RESEARCH ARTICLE

OPEN ACCESS

Extra Geometry I. Extra lines

¹I. Szalay ,²B. Szalay

Corresponding Author: ¹I. Szalay

ABSTRACT

Using the theory of exploded numbers by the axiom – systems of real numbers and Euclidean geometry, we introduce a the concept of extra - line of the three – dimensional space. The extra - lines are the visible subsets of super – lines which are the explodeds of the Euclidean lines. We investigate the main properties of extra – lines. We prove more similar properties of Euclidean lines and extra – lines, but with respect to the paralellity there is an essential difference among them.

Keywords: exploded and compressed numbers ,super – line, extra – line, border points, extra – prallelity.

Date of Submission: 19-12-2017

I. INTRODUCTION

We imagine our universe as the familiar three dimensional Euclidean space

$$\mathbb{R}^{3} = \begin{cases} P = (x, y, z) | \begin{cases} -\infty < x < \infty \\ -\infty < y < \infty \\ -\infty < z < \infty \end{cases} \end{cases}$$

with its well known apparatus, among others

- the ordered field (\mathbb{R} , < , + , \cdot) of real numbers,
- the vector algebra of \mathbb{R}^3 : the multiplication $c \cdot P = (cx. cy, cz), c \in \mathbb{R}, P \in \mathbb{R}^3$ the addition

 $P_1 + P_2 = (x_1 + x_2, y_1 + y_2, z_1 + z_2)$, the inner product $P_1 \cdot P_2 = x_1 \cdot x_2 + y_1 \cdot y_2 + z_1 \cdot z_2$, the norm $||P|| = \sqrt{P \cdot P}$ and distance $d(P_1, P_2) = ||P_1 - P_2||$.

The apparatus of exploded and compressed numbers is described in [1]. (See Chapter 2.). Here we collect the some important informations:

- For any $x \in \mathbb{R}$ its exploded is denoted by \check{x} .A two – dimensional model for \check{x} is the ordered pair $((sgn x) \cdot tanh^{-1}\{|x|\}, (sgn x) \cdot [|x|])$ (Here, $tanh^{-1}x = \frac{1}{2}ln\frac{1+x}{1-x}, -1 < x < 1; [x]$ is the greatest integer number, which is less than or equal to x and $\{x\} = x - [x]$.) The mapping $x \to \check{x}$ is mutually unambiguous. (See [1] Theorem 3.2.6.)The set of exploded numbers is denoted by \mathbb{R} . If $x \in]-1,1$ [then instead of $((sgn x) \cdot tanh^{-1}\{|x|\}, 0)$ we write

 $\check{x} = \tanh^{-1} x$.

So, the set \mathbb{R} is a proper subset of \mathbb{R} .

- The set \mathbb{R} has an algebraic structure with the super – operations

 $\check{x}\overline{\bigcirc}\check{y}=\check{x\cdot y}\qquad;x,y\in\mathbb{R}$

 $\check{x} \overline{\bigoplus} \check{y} = \check{x} + \check{y} \quad ; x, y \in \mathbb{R}$

are called super – addition and super – multiplication, respectively.

Date of acceptance: 03-01-2018

- For any pair x̃, ỹ ∈ ℝ̃ we say that x̃ = ỹ if and only if x = y and x̃ < ỹ if and only if x < y. (Monotonity of explosion.) Hence, we have that (ℝ̃, <, ⊕̄, ⊙) is an ordered field which is isomorphic with (ℝ, <, +, ·).
- For any $u \in \mathbb{R}$ the real number <u>u</u> is called the compressed of u defined by the first inversion formula

$$(\underline{\widetilde{u}}) = u$$
 , $u \in \mathbb{R}$.

Hence, for any $u \in \mathbb{R}$ we have

$$\underline{u} = \tanh u \left(= \frac{e^u - e^{-u}}{e^u + e^{-u}}\right)$$
, $u \in \mathbb{R}$.

- The first inversion formula yields the second inversion formula

$$(\check{x}) = x$$
 , $x \in \mathbb{R}$.

