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ABSTRACT 
The Big data is the name used ubiquitously now a day in distributed paradigm on the web. As the name point out 

it is the collection of sets of very large amounts of data in pet bytes, Exabyte etc. related systems as well as the 

algorithms used to analyze this enormous data. Hadoop technology as a big data processing technology has 

proven to be the go to solution for processing enormous data sets. MapReduce is a conspicuous solution for 

computations, which requirement one-pass to complete, but not exact efficient for use cases that need multi-pass 

for computations and algorithms. The Job output data between every stage has to be stored in the file system 

before the next stage can begin. Consequently, this method is slow, disk Input/output operations and due to 

replication. Additionally, Hadoop ecosystem doesn’t have every component to ending a big data use case. 

Suppose we want to do an iterative job, you would have to stitch together a sequence of MapReduce jobs and 

execute them in sequence. Every this job has high-latency, and each depends upon the completion of the 

previous stage. Apache Spark is one of the most widely used open source processing engines for big data, with 

wealthy language-integrated APIs and an extensive range of libraries. Apache Spark is a usual framework for 

distributed computing that offers high performance for both batch and interactive processing.  In this paper, we 

aimed to demonstrate a close-up view about Apache Spark and its features and working with Spark using 

Hadoop. We are in a nutshell discussing about the Resilient Distributed Datasets (RDD), RDD operations, 

features, and limitation. Spark can be used along with MapReduce in the same Hadoop cluster or can be used 

lonely as a processing framework. In the last comparative analysis between Spark and Hadoop and MapReduce 

in this paper. 

Keywords: Big Data, Spark, Resilient Distributed Datasets (RDD), MapReduce, Hadoop, Spark Ecosystem. 

 

 

I. INTRODUCTION 
We are live in the information era, where 

almost everything is data. Day-to-day the big world 

of internet is creating 2.6 quintillion bytes of data on 

a regular basis according to the statistics the 

percentage of data that has been generated from last 

two years is 90%. This data comes from many 

industries like climate information [1] collects by the 

sensor, Internet of Things (IoT) applications, and 

various stuff from digital images, social media sites, 

and videos, various records of the buying transaction. 

This data is called big data. Big data gets generated in 

multi-terabyte quantities [2]. It transformation fast 

and comes in multiformityof forms that are arduous 

to manage and process using RDBMS or other 

traditional technologies. Today scenario, 85% of the 

data getting generated is unstructured and cannot be 

maintainedby our traditional technologies. Before an 

amount of data generated was not that 

frenetic.Presently data generation is in petabytes that 

it is not possible to archive the data again and again 

and retrieve it again when demand as data, 

scientistsrequirement to play with data now and then 

for predictive analysis distinct historical as used to be 

done with traditional. In this scenario big data 

solutions provide the tools, methodologies, and 

technologies that are used to capture, processing, 

store, search, and analyze the data in seconds to 

explore relationships and insights for innovation and 

competitive benefit that were already unavailable. 

Analogous technologies are Apache Hadoop, Apache 

Spark, Apache Flink, etc. Apache Spark is asubstitute 

to Hadoop MapReduce rather than a substitution of 

Hadoop. Apache Spark is considered as next 

generation big data tool, It is lightning rapid cluster 

computing engine which is 100 times faster than 

Hadoop-MapReduce [3]. The Apache Spark is an 

open-source cluster computing framework for real-

time processing. It is of the most prosperous projects 

in the Apache software foundation. Spark distinctly 
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developed as the market leader for big data 

processing [4]. At present, Spark is being adopted by 

major players such as Amazon, eBay, Yahoo and 

many organizations run Spark on clusters with 

thousands of nodes.  Apache Spark is endow high-

level API in Java, Python, R and Scala [5][6]. It can 

access data from HDFS, HBase, Hive, Cassandra, 

Tachyon, and any Hadoop data source.  

 

II. INSUFFICIENCY WITH HADOOP 

AND MAPREDUCE 

Hadoop as a big data processing technology 

has proven to be the go to solution for processing 

huge data sets. MapReduce is a magnificent solution 

for computations, which exigency one-pass to 

complete, but not very [2] efficient for use cases that 

need multi-pass for computations and algorithms. 

Everylevel in the data processing workflow has one 

Map and one Reduce phase. To leverage MapReduce 

solution ourrequirement to alter our use case into 

MapReduce pattern [3]. The Job output data between 

every step has to be stored in the file system before 

the next level can begin. Consequently, this 

procedure is sluggish, due to replication & disk 

Input/output operations. Additionally, Hadoop 

ecosystem doesn’t have every component to 

finisheda big data use case.  The MapReduce job is 

submitted for running in Hadoop and once the job is 

finished, the output can be taken from the output 

location stipulated.Another issue comes when there 

are multiple MapReduce jobs to be completed in a 

chained fashion. In other words, if a big data 

processing work is to be accomplished by two 

MapReduce jobs in such a way that the output of the 

first MapReduce [7] job is the input of the second 

MapReduce job. In this circumstance, whatsoever 

may be the size ofthe output of the first MapReduce 

job, it has to be written to the disk before the second 

MapReduce could utilizeit as its input. In this 

situation, there is a definite and unnecessary write 

operation. In many of the batch data processing use 

cases, these I/O operations are not a big problem. If 

the outcomeis highly reliable, for many batch data 

processing use cases, the latency is tolerated. The 

mainissue comes when doing real-time data 

processing. The large amount of I/O operations 

involved in MapReduce jobs makes it improper for 

real-time data processing with the less possible 

reaction time.The Iterative and Interactive 

applications in need of quicker data sharing across 

parallel jobs. The data sharing is low in MapReduce 

due to serialization, replication [2], and disk IO. In 

the matter of  storage system, most of the Hadoop 

applications, they spend more than 90% of the time 

doing HDFS read-write operations. 

