

objective (13) is 

 

optimized against two conditions, keeping minimal 

total time T*=29 and the time of the longest 

transport operation t*=9 for T*=29. 

11 3 10 2 (-) 5 (+) 

9  3 7  9  2 

2 (+) 7 3 8 1 (-) 

0  4 0 6  13 

12 2 4 5 7 

10  7  15 3 2 

9 (-) 4 6 3 (+) 5 
 15 1 3  1 2 

 

11 
6 

3 10 
7 

2  (-) 
10 

5 (+) 
1  3 

2 
1 

7 
4 

3 
0 

8 
6 

1 
 13 

12 
7 

2 4 5 
3 

7 
2  7  15 

9 4 
-1 

6 
1 

3 (+) 
-2 

5 (-) 
1  15 
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21 23 

 

 

Table 5: Solutionx
(4)

,T* Table 6: Solution x
(5)

,T* 

  
T

(4)
 = T

(3)
 + t   

(3)
 = 29+0= 29 T

(5)
 = T

(3)
 + t 

(3)
 = 29+0 =29   

 

⎡ 4   7   10  9 5⎤  ⎡ 14  0 0 0 0⎤  

C =  
⎢

6   8   16    9 8
⎥

, x(6) =
⎢

0 

 3 0   10 0
⎥

 

 

 

 ⎥ 
7   4    6   10 7⎥  

⎢
5   8    9   10 6

⎥
 

 

⎢  ⎥  

0 7  15   0 0⎥  

⎢
1 0 0 0 15

⎥
 

 

 

Table 7: Optimal solutions of basic single criteria transportation problems 

 Solutions 

 x(1) =   x(3) =   x(4) =   x(6) =   

Minimiza- ⎡ 0 3 0 10 1 ⎤  0 3 0 0 11⎤  0 3 0 0 11⎤  14 0 0 0 0 ⎤  

tion 

criteria 

⎢ 13   0 0 

⎢ 0   715 

⎢ 2   0 0 

0 

0 

0 

0⎥  

0⎥  

14 ⎥ 

9  0  0 

⎢ 0  715 

⎢ 6    00 

0 

0 

10 

4⎥  

0⎥  

0 ⎥  

9   0 0 

⎢ 0  7 15 

⎢6  0   0 

0 

0 

10 

4⎥  

0⎥  

0⎥  

0   3 0 

⎢ 0   715 

⎢ 1   0 0 

10 

0 

0 

0⎥  

0⎥  

15⎥  

F (x) Fmin = 222 262 244 333 

T (x) 31 Tmin = 29 Tmin = 29 48 

t(x) tmin = 9 tmin = 9 tmin = 9 11 

Q(x) Qmin = 2 15 6 14 

C(x) 406 428 419 Cmin = 383 

 

II. CONCLUSIONS 
The time of transport might be significant 

factor in several transportation problems. The 

efficiency of transportation have been introduced as 

an aggregate of the time and the quantity of goods 

on active transport operations, longest time on 

single active transport operation, total time on all 

active transport operations, total quantity of goods 

with a longest time of transport etc. The question 

arises from this whether to perform optimization at 

the same time for more objectives, with eventual 

priorities for each, or to treat single objective 

problems, which are of the great significance for 

particular problem. In this paper, the single 

objective problem of total time minimization has 

been exposed having in mind active transport 

operations and is defined asAlgorithm 

 

1 for its solution. To start from the point of 

multiple optimal solution for specific total time of 

transport, it is further suggested the minimization 

of some other objective while keeping minimal 

total time of transport (Algorithm 2). In that way, it 

is passed to the two objective problems with strong 

lexicographic order for the determined objectives 

where the absolute priority is given to the total time 

of transport. Furthermore, if there is a multiple 

solution, the third objective can be optimized which 
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bears the next level of significance etc. 

Defined process of solving the problem of 

minimization of total time on active transport 

operations is necessary even for solving each multi 

objective transport problem which involves 

mentioned objective. At the firs step of solving any 

multi objective problem, it is necessary to 

determine optimal solutions for each objective 

separately, that is to treat single objective problems 

and than to keep searching for pareto-optimal 

solutions for each multi objective problem. 

In hypothetical example of small dimensions two 

variants of problem were illustrated for the total 

time of transport with objectives of “total 

efficiency of transport from the time view” F(x) 

and total time of transport T(x). Meanwhile, in the 

set of optimal solutions for T(x), the conditional 

minimization was performed separately for the 

longest time on active transport operations with t(x) 

and separately for total cost of transport withC(x). 
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