- Using the inversion formulas we give the super – operations other forms

$$u \overline{\bigoplus} v = \underline{u} + \underline{v} \quad ; u, v \in \mathbb{X} ,$$

and

$$u\ \overline{\odot}\ v = \underline{\widetilde{u\cdot v}} \qquad ; u,v\in \check{\mathbb{R}} \ ,$$

Moreover, we use the super – subtraction and super - division

$$u \ \overline{\Theta} \ v = \underline{u} - \underline{v} \qquad ; u, v \in \mathbb{R},$$

and

$$u \ \overline{\oslash} \ v = \underline{u} : \underline{v} \qquad ; u, v(\neq 0) \in \mathbb{R},$$

respectively.

www.ijera.com

 $\mathcal{P}_1 \overline{\Theta} \mathcal{P}_2 =$

Extending the concept of additive inverse element for exploded number u we denote by (-u) the exploded number for which $u\overline{\oplus}(-u) = 0$. Moreover,

$$\underline{(-u)} = -\underline{u} \qquad , u \in \mathbb{R}.$$

is obtained. The super absolute value of the exploded number u, denoted by]u[, such that

$$|u[= \begin{cases} u \text{ if } u > 0\\ 0 \text{ if } u = 0\\ -u \text{ if } u < 0 \end{cases}$$

Clearly, if *u* is a real number then |u| =]u[.

The exploded numbers (-1) and $\check{1}$ are not real numbers. (-1) is the greatest exploded number which is smaller than each real number and $\check{1}$ is the smallest exploded number which is greater than each real number. (-1) and $\check{1}$ are called negative and positive discriminators, respectively. Clearly, the exploded number $u(\in \mathbb{R})$ is a real number that is $-\infty < u < \infty$ if and only if -1 < u < 1.

If $P = (x, y, z) \in \mathbb{R}^3$ then its exploded is denoted by $\check{P} = (\check{x}, \check{y}, \check{z})$. Clearly, the mapping $P \to \check{P}$ is mutually unambiguous. If $\mathcal{P} = (u, v, w) \in \mathbb{R}^3$ then its compressed is denoted by $\underline{\mathcal{P}} = (\underline{u}, \underline{v}, \underline{w})$.So, we have the inversion formulas for points

(0.1)

$$(\check{P}) = P(\in \mathbb{R}^3) \quad and \quad (\check{P}) = \mathcal{P}(\in \check{\mathbb{R}}^3).$$

In this paper the model of the Multiverse

$$\widetilde{\mathbb{R}^3} = \left(\mathcal{P} = \check{P} \middle| P \in \mathbb{R}^3\right)$$

is created by the poinweise explosion of our universe. On the analogy of the euclidean space \mathbb{R}^3 , for the Multiverse we use the following concepts. Let

$$\gamma, \gamma_1, \gamma_2$$

be exploded numbers and let

 $\mathcal{P} = (u, v, w), \mathcal{P}_1 = (u_1, v_1, w_1), \mathcal{P}_2 = (u_2, v_2, w_2) \dots$ and so on, be the points of Multiverse. On the analogy of vector – addition we give

$$\mathcal{P}_1\overline{\oplus}\mathcal{P}_2 = (u_1\overline{\oplus}u_2, v_1\overline{\oplus}v_2, w_1\overline{\oplus}w_2).$$

Using the other form of super- addition we can prove

(0.2)
$$\mathcal{P}_1 \overline{\bigoplus} \mathcal{P}_2 = \left(\underline{\mathcal{P}_1} + \underline{\mathcal{P}_2}\right).$$

Moreover, the properties

$$\begin{cases} \mathcal{P}_{1}\overline{\bigoplus}\mathcal{P}_{2} = \mathcal{P}_{2}\overline{\bigoplus}\mathcal{P}_{1} \\ (\mathcal{P}_{1}\overline{\bigoplus}\mathcal{P}_{2})\overline{\bigoplus}\mathcal{P}_{3} = \mathcal{P}_{1}\overline{\bigoplus}(\mathcal{P}_{2}\overline{\bigoplus}\mathcal{P}_{3}) \\ \mathcal{P}\overline{\bigoplus}\mathcal{O} = \mathcal{P} \\ \mathcal{P}\overline{\bigoplus}(-\mathcal{P}) = \mathcal{O} \quad , where - \mathcal{P} = (-u, -v, -w) \end{cases}$$

are valid.