 

III. NECESSITY FOR APACHE SPARK 

Prior to briefly discuss first question  arsie 

our mind why Spark when we have Hadoop is 

previously there?.To answer thisquestion,we have to 

look at the scheme of batch and real-time processing. 

The Hadoop is based on batch processing of big data. 

This means that the data is stored over a period of 

time and is then processed using Hadoop shown in 

figure1. But  in Spark, processing can take place in 

real-time shown in figure2.  

 

 
Figure 1. The Data Processing in MapReduce 

 

This real-time processing power with Spark 

assistance us to solve the use cases of real time 

analytics. Spark is also capable of doing batch 

processing 100 times faster than that of [7] Hadoop 

MapReduce in large data sets. 

 

 
 

Figure 2. The Data Processing in Spark 

 

Apache Spark is fasted extensive purpose 

big data analytics engine and it is very appropriate for 

any kind of big data analysis.Spark makes use of 

RDD [8] which allows us to store data in memory 

and persevere it as per the requirements. This permit 

a massive increase in batch processing job 

performance.Spark also permits us to cache the data 

in memory, which is profitable in case of iterative 
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algorithms like as those used in machine 

learning.Spark utilization state-of-the-art Directed 

Acyclic Graph (DAG) data processing engine. What 

it means is that for each Spark job, a DAG of tasks is 

created to be executed by the engine. The DAG in 

mathematical [9] parlance consists of a set of vertices 

and directed edges concatenate them. The tasks are 

executed as per the DAG layout.The in-memory data 

processing mingled with its DAG-based data 

processing engine makes Spark more proficient. 

Spark permit us to perform stream processing with 

huge input data and deal with only a chunk of data on 

the fly. This can also be used for online machine 

learning, and is highly convenient for use cases with 

a requirement for real time analysis, which happens 

to be practically ubiquitous requirement in the 

industry. There are many reasons to choose Spark we 

are discussing below section. 

 

3.1 Ingenuity 
Spark’s ability is accessible via a set of rich APIs, all 

designed especially for interacting swiftly and easily 

with data at scale. These APIs are well documented, 

and structured in a way that makes it ingenious for 

data scientists and application developers to swiftly 

put Spark to work. 

 

3.2. Deficiency of MemoryResources  

The Spark is fasted common purpose engine 

due to the fact that it retainall its current operations 

inside memory. Consequently requires an access 

amount of memory, so in this case, when available 

memory is very limited, Apache Hadoop Map 

Reduce may assistance preferable, considering the 

large performance gap. 

 

3.3. Swiftness 

The Spark is designed for swiftness, 

operating both in memory and ondisk. Since 2014, 

Spark was used to conquer the Daytona Gray Sort 

benchmarking challenge, processing 100 terabytes of 

data stored on solid-state drives in only 23 minutes. 

The former winner used Hadoop and a different 

cluster configuration, but it took 72 minutes. This 

conquer was the outcome of processing a static data 

set. The Spark performance can [10] be even greater 

when helpful interactive queries of data stored in 

memory, withclaims that Spark can be 100 times 

faster than Hadoop MapReduce in these 

circumstances. 

 

3.4. Compatibility 

Spark supports a many type of programming 

languages, including Java, Python, R, and Scala. In 

spite of the fact that mostclosely associated with the 

Hadoop underlying storage system, HDFS, Spark 

includes connatural support for tight integration with 

a number of leading storage solutions in the Hadoop 

ecosystem. Besides, the Apache Spark community is 

huge, active, and international. The increasingly set 

of commercial providers, including Databricks, IBM, 

and all of the main Hadoop vendors deliver ambient 

support for Spark-based solutions. 

 

IV. ABOUT APACHE SPARK 
Spark is a general-purpose data processing 

engine, suitable for use in a wide range of 

circumstances and it is intense compared to many 

other data processing structures. The Spark was 

emergingat the University of California, Berkeley 

and later became one of the top projects in Apache 

and version 1.0 of Apache Spark was released in May 

2014. Spark version 2.0 was released in July 

2016.From the commencement, Spark was optimized 

to execute in memory, helping process [6] data far 

more quickly than substitute approaches such as 

Hadoop MapReduce, which tends to write data to and 

from computer hard drives between every stage of 

processing. Spark is a general-purpose data 

processing engine, appropriate for use in a wide 

range of circumstances [11]. Theprocessing of 

streaming data from sensors or financial systems, 

interactive queries across huge data sets,  and 

machine learning tasks tend to be most frequently 

related to Spark. The Spark programming paradigm 

is very strong and exposes a uniform programming 

model supporting the application development in 

multiple programming languages and its extensive 

support for languages such as Java, Python, R and 

Scala and also Spark can be deployed on a variety of 

platforms. Spark runs on the various types,operating 

systems such as Windows and UNIX Linux and Mac 

. Spark can be deployed in a standalone mode on a 

single node having a supported operating system. 

Spark can also be deployed in cluster node on 

Hadoop YARN as well as Apache Mesos.  The Spark 

mostly makes use of side by side Hadoop data 

storage module, HDFS, but can also integrate equally 

well with other famous data storage subsystems such 

as Cassandra, MapR-DB, HBase,  MongoDB and 

Amazon’s S3. Therewith the core data processing 

engine, Spark comes with a strong stack of domain 

conspicuous libraries that use the core Spark libraries 

and providedifferent functionalities useful for 

different big data processing requirements. 

 

V. WHAT IS APACHE SPARK USED 

FOR? 
The Spark is a data processing engine, an 

APIcapability which application programmer 

incorporates into their applications to expeditiously 

query, analyze and alteration data at scale. Spark 

pliability makes it favorable to tackling a range of use 

cases, and it is competent of handling several 

petabytes [5] of data at a time, distributed across a 
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cluster of thousands of cooperating physical or virtual 

servers.  