(0, 2)

In the case of super – subtraction we can write

$$(0.3)$$

 $(\mathcal{P}_1 - \mathcal{P}_2).$

On the analogy of multiplying by scalar $\gamma \in \mathbb{K}$, we give

$$\gamma \overline{\odot} \mathcal{P} = \left(\gamma \overline{\odot} u, \gamma \overline{\odot} v, \gamma \overline{\odot} w \right)$$

Using the other form of super- multiplication we can prove

(0.4)
$$\gamma \overline{\odot} \mathcal{P} = \left(\underline{\gamma} \cdot \underline{\mathcal{P}}\right).$$

Moreover, the properties

$$\begin{cases} \gamma \overline{\odot} (\mathcal{P}_1 \overline{\oplus} \mathcal{P}_2) = (\gamma \overline{\odot} \mathcal{P}_1) \overline{\oplus} (\gamma \overline{\odot} \mathcal{P}_2) \\ (\gamma_1 \overline{\oplus} \gamma_2) \overline{\odot} \mathcal{P} = (\gamma_1 \overline{\odot} \mathcal{P}) \overline{\oplus} (\gamma_2 \overline{\odot} \mathcal{P}) \\ (\gamma_1 \overline{\odot} \gamma_2) \overline{\odot} \mathcal{P} = \gamma_1 \overline{\odot} (\gamma_2 \overline{\odot} \mathcal{P}) \\ 1 \overline{\odot} \mathcal{P} = \mathcal{P} \end{cases}$$

are valid. We may observe that $-\mathcal{P} = -1\overline{\odot}\mathcal{P}$. Although it is a little bit funny, we use the identity

(0.5)
$$\mathcal{P} \overline{\oslash} \gamma = \left(\underline{\mathcal{P}} : \underline{\gamma}\right) , \gamma \neq 0,$$

too.

On the analogy of the inner product we give

$$\mathcal{P}_1\overline{\odot}\mathcal{P}_2 = (u_1\overline{\odot}u_2)\overline{\oplus}(v_1\overline{\odot}v_2)\overline{\oplus}(,w_1\overline{\odot}w_2).$$

Using the definition of super addition and the other form of super- multiplication we can prove

$$(0.6) \qquad \qquad \mathcal{P}_1 \overline{\odot} \mathcal{P}_2 = \underbrace{\left(\underline{\mathcal{P}_1} \cdot \underline{\mathcal{P}_2}\right)}_{l}.$$

Moreover, we have the familar properties of the traditional inner product

$$\begin{cases} \mathcal{P}_{1}\overline{\odot}\mathcal{P}_{2} = \mathcal{P}_{2}\overline{\odot}\mathcal{P}_{1}\\ (\gamma\overline{\odot}\mathcal{P}_{1})\overline{\odot}\mathcal{P}_{2} = \gamma\overline{\odot}(\mathcal{P}_{1}\overline{\odot}\mathcal{P}_{2})\\ (\mathcal{P}_{1}\overline{\oplus}\mathcal{P}_{2})\overline{\odot}\mathcal{P}_{3} = (\mathcal{P}_{1}\overline{\odot}\mathcal{P}_{3})\overline{\oplus}(\mathcal{P}_{2}\overline{\odot}\mathcal{P}_{3})\\ \mathcal{P}\overline{\odot}\mathcal{P} \ge 0 \text{ and } \mathcal{P}\overline{\odot}\mathcal{P} = 0 \Leftrightarrow \mathcal{P} = 0 \end{cases}$$

Having that $\|\underline{\mathcal{P}}\| = \sqrt{(\underline{\mathcal{P}} \cdot \underline{\mathcal{P}})}$ for the super – norm we give the definition

$$(0.7)]|\mathcal{P}|[=(\overline{||\mathcal{P}||}).$$

We can prove the following propertes

$$\begin{split} ||\mathcal{P}|[\geq 0 \text{ and }]|\mathcal{P}|[= 0 \Leftrightarrow \mathcal{P} = \mathcal{O} = (0,0,0). \\]|\gamma \overline{\odot} \mathcal{P}|[=]\gamma [\overline{\odot}]|\mathcal{P}|[\\]\mathcal{P}_1 \overline{\odot} \mathcal{P}_2[\leq]|\mathcal{P}_1|[\overline{\odot}]|\mathcal{P}_2|[, (Cauchy - inequality) \\]|\mathcal{P}_1 \overline{\oplus} \mathcal{P}_2|[\leq]|\mathcal{P}_1|[\overline{\oplus}]|\mathcal{P}_2|[, (Minkowsky - inequality). \end{split}$$

www.ijera.com

We can say that the Multiverse \mathbb{R}^3 is a normed (Euclidean) space. If we define the super – distance of the points a Multiverse such as $d_{\mathbb{R}^3}(\mathcal{P}_1, \mathcal{P}_2) =$ $]|\mathcal{P}_1 \overline{\ominus} \mathcal{P}_2|[$ then (0.3), (0.7) and (0.1) yield (0.8) $d_{\mathbb{R}^3}(\mathcal{P}_1, \mathcal{P}_2) =$

$$\left(d\left(\underline{\mathcal{P}_1},\underline{\mathcal{P}_2}\right)\right).$$