 

5.1 Stream Processing  

The log files to sensor data, application 

developers progressively have to cope with streams 

of data. This data arrives in a regular stream, 

frequently from multiple sources  

simultaneously. Until it is certainly feasible to permit 

these data streams to be stored on disk and analyzed 

retrospectively, it can infrequently be sensible or 

important to process and act upon the data as it 

arrives. Streams of vital data respectively,for 

financial transactions. 

 

5.2. Machine Learning  

As data volumes increase, machine learning 

approaches become more practicable and 

increasingly accurate. Spark [12]capability to store 

data in memory and expeditiously run repeated 

queries makes it wellsuitedto training machine 

learning algorithms. Executing broadly same queries 

again and again, significantly detract the time 

required to [13] iterate through a set of possible 

solutions in order to discover the most efficient 

algorithms. 

5.3. Interactive Analytics  

Ifexecuting pre-defined queries to create 

static dashboards of sales or production line 

productivity or stock prices, business analysts and 

data scientists increasingly want to find out their data 

by asking a question, viewing the outcome, and either 

make changes to the initial question slightly or 

drilling deeper into outcome. This interactive query 

process needs systems like as Spark that are able to 

respond and adapt fast. 

5.4. Data Integration  

If data produced by dissimilar systems 

across a business are rarely neat or consistent enough 

to simply and effortlessly be combined for reporting 

or analysis. The extract, transform, and load 

processes are time and again used to pull data from 

dissimilar systems, neat and standardize it, and then 

load it into a distinct system for analysis. The Spark 

is increasingly being used to detract the cost and time 

expected for this process. 

 

VI. APACHE SPARK  APPLICATION 

ARCHITECTURE 
The Spark is being an open source 

distributed data processing engine for clusters, which 

endow a unified programming model engine across 

various types data processing workloads and [4] 

platforms.Apache Spark application architecture 

consists of the following key software components 

and it is necessary to understand every one of them to 

get to grips with the complexities of the framework 

shown in figure3. 

 

6.1.  Apache Spark Driver 

The Spark driver program is the 

distinguishing program of your Spark application. 

The driver is the process that executes the user code 

thatcreates RDDs, and execution transformation and 

action, and also creates Spark Context. The Spark 

application process is executed is called the driver 

node, and the process is called the driver process. 

When the Spark Shell is launched, this notifies that 

we have created a driver program. If termination of 

the driver, the application is ended. The driver 

program partitioned the Spark application into the 

task and schedules them to execute on the executor. 

The task scheduler lives in the driver and distributes 

task among workers. 

 

 
Figure 3. Apache Spark Application Architecture 

 

6.2.Apache Spark Tasks 

The Sparktask is a unit of work that will be 

dispatchedto one executor. Aecheloned is a logical 

chunk of data distributed across a Spark cluster. This  

command sent from the driver program to an 

executor by serializing your function object. The 

executor de-serializes the command (this is part of 

your JAR that has previously been loaded) and 

executes it on a split [14]. In the manysituationsSpark 

would be reading data out of a distributed storage, 

and would echeloned the data in order to parallelize 

the processing across the cluster. For example, if you 

are reading data from HDFS, aecheloned would be 

created for every HDFS split. The split isnecessary 

because Spark will execute one task for each split. 

This here upon implies that the number of split 

isnecessary.  

 

6.3. Apache Spark Cluster Manager 

 A cluster manager as the name 

disclose the manages a cluster. Spark depend on the 

cluster manager to launch executors and in some 

http://data-flair.training/blogs/how-to-create-rdds-in-apache-spark/
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situation, even the drivers are launched through it. 

This is a pluggable component in Spark. Thecluster 

manager, jobs and action within, a spark application 

is scheduled by a Spark scheduler in a FIFO fashion. 

On the contrary, the scheduling can also be done in 

Round Robin fashion. The resources used by a Spark 

application can be dynamically adjusted based on the 

workload. Accordingly, the application can free 

unutilized resources and request them again when 

there is a [15] demand. The Spark has the capability 

to work with a multitude of cluster managers, 

including YARN, Mesosand a cluster manager. A 

cluster manager consists of two long execution 

daemons, firstly on the master node, and secondly on 

each of the worker nodes. 

 

6.4. Apache Spark Worker 

Supposing you are familiar with Hadoop, a 

worker node is something same as to a slave node. 

The worker machines are the machines where the real 

work is happening in terms of execution within Spark 

executors. This process is reported the obtainable 

resources on the node to the master node. Normally 

every node in a Spark cluster except the master 

execute a worker process. Ourselves commonly start 

one spark worker daemon per worker node, which 

then starts and watch executors for the applications. 

 

 

 

6.5.  Apache Spark Session 

Normally, a session is an interaction 

between two or more entities.The Apache Spark 

session is the entry point of programming with Spark 

with the dataset and DataFrame API. 

6.6.  Apache Spark Executors 

In the master allocates the resources and 

uses the workerexecution across the cluster to 

makeexecutors for the driver. The driver can then use 

these executors to run its tasks. The personal task in 

the given Spark job executesin the Spark 

executors.Again, the executors are only launched 

when a job execution starts on a worker node in other 

words executors are launched once in the 

commencement of Spark application and then they 

execute for the whole lifetime of [4] an application. 

Further,if the Spark executor lapse, the Spark 

application can continue tocomfort. This also leads to 

the fallout of application isolation and non-sharing of 

data between multiple applications. Executors are 

accountable for execution tasks and hold the data in 

memory or disk storage across them.  

 

6.7.  Apache SparkContext 

The Spark Context is the penetration point 

of the Spark session. It is your connection to the 

Spark cluster and can be used to create RDDs, 

circulation variables on that cluster, and 

accumulators. It is superior to have one Spark 

Context active per JVM, and consequently you 

should call stop () on the active Spark Context before 

you make a new one. You might have perceive 

already that in the local mode, whenever we start a 

Python or Scala shell we have a Spark Context object 

created automatically and the variable screference to 

the SparkContext object. We didn’trequirement to 

make the Spark Context, but as an alternative started 

using it to create RDDs from text files. 

 

VI. APACHE SPARK  ECOSYSTEM 
The Spark puts the assurance for faster data 

processing and convenient development. Apache 

Spark is considered as the normal purpose system in 

the big data world. Apache Spark is common purpose 

cluster computing system.It be made up of a lot of 

libraries that help to perform different analytics on 

your data.  It endowshigh-level API in 

Java,Python,Scala,  andR. Spark also endowsan 

optimized engine that supports common execution 

graph. Apache Spark permit[5] for entirely new use 

cases to increase the value of big data.It also has 

copious high-level tools for structured data 

processing, streaming, machine learning, graph 

processing. The Spark can either execute alone or on 

aalive cluster manager. Primarily, Spark Ecosystem 

comprises the following componentsshown in figure 

4. 

 

 
 

Figure 4.The Apache Spark Ecosystem 

7.1.  ApacheSpark Core Component 

As its name says, the Spark core library 

made up of all the core modules of Spark. This is the 

heart of Spark, and is accountable for 

managementfunctions like as task scheduling. The 

Spark center component is the foundation for parallel 

and distributed processing of huge datasets. Spark 

center component is responsible for all the basic I/O 

functionalities, networking with various storage 

systems, fault recovery, scheduling, monitoring the 

jobs on spark clusters, task dispatching, and skillful 

memory management.Whole functionalities being 

provided by Spark are built on the top of Spark core. 
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Spark core makes use of a special data structure 

known [16] as RDD (Resilient Distributed Datasets). 

Data sharing or reuse in distributed computing 

systems like Hadoop MapReduce is in need of the 

data to be stored in intermediate stores like Amazon 

S3 or HDFS. The Apache Spark ecosystem is built on 

top of the core execution engine that has extensible 

[17] API’s in various languages. It endowsin-emory 

computing ability to deliver speed, a generalized 

execution model to support a wide diversifictionof 

applications, and Scala, Java, R Language, SQL and 

Python APIs for the convenience of development. 

 

7.1.1.  Scala 

The Spark structure is built in Scala, so 

programming in Scala for Spark can provide access 

to some of the latest and greatest features that might 

not be available in other supported programming 

spark languages. 

7.1.2.  Python 

The Python is a programming language 

widely used by data analysts and data scientists these 

days. There are many scientific and statistical data 

processing libraries available, as well as plotting 

libraries and charting, that can be used in Python 

programs.Python language has wonderful libraries 

for data analysis like Pandas and Sci-Kit learn, but is 

comparatively sluggish than Scala. Python is also 

widely used as a programming language to develop 

data processing applications in Spark. 

7.1.3.  R Language 

The R programming language has a wealthy 

environment for machine learning and statistical 

analysis which assistance to risedeveloper 

productivity. R was developed by Ross Ihaka and 

Robert Gentleman. Nowadays, data scientists can 

now use R language along with Spark through 

SparkR for processing data that cannot be handled by 

a single machine.The R is highly extensible and for 

that, external packages can be created. As soon as an 

external package is created, it has to be installed and 

loaded for any program to use it. A collection of like 

packages under a directory forms an R library. R is 

also a few built-in data types to hold numerical 

values, character values, and boolean values. There 

are composite data structures in existence and the 

most important ones are, namely, vectors, lists, 

matrices, and data frames. R has inherent support for 

many statistical functions and many scalar data types. 

7.1.4.SparkSQL 
L is a library built on top of Spark. It shows 

up SQL interface and DataFrame API. If the structure 

of the data is known in advance, if the data fits into 

the model of rows and 

columns, it doesn't matter from where the data is 

coming and Spark SQL can use all of it jointly and 

process it as if all the data is coming from a single 

source [14].The most essential aspect to highlight 

here is the ability of Spark SQL to deal with data 

from a very wide variety of data sources. If it is 

available as aDataFrame in Spark, Spark SQL can 

process data in a completely distributed way, 

combining the DataFrames coming from different 

data sources to process and query as if theentire 

dataset were coming from a single source. 

7.1.5.  Java 

Java is a general-purpose computer 

programming language, class based, multithreaded, 

dynamic, distributed, object oriented, platform 

independent, portable, architecturally neutral,  

portable and robust interpreted. Java capabilities are 

not limited to any specific application domain rather 

it can be used in various application domains and 

hence it is called general-purposeprogramming 

language.The Java have a unique feature application 

programmer write once, run anywhere,meaning that 

compiled Java code can execute on all platforms that 

support Java without the requirement for 

recompilation.  Java is a widely used programming 

language expressly designed for use in 

the distributed environment of the internet. 

 

7.2. Apache Spark SQL Component 

The Spark SQL component is a distributed 

framework for structured data processing. Spark gets 

more information about the structure of data and the 

computation. The Spark SQL library helps to analyze 

structured data using the very famous SQL queries. 

Spark SQL components act as a library on top of 

Apache Spark that has been built based on Shark. 

Again Spark developers can leverage the power of 

declarative queries and optimized storage by 

executing SQL like queries on Spark data, that is 

extant in RDDs and other outer sources. The 

consumer can perform, extract, transform and load 

functions on the data coming from different formats 

such as JSON or Parquet or Hive and then run ad-hoc 

queries using Spark SQL. Spark SQL simple the 

process of extracting and merging different datasets 

so that the datasets are ready to use for machine 

learning.Spark SQL works to access structured and 

semi-structured information [14]. It also enables 

powerful, interactive, analytical application across 

both streaming and archival data. Spark SQL is a 

Spark module for structured data processing. 

Therefore, it acts as a distributed SQL query engine. 