By (0.8) we can prove the following properties $d_{\mathbb{R}^3}(\mathcal{P}_1, \mathcal{P}_2) \ge 0 \text{ and } d_{\mathbb{R}^3}(\mathcal{P}_1, \mathcal{P}_2) = 0 \Leftrightarrow \mathcal{P}_1 = \mathcal{P}_2,$ $d_{\mathbb{R}^3}(\mathcal{P}_1, \mathcal{P}_2) = d_{\mathbb{R}^3}(\mathcal{P}_2, \mathcal{P}_1).$

Moreover, for any points $\mathcal{P}_1, \mathcal{P}_2$ and \mathcal{P}_3 of the Multiverse

 $d_{\mathbb{R}^{3}}(\mathcal{P}_{1},\mathcal{P}_{3}) \leq d_{\mathbb{R}^{3}}(\mathcal{P}_{1},\mathcal{P}_{2}) \oplus d_{\mathbb{R}^{3}}(\mathcal{P}_{2},\mathcal{P}_{3}),$ (triangular – inequality) is valid.

Considering a set of points of our universe

$$\mathbb{S} = \{ P = (x, y, z) | x, y, z \in \mathbb{R} \}$$

the set

$$\mathbf{\breve{S}} = \{\breve{P} \mid P \in \mathbf{S}\}$$

is called the exploded of S.

So, the explodeds of Euclidean lines and planes are called super – lines and super – planes, respectively. They satisfy the rules of Euclidean geometry.

Of course, the Multiverse is the exploded set of our universe \mathbb{R}^3 . The Multiverse was already denoted by $\widetilde{\mathbb{R}^3}$.

Considering a set of points of the Multiverse

$$\mathfrak{M} = \{ \mathcal{P} = (u, v, w) | u, v, w \in \mathbb{R} \}$$

the set

$$\underline{\mathfrak{M}} = \{\underline{\mathcal{P}} | \mathcal{P} \in \mathfrak{M}\}$$

is called the compressed of \mathfrak{M} . The formulas under (0.1) yield the inversion formulas for sets (0.9)

$$\underline{(\breve{\mathbb{S}})} = \mathbb{S}(\subset \mathbb{R}^3) \quad and \quad \underline{(\mathfrak{M})} = \mathfrak{M}(\subset \mathbb{R}^3).$$

Clearly, the compressed of our universe \mathbb{R}^3 is the open cube

$$\underline{\mathbb{R}^{3}} = \begin{cases} P = (x, y, z) | \begin{cases} -1 < x < 1 \\ -1 < y < 1 \\ -1 < z < 1 \end{cases}, \end{cases}$$

and

Fig. 0.10

(The Fig.0.10 shows some compressed lines in the compressed universe.)

Exploding $\underline{\mathbb{R}}^3$ we have our universe as a three – dimensional "big open cube".

$$\mathbb{R}^{3} = \left\{ \mathcal{P} = (u, v, w) \middle| \begin{cases} \underbrace{(-1) < u < 1}_{(-1) < v < \check{1}} \\ \underbrace{(-1) < v < \check{1}}_{(-1) < w < \check{1}} \end{cases} \right\}$$

1. The characterization of extra - lines

The points P = (x, y, z) of the Euclidean lines $\mathbb{L}_{P_0;E}$ are described by the vector – equation (1.1) $P = P_0 + t$.

$$E \quad ,-\infty < t < \infty ,$$
where $P = (x, y, z) \in \mathbb{P}^3$ and $E = (a, a, a) \in \mathbb{P}^3$

where $P_0 = (x_0, y_0, z_0) \in \mathbb{R}^3$ and $E = (e_x, e_y, e_z) \in \mathbb{R}^3$ are given such that ||E|| = 1 or by the set

(1.2)
$$\mathbb{L}_{P_0;E} = \left\{ (x, y, z) \in \mathbb{R} : x = x0 + tex \ v = v0 + tev \ z = z0 + tez, -\infty < t < \infty \right\}.$$

Hence, the points $\mathcal{P} = (u, v, w)$ of the super – line $\widetilde{\mathbb{L}_{P_0;E}}$ are described by the equation

(1.3)
$$\mathcal{P} = \mathcal{P}_0 \oplus (\tau \odot \mathcal{E})$$
, $\tau \in \mathbb{R}$,
where $\mathcal{P}_0 = \widecheck{P_0}$, $\tau = \check{t}$ and $\mathcal{E} = \check{E}$. Clearly, $||\mathcal{E}|| = 1$. So, $\overbrace{\mathbb{L}_{P_0:E}}$ is a set of the Multiverse:

(1.4)
$$\widetilde{\mathbb{L}_{P_0;E}} = \begin{cases} (u, v, w) \in \\ \end{bmatrix}$$

such that $u_0 = \check{x}_0$, $v_0 = \check{y}_0$, $w_0 = \check{z}_0$ and $\varepsilon_x = \check{e}_x$, $\varepsilon_y = \check{e}_y$, $\varepsilon_z = \check{e}_z$. If $\mathcal{P}_1, \mathcal{P}_2$ and $\mathcal{P}_3 \in \overline{\mathbb{L}_{P_0;E}}$ then we say that \mathcal{P}_2 is an intermediate point between the points \mathcal{P}_1 and \mathcal{P}_3 if on the line $\mathbb{L}_{P_0;E}$, the point $\underline{\mathcal{P}_2}$ is situated between \mathcal{P}_1 and \mathcal{P}_1 The extra - line $\mathcal{L}_{\mathcal{P}_0,\mathcal{E}}$ is defined by

(1.5) $\mathcal{L}_{\mathcal{P}_{0},\mathcal{E}} = \widetilde{\mathbb{L}_{P_{0},E}} \cap \mathbb{R}^{3}.$ We remark, that $\mathcal{L}_{\mathcal{P}_{0},\mathcal{E}}$ is an open super passage of the super – line $\widetilde{\mathbb{L}_{P_{0},\mathcal{E}}}$ and the extra - line is visible in our universe. Clearly, $\mathcal{L}_{\mathcal{P}_{0},\mathcal{E}}$ is coincident with $\mathcal{L}_{\mathcal{L}_{0}^{*},\mathcal{E}^{*}}$ if and only if $\mathbb{L}_{P_{0};E} \cong \mathbb{L}_{\mathcal{L}_{0}^{*},\mathcal{E}^{*}}$. By (0.9) we can write that $\mathcal{L}_{\mathcal{P}_{0},\mathcal{E}} \cong \mathcal{L}_{\mathcal{L}_{0}^{*},\mathcal{E}^{*}} \Leftrightarrow \mathcal{L}_{\mathcal{P}_{0},\mathcal{E}} \cong \mathcal{L}_{\mathcal{L}_{0}^{*},\mathcal{E}^{*}}.$

Example 1.6.Let be $P_0 = \mathcal{O} = (0,0,0)$ and $E = \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)$. By (1.3) we have that $\widetilde{\mathbb{L}_{\mathcal{O};E}}$ is decribed by the equation $\mathcal{P} = \tau \overline{\odot} \mathcal{E}$, where $\tau \in \mathbb{R}$ and $\mathcal{E} = \left(\left(\frac{1}{\sqrt{6}}\right), \left(\frac{1}{\sqrt{6}}\right), \left(\frac{2}{\sqrt{6}}\right)\right)$. Considering, (1.4), (1.5)and (0.11) the inequalities

$$(1.7) \begin{cases} \overbrace{(-1)}^{\overbrace{(-1)}} < \tau \overline{\odot} \underbrace{\left(\frac{1}{\sqrt{6}}\right)}^{\overbrace{(-1)}} < \widecheck{1} \\ \overbrace{(-1)}^{\overbrace{(-1)}} < \tau \overline{\odot} \underbrace{\left(\frac{1}{\sqrt{6}}\right)}^{\overbrace{(-1)}} < \widecheck{1} \\ \overbrace{(-1)}^{\overbrace{(-1)}} < \tau \overline{\odot} \underbrace{\left(\frac{2}{\sqrt{6}}\right)}^{\overbrace{(-1)}} < \widecheck{1} \end{cases}$$

are required for $\mathcal{L}_{\mathcal{O},\mathcal{E}}$. If $(-\frac{\sqrt{6}}{2}) < \tau < (\sqrt{\frac{\sqrt{6}}{2}})$ then the requirements fulfill. Finally, using (1.2) by (1.4)