 

7.3. Apache Spark Streaming  

The Spark Streaming mainly enables you to 

create analytical and interactive applications for 

existingstreaming data. The Spark Streaming library 

consists of modules that help users to execute real-

time streaming processing on the arriving data. It 

helps to maintain the velocity part of the big data 

domain. Spark Streaming is a lightweight API that 

permit developers to perform batch processing and 

https://www.dezyre.com/data-science-in-python-online-training/36
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streaming of data with convenience, in the same 

application. It makes use of a continuous stream of 

input data  to process data [18] in real-time. The 

Spark streaming leverages the fast scheduling 

capacity of Apache Spark core to perform streaming 

analytics by swallowingdata in mini-batches as well 

as alteration are applied on those mini batches of 

data. Micro-batching is a technique that permitsa 

process or task to treat a stream as a sequence of 

small batches of data. With the result that Spark 

streaming, groups the live data into small batches. It 

then delivers it to the batch system for processing. It 

also endowsfault tolerance characteristics. The data 

in Spark streaming is swallowedfrom [19] different 

data sources and exist streams like IoT Sensors, 

Amazon Kinesis,Twitter, Apache Kafka, Akka 

Actors, Apache Flume, etc. On event drive, fault-

tolerant and type-secure applications.Spark streaming 

is most advantageous for online advertisements and 

finance, supply chain management, etc. 

 

7.4. Apache Spark MLlib (Machine Learning 

Library) 

The Spark MLlib helps to apply different 

machine learning techniques on your data, leveraging 

the distributed and scalable ability of Spark.MLlib is 

a low-level machine learning library that can be 

called fromPython, Scala and Java programming 

languages. MLlib is easy to use, scalable, compatible 

with different programming languages and can be 

comfortably integrated with other tools. MLlibsimple 

the deployment and development of scalable machine 

learning pipelines.MLlib has aeasy application 

programming interface for data, scientists who are 

already familiar with data science programming tools 

such asPython and R. The data, scientists can build 

Machine learning models as a multi-step journey 

from data ingestion through train [20] and error to 

production.It contains machine learning libraries that 

have an implementation of various machine learning 

algorithms. For example, clustering, different 

regression, classification and collaborative filtering. 

 

7.5. Apache Spark GraphX 

For graphs and graphical computations, 

Spark has its personal Graph computation engine, 

called GraphX. The Spark GraphX library provides 

APIs for graph-based computations. In this library, 

the user can perform parallel computations on graph-

based data.It is a network graph analytics engine and 

a data store.Spark GraphXinitiateResilient 

Distributed Graph (RDG). The RDG associate 

records with the vertices and edges in a graph and 

also help data, scientists perform various graph 

operations through [21] various expressive 

computational primitives. These primeval help 

developers implement pregel and pagerank 

abstraction in approximately 25 lines of code or even 

less than that.The GraphX also optimize the way in 

which we can represent vertex and edges when they 

are primeval data types and it supports fundamental 

operators likesubgraph, join Vertices, and aggregate 

Messages as well as an optimized variant of the 

Pregel API.GraphX component of Spark 

endorsement multiple use cases like social network 

analysis, fraud detection,and recommendation.  

 

7.6. Apache SparkR 

There are several people from data science 

track, who must be conscious that for statistical 

analysis, R is among the best. The Spark R library is 

used to execute R scripts or commands on Spark 

cluster. This helps to endow distributed environment 

for R scripts to run. R also endowsoftware provision 

for data manipulation, graphical display and 

calculation. For this reason, the main opinion behind 

SparkR was to discovervarious techniques to 

integrate the usability of R with the scalability of 

Spark. This R package that gives the light-weight 

front-end to use Apache Spark from R [22].Spark R 

dataFrames also inherit all the optimizations made to 

the computation engine in terms of code generation, 

memory management.The R dataFrames can execute 

on terabytes of data and clusters [23] with thousands 

of nodes. The RStudio or Rshell and can run R scripts 

which will execute on the Spark cluster. 

 

VII. SPARK APPLICATION RUNS ON A 

HADOOP CLUSTER 
In this section we are discussingthe how a 

Spark application run shown in figure 5. A Spark 

application runs as independent processes, 

coordinated by the SparkContext object in the driver 

program.The task scheduler launches tasks via the 

cluster manager. The cluster manager appointstasks 

to workers, one task per segmentation [23]. A task 

enforcesits unit of work to the elements in its 

segmentation, and outputs a new segmentation.The 

segmentation can be read from an HDFS block, 

HBase or other source and cached on a worker 

node.The outcomeis sent back to the driver 

application. 

 



 

V. Surekha. Int. Journal of Engineering Research and Application                                  www.ijera.com 

ISSN : 2248-9622, Vol. 8, Issue 1, ( Part -I1) January 2018, pp.26-41 

 

 
www.ijera.com                          DOI:  10.9790/9622-0801022641                                33 | P a g e  

 

 

 
Figure 5.Spark Application Run 

 

VIII. THE RESILIENT DISTRIBUTED 

DATASET IN SPARK 
The Resilient Distributed Datasets (RDD) 

are a basic data structure of Spark. It is an 

unswerving distributed collection of objects. Every 

dataset in RDD is split into logical segmentation, 

which may be computed on various nodes of the 

cluster.For what reason requirement RDD in view of 

the fact that MapReduce is widely adopted for 

processing and generating enormous data sets with a 

parallel, distributed algorithm on a cluster. It permits 

users to write parallel computations, using a set of 

high-level operators, without having to anxiety about 

work distribution and fault tolerance. This is slow 

due to replication, serialization, and disk I/O. For that 

reason there was a necessity [24] for substitute 

programming model called RDD.There are three 

ways to create RDDs in Spark like as firstly data in 

static storage, second RDDs, and third parallelizing 

previously existing collection in the driver 

program.Spark RDD can also be cached and 

manually segmentation and caching is advantageous 

when we use RDD many times. If  

manualsegmentation is essential to correctly balance 

segmentation. Normally, miniature segmentation 

permitshave been distributing [25] RDD data more 

equally, among more executors.TheSpark keeps 

tenacious RDDs in memory by default, but it can 

spill them to disk if there is not sufficient RAM. 

Users can also request other tenacious strategies, like 

as storing the RDD only on disk or facsimile it across 

machines, via the flags to persevere. 

 

8.1. Why do we need RDD in Spark 

The Apache Spark lets you deport your 

input files approximately such as any other variable, 

which you cannot do in Hadoop MapReduce. RDD 

are automatically distributed across the network by 

means of segmentation. When it comes to iterative 

distributed computing, i.e. Processing data over 

several jobs in computations like as Page rank 

algorithms, Logistic Regression, K-means 

clustering.This  isimpartially common to reuse or 

share the data among several jobs or it may involve 

multiple ad-hoc queries over a shared data set.This 

makes it very significant to have a very good data 

sharing architecture so that we can perform rapid 

computations. There is abasic issue with data reuse or 

data sharing in current distributed computing systems 

(like as MapReduce) and that is  yourequirement to 

[24] store data in some intermediate stable distributed 

store like as HDFS or Amazon S3. This makes the 

overall computations of jobs loweventual it involves 

several I/O operations, replications and serializations 

in the process. The RDD effort to solve thisissue  by 

enabling fault tolerant distributed In-memory 

computations. The most important challenge in 

designing RDD is defining a program interface that 

provides fault tolerance proficiently [25]. The Spark 

shows up RDD through language integrated API. In 

integrated APIevery data set to appear in an object 

and transformation is involved using the method of 

these objects. Apache Spark evaluates RDDs idly. It 

is called when demand, which saves lots of time and 

improves competence. The first time they are used in 

an action so that it can pipeline the alteration. 

 

8.2. Spark RDD Operations 

There are two categoriesof operations that you can 

perform on an RDD ,first Transformations and 

second Actions. 

8.2.1. Transformations 

The Spark RDD Transformations 

are functions that take an RDD as the input and 

produce one or many RDDs as the outputshown in 

figure 6. They do not transformthe input 

RDD,however, eternally produce one or more new 

RDDs by applying the computations they represent 

e.g. reduceByKey(), Map(), filter() etc.The 

transformations are sluggish operations on an RDD in 

Spark and it also creates one or many new RDDs, 

which run when anAction occurs [24]. Accordingly, 

transformation makes a new dataset from an existing 

one.Few transformations can be pipelined, which is 

an optimization method, that Spark uses to retouch 

the performance of computations. 

 

8.2.2. Actions 

When an Action in Spark returns the 

eventual outcome of RDD computations.The  

execution using a lineage graph to load the data into 

original RDD, carry out all intermediate 

transformations and return the eventual outcome to 

driver program or write it out to file system. Actions 

are RDD operations that produce non-RDD values. 

They materialize a value in a Spark program. An 

Action is one of the ways to send outcome from 
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executors to the driver. The first(), take(), reduce(), 

collect(), the count() is some of the Actions in spark. 

 

 
Figure 6. Resilient Distributed 

DatasetsTransformations 

 

8.3. Features of RDD in Spark 

There are manycharacteristic of Apache Spark 

Resilient Distributed Datasets (RDD). 

8.3.1. In-memory Computation 
The Spark RDDs have a provision of in-memory 

computation. It stores intermediate outcome in 

distributed memory(RAM) as an alternative of stable 

storage(such as a disk). 

9.3.2. Sluggish Evaluations   
All transformations in Apache Spark are sluggish, in 

that they do not compute their outcome right away. 

Alternatively, they just remember the transformations 

applied to some base data set.Spark computes 

transformations when an action need anoutcome for 

the driver program.  

9.3.3. Fault Tolerance 
Spark RDDs are fault tolerant as they track data 

lineage information to rebuild the missing data 

automatically on lack of success. They rebuild the 

missing data on nihility [24] using lineage, each RDD 

recall how it was created from other datasets to 

recreate itself.  

9.3.4. Fixity 
The data is secure to share across processes. It can 

also be created or retrieved anytime which makes 

caching, sharing & replication convenient. 

Consequently, it is a way to reach consistency in 

computations. 

9.3.5. Segmentation 

The segmentation is the fundamental unit of 

parallelism in Spark RDD. Each segmentationis one 

logical division of data which is changeable. One can 

create a segmentationthrough some transformations 

on a alive segmentation. 

9.3.6. Stubbornness 
The subscriber can state which RDDs they will reuse 

and choose a storage strategy for them like as in-

memory storage or on Disk. 

9.3.7. Voluminous Grained Operations 

It enforcesto all elements in datasets through maps or 

a filter or group by operation. 

9.3.8. LocationAdhesiveness 
RDDs are able to defining placement 

preference to compute segmentation. The placement 

preference refers to information about the location of 

RDD. The DAG scheduler places the segmentation in 

like a way that the task is close to the data as much as 

possible. Consequently, speed up computation. 

9.4.  Obstaclesof Spark RDD 

There are manyobstaclesof Spark Resilient 

Distributed Datasets (RDD) talk about below 

segment. 

 

9.4.1. No Built-in Optimization Engine 

Whenever working with structured data, RDDs 

cannot take the benefit of Spark’s advanced 

optimizers including catalyst optimizer and Tungsten 

execution engine. The computer programmer 

necessity to optimize each RDD based on its 

attributes. 

9.4.2. Care of Structured Data 

RDDdoes not endow schema view of data. It has no 

provision for the care of structured data.Dataset and 

DataFrameendow the schema view of data. It is a 

distributed accumulation of data organized into 

named columns. 

9.4.3. Performance Interrupt 

The existence in-memory JVM objects, RDDs 

involve the overhead of sweepings accumulation and 

Java serialization which are expensive when data 

increase in size. 

9.4.4. Storage Boundary 

The RDDs demean when there is not sufficient 

memory to store them. If you can also store that 

segmentation of RDD on disk which does not fit in 

RAM. As anoutcome, it will endow identical 

performance to present data-parallel systems. 