(1.8)
$$\mathcal{L}_{\mathcal{O},\mathcal{E}} = \begin{cases} (u, v, w) \in \\ \end{array}$$

 $\mathcal{R}3u = \tanh -1t6\nu = \tanh -1t6w = \tanh -12t6 \quad ,$ where $-\frac{\sqrt{6}}{2} < t < \frac{\sqrt{6}}{2}$

is obtained.

The graph of the extra – line $\mathcal{L}_{\mathcal{O},\mathcal{E}}$

Fig. 1.9 shows that the extra- line is not an Euclidean line, in general.■

As the our universe is subset of Multiverse we are able to close \mathbb{R}^3 . Namely,

$$\overline{\mathbb{R}^3} = \left\{ P = (u, v, w) \in \widetilde{\mathbb{R}^3} \middle| \begin{cases} \overleftarrow{(-1)} \le u \le \check{1} \\ \overleftarrow{(-1)} \le v \le \check{1} \\ \overleftarrow{(-1)} \le w \le \check{1} \end{cases} \right\}.$$

So, our universe is bordered by six super – planes, decribed by the equations

Lower border :
$$w = (-1)$$
, Upper border : $w = 1$,
Before border : $v = (-1)$, Back border :
 $v = 1$,
and
Left border : $u = (-1)$
Bight border : $u = (-1)$

Left border : u = (-1), Right border : u = 1. Of course, the border of \mathbb{R}^3 is invisible from our

universe. Considering (1.4), $P_0 \in \mathbb{R}^3$ yields that the super – line $\overline{\mathbb{L}_{P_0;\mathcal{E}}}$ has two joint points with the border of $\overline{\mathbb{R}^3}$. These points are called the border – ponts of extra – line $\mathcal{L}_{\mathcal{P}_0,\mathcal{E}}$ (see (1.5)) and denoted by $\mathcal{B}_1(\mathcal{L}_{\mathcal{P}_0,\mathcal{E}})$ and $\mathcal{B}_2(\mathcal{L}_{\mathcal{P}_0,\mathcal{E}})$.

Theorem 1.10. If $\mathcal{B}_1 = (u_1, v_1, w_1)$ and $\mathcal{B}_2 = (u_2, v_2, w_2)$ are different points on the border of \mathbb{R}^3 and they do not situate on the same super – plane then the points $\mathcal{P} = (u, v, w) \in \mathbb{R}^3$ described by the equation (1.11)

$$\mathcal{P} = \left(\left(\underbrace{\overset{i}{1}}{2} \right) \overline{\mathbb{O}}(\mathcal{B}_1 \overline{\oplus} \mathcal{B}_2) \right) \overline{\oplus} \left(\tau \overline{\mathbb{O}} \left((\mathcal{B}_1 \overline{\bigoplus} \mathcal{B}_2) \overline{\mathbb{O}} \right] |\mathcal{B}_1 \overline{\bigoplus} \mathcal{B}_2 | [\right) \right) ,$$

form a super – line which contains \mathcal{B}_1 and \mathcal{B}_2 , such that

(1.12)
$$\left(\left(\underbrace{\widetilde{1}}{2}\right)\overline{\odot}(\mathcal{B}_1\overline{\oplus}\mathcal{B}_2)\right)\in\mathbb{R}^3$$

fulfills. Moreover, for the parameter - domain

(1.13)
$$\left(-\frac{1}{2}\right)\overline{\odot}|\mathcal{B}_1 \overline{\ominus} \mathcal{B}_2|| < \tau < \left(\overline{\frac{1}{2}}\right)\overline{\odot}|\mathcal{B}_1 \overline{\ominus} \mathcal{B}_2||$$

the points of super – line give an extra – line with the border – points \mathcal{B}_1 and \mathcal{B}_2 .