9.4.5. Runtime Type Protection 

There is no stable typing and run-time type 

protection in RDD. It does not permit us to scrutiny 

error at the runtime.The dataset endow compile-time 

type protection to build complex data workflows. 

Compile-time type protection means if you try to 

concatenate any other type of element to this list, it 

will give you compile time mistake. It helps detect 

mistakesat compile time and makes your code secure. 

 

X.  CLUSTER MANAGEMENT IN 

APACHE SPARK 

The Spark is an engine for Big Data 

processing and Spark is executing on distributed 

mode on the cluster. In the cluster, there is a master 

and n number of workers. It schedules and split 

resource in the host machine which forms the cluster. 

The main work of the cluster manager is to split 

resources across applications [26]. It works as an 

outer service for obtainingresources on the cluster. 
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Moreover, the cluster manager sending work for the 

cluster. Spark supports pluggable cluster 

management. The cluster manager in Spark handles 

starting executor processes [27].Apache Spark 

applications can execute in three different cluster 

managers. 

 

10.1. Apache Spark Standalone Cluster Manager 

The standalone mode is aneasy cluster 

manager incorporated with Spark. It makes it simple 

to setup a cluster that Spark itmanages, and can 

execute on Windows, Linux,  or Mac OSX.In 

standalone mode, every application executesan 

executor on every node within the cluster.It has 

mastered and number of workers with configured 

amount of memory and CPU cores. In Spark 

standalone cluster mode [26], Spark allotresources 

based on the core.Handling the file system, we can 

attain the manual recovery of the master. The Spark 

endorsement authentication with the help of shared 

confidential with overall cluster manager. The user 

configures every node with a shared confidential. For 

communication protocols, Data encrypts praxis SSL. 

But for block transfer, it makes praxis of data SASL 

encryption. 

 

10.2. Apache Mesos 

Apache Mesos is a committed cluster and 

resource manager that endow wealthy resource 

scheduling ability. Mesossupport the workload in 

distributed environments by dynamic resource 

sharing and segregation. It is beneficial for 

deployment and management of applications in large-

scale cluster territory. Apache Mesos clubs together 

the alive resource of the machines nodes in a cluster. 

The Mesos has a fine grained sharing option so Spark 

shell scales down its CPU allocation during the 

execution of [28]many commands specifically when 

mausenyrs are executing  interactive shells.It is a 

resource management platform for Hadoop and Big 

Data cluster.TheMesos Framework permits 

applications to entreaty the resources from the 

cluster. 

 

10.3. Hadoop YARN 

YARN comes with most of the Hadoop 

distributions and is the only cluster manager in Spark 

that supports security. YARN became the sub-project 

of Hadoop in the year 2012. YARN cluster manager 

permit[29] dynamic sharing and central configuration 

of the same pool of cluster resources between 

different frameworks that execute on YARN. The 

number of executors to use can be chosenby the user, 

unlikethe Standalone mode. YARN is a superior 

choice when big Hadoop cluster is previously in use 

in production. The YARN data computation 

framework is anamalgamation of the 

ResourceManager, the NodeManager. It can execute 

onWindows and Linux.The Yarn Resource Manager 

manages resources among all the applications in the 

system. 

 

XI.  CHARACTERISTICS OFAPACHE 

SPARK 

The Apache Spark is lightning rapid, in-memory data 

processing engine. The Spark is principally designed 

for data science and the abstractions of Spark make it 

simple [30].Now we will discuss the[31] various 

characteristics of Spark are. 

 

11.1. Rapid Processing 

Using Apache Spark, we instate a high data 

processing speed of about 100x faster in memory and 

10x faster on the disk. This is made feasible by 

deficiency the number of read-write to disk. 

11.2. Dynamic in Nature 

We can comfortably develop a parallel application, as 

Spark endow80 high-level operators. 

11.3. High-Level Analytics 

The best and masterly characteristics of Apache 

Spark is its changeability. It endorsement Machine 

learning (ML), Graph algorithms, SQL queries and 

Streaming data along with MapReduce. 

11.4. In-Memory Computation in Spark 

In-memory processing, we can rise the processing 

speed. Therein the data is being cached, so we 

necessity doesn't bring in data from the disk every 

time thus the time is saved. The Spark hasDAG 

execution engine [31]  which facilitates in-memory 

computation and acyclic data flow outcome in 

improved speed. 

11.5. Reusability 

The Spark code can be reused for batch-processing, 

join the streamopposed to historical data or execute 

ad-hoc queries on stream state. 

11.6. Fault Tolerance in Spark 

The Apace Spark endowsfault tolerance through 

Spark abstraction RDD. Spark RDDs are designed to 

handle the lack of success of any worker node in the 

cluster. Consequently, it makes surethat the loss of 

data is diminished to zero. Cognize various ways to 

create RDD in Apache Spark. 

11.7. Real-Time Stream Processing 

The Spark has a facilityfor real-time stream 

processing. Prior to the difficulty with Hadoop 

MapReduce was that it can handle and process data 

which is previously present, but not the real-time 

data. However,Spark streaming we can solve this 

difficulty. 

11.8. Sluggish Evaluation in Apache Spark 

Entire transformations we make in Spark 

RDD are sluggish in nature, that is, it does not give 

the outcome right away rather a new RDD is formed 

from the current one. Consequently, this increases the 

dexterity [30] of the system.  

 

http://data-flair.training/blogs/apache-spark-in-memory-computing/
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11.9. Support Various Languages 

In Spark, there is support for various languages like 

Java, R, Scala, Python. Consequently, it 

endowsdynamicity and overcomes the issue of 

Hadoop that it can build applications only in Java. 

11.10. Active, Progressive and Expanding Spark 

Community 

The programmer from over 50 companies 

wereassociated with making of Apache Spark. This 

project was initiated in the since 2009 and is still 

expanding and now there are about 250 developers 

who contributed to its expansion. It is the most vital 

project for Apache community. 

11.11. Support for Intricate Analysis 

 The Spark comes with faithful tools for 

streaming data, interactive as well as declarative 

queries, machine learning which add-on to map and 

reduce. 

11.12. Integrated with Hadoop 

Spark can execute autonomously and also on Hadoop 

YARN cluster Manager and thus it can read a alive 

Hadoop data and Spark is resilient. 

11.13. Spark GraphX 

The Spark has GraphX, which is a 

component for graph and graph-parallel computation. 

This is over-simplifythe graph analytics tasks by the 

collection of graph algorithm and builders. 

11.14. Economical 

The Spark is an economical solution for Big data 

issue as in the Hadoop huge amount of storage and 

the huge data center is needed during replication. 

11.15. Strong 

The Spark provides apliability to implement both 

stream processing and batch of data at the same 

moment, which permits organizations to over-

simplify deployment, application 

developmentandmaintenance. 

 

 

 

XII.  DRAWBACK OF APACHE SPARK 

As we knowApache Sparkis the next 

generation Big data tool that is being extended[32] 

used by industries, but there are a few drawbacksof 

Apache Spark. 

 

12.1. No Support for Real-time Processing 

On Spark streaming, the reach live stream of 

data is split into batches of the pre-defined interval, 

and every batch of data behaveslike Spark Resilient 

Distributed Database (RDDs). Then these RDDs are 

processed using the operations like a map, reduce, 

join etc. The outcome of these operations is coming 

back in batches.  Therefore, it is not real time 

processing, but Spark is near real-time processing of 

data exists.  

 

12.2. Trouble with Small File 

Whenever use Spark with Hadoop, we come 

across anissue of a small file. HDFS endow a limited 

number of huge files rather than a huge number of 

small files. Another place where Spark legs at the 

back of  we store the data gzipped in S3. This pattern 

is very pleasant [32] except when there are lots of 

small gzipped files. Presently the work of the Spark 

is to keep those files on network and uncompress 

them. Besides the gzipped files can be uncompressed 

only if the whole file is on one basic. Therefore a 

large span of time will be spent on burning their core 

unzipping files in sequence.In the outcome RDD, 

every file will become aecheloned,for this reason 

there will be a huge amount of tiny echeloned within 

an RDD. At the moment, if we want dexterity in our 

processing, the RDDs should be re-echeloned into 

some manageable format. This needscomprehensive 

shuffling over the network. 

 

12.3. No Support for File Management System 

The Apache Spark does not have its personal file 

management system, in consequence, it depends on 

some another platform like Hadoop as well as 

another cloud-based platform which is one of the 

Spark known matter. 

 

12.4. High-Priced 

In memory capacity can become a 

bottleneck when we want cost-efficient processing of 

big data as keeping data in memory is completely 

high-priced, the memory utilization is very high, and 

it is not handled in a user-friendly fashion. The 

Apache Spark needs lots of RAM to run in-

memory,in consequence the cost of Spark is 

completely high-priced. 

 

12.5. Very Fewer number of Algorithms 

The Spark MLlib lags behind in terms of a number of 

accessible algorithms like Tanimoto distance. 

 

12.6. Manual Ameliorate 

The Spark job needs to be manually ameliorateand is 

sufficient to specific datasets. If we want to 

segmentation and cache in Spark to be right, it should 

be controlled manually. 

12.7. Repeatedly Processing 

In Spark, the data repeatedly in batches and 

everyrepeatedly is scheduled and executed on one 

side. 

 

12.8.  Latency 

The Apache Spark has excessive reaction time as 

compared to Apache Flink. 

12.9. Window Standard 

The Spark does not endorsement record based 

window standard. It only has time-based window 

standard. 

12.10. Consumes More Memory 

http://data-flair.training/blogs/apache-spark-rdd-persistence-caching/
http://data-flair.training/blogs/apache-flink-big-data-unified-platform/
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It makes use of a lot of memory,and problem around 

memory consumption are not handled in a user 

friendly manner. 

 

12.11. Back Stress Handling 

In Spark the back stress is built up of data at an I/O 

when the buffer is full and not able to receive the 

extra incoming data. The no data is transferred,so 

long as the buffer is blank. Apache Spark is not 

competent of handling stress implicitly by choice,it is 

done manually. 

 

XIII. COMPARATIVEANALYSIS 

BETWEEN SPARK VS HADOOP VS 

MAPREDUCE 

In this section, we are comparativeanalysis between 

Spark and Hadoop and MapReduce has shown in 

below table 1 and 2 [33][34][35][36]. 

 

 
Table 1. The Comparative Analysis Between Spark and MapReduce 
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Table 2. The Comparative Analysis Between Spark and Hadoop 

XI. CONCLUSION The majority data analysts would otherwise 
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have to resort to using agglomeration of other 

unrelated packages to get their work complete, which 

makes things intricate. In this context, Spark libraries 

are designed to all work jointly, on the same piece of 

data, which is more integrated and convenient to use. 

The Apache Spark is an open-source, distributed 

processing system normally used for big data 

workloads. Spark can run in a standalone cluster 

mode that simply need the Apache Spark framework 

and a JVM on every machine in your cluster. Apache 

Spark improves execution for rapid performance and 

make use of  in-memory caching, and itsendorsement 

common batch processing, graph databases, ad hoc 

queries, machine learning, and streaming analytics. In 

this paper, we are presentingSpark concepts, 

necessity for Apache  Spark, Spark Ecosystem and its 

components, we also highlight the Sparkapplication 

architecture.Afterwards, we are alsoinvestigating the 

Resilient Distributed Datasets in Spark.Thispaper 

aims to provide a briefoverview of this exciting 

area.Finally, the Spark will enable developers to do 

real-time analysis of everything from trading data to 

web clicks, in aconvenient to develop an 

environment, which remarkable speed. 
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