Proof. As
$$\left((\underbrace{\widetilde{1}}_{2})\overline{\odot}(\mathcal{B}_{1}\overline{\oplus}\mathcal{B}_{2})\right) \in \mathbb{R}^{3}$$
 it is obvious that
 $P_{0} = \left((\underbrace{\widetilde{1}}_{2})\overline{\odot}(\mathcal{B}_{1}\overline{\oplus}\mathcal{B}_{2})\right) \in \mathbb{R}^{3}$ is valid. Similarly,

$$E = \underbrace{\left(\left(\mathcal{B}_1 \overline{\ominus} \mathcal{B}_2 \right) \overline{\oslash} \right] | \mathcal{B}_1 \overline{\ominus} \mathcal{B}_2 | \left[\right)}_{\mathbb{C}} \in \mathbb{R}^3 , \quad \text{where}$$

 $\begin{aligned} \left\| \mathcal{B}_1 \ \overline{\bigoplus} \ \mathcal{B}_2 \right\| &\neq 0 \text{, because} \mathcal{B}_1 \neq \mathcal{B}_2. \\ \text{Using (0.1), (0.3), (0.5) and (0.7)} \end{aligned}$

 $\tau \in$

$$(\mathcal{B}_{1} \overline{\bigcirc} \mathcal{B}_{2}) \overline{\oslash}]|\mathcal{B}_{1} \overline{\ominus} \mathcal{B}_{2}|[$$

$$= (\underline{\mathcal{B}_{1}} - \underline{\mathcal{B}_{2}}) \overline{\oslash} (||\underline{\mathcal{B}_{1}} \overline{\ominus} \mathcal{B}_{2}||) =$$

$$= (\underline{\mathcal{B}_{1}} - \underline{\mathcal{B}_{2}}) \overline{\oslash} ||\underline{\mathcal{B}_{1}} - \underline{\mathcal{B}_{2}}||$$

$$= ((\underline{\mathcal{B}_{1}} - \underline{\mathcal{B}_{2}}) \cdot ||\underline{\mathcal{B}_{1}} - \underline{\mathcal{B}_{2}}||).$$

By the first inversion formulas for points (see (0.1)) $E = \frac{\underline{B_1} - \underline{B_2}}{\|\underline{B_1} - \underline{B_2}\|}$ is obtained. Hence, $\|E\| = 1$. Considering (1.1) and (1.3) with $\mathcal{P}_0 = (\overline{\frac{1}{2}}) \overline{\odot} (\mathcal{B}_1 \overline{\oplus} \mathcal{B}_2)$ and

$$\mathcal{P}_{0} = \left(\frac{1}{2}\right) \odot \left(\mathcal{B}_{1} \oplus \mathcal{B}_{2}\right)$$
$$\mathcal{E} = \left(\mathcal{B}_{1} \overline{\bigcirc} \mathcal{B}_{2}\right) \overline{\oslash} \left[\mathcal{B}_{1} \overline{\bigcirc} \mathcal{B}_{2}\right] \left[\mathcal{B}_{1} \overline{] \mathcal{B}_{2}\right] \left[\mathcal{B}_{1} \overline{] \mathcal{B}_{2}\right] \left[\mathcal{B}_{1} \overline{] \mathcal{B}_{2}\right] \left[\mathcal{B}_{1} \overline{] \mathcal{B}_{2}\right] \left[\mathcal{B}_{1} \overline{]$$

we have that (1.11) determines a super – line. For the parameters $\tau = (-\frac{1}{2})\overline{\odot} |\mathcal{B}_1 \overline{\ominus} \mathcal{B}_2|[$

and
$$\tau = (\widetilde{\frac{1}{2}})\overline{\odot} |\mathcal{B}_1 \overline{\ominus} \mathcal{B}_2| [(1.11) \text{ yields the points}$$

$$\mathcal{P} = \left((\widetilde{\frac{1}{2}})\overline{\odot} (\mathcal{B}_1 \overline{\oplus} \mathcal{B}_2) \right) \overline{\oplus} \left((\widetilde{-\frac{1}{2}})\overline{\odot} (\mathcal{B}_1 \overline{\ominus} \mathcal{B}_2) \right)$$
$$= \mathcal{B}_2$$

and

$$\mathcal{P} = \left(\left(\underbrace{\widetilde{1}}_{2} \right) \overline{\odot} (\mathcal{B}_{1} \overline{\oplus} \mathcal{B}_{2}) \right) \overline{\oplus} \left(\left(\underbrace{\widetilde{1}}_{2} \right) \overline{\odot} (\mathcal{B}_{1} \overline{\ominus} \mathcal{B}_{2}) \right)$$
$$= \mathcal{B}_{1},$$

respectively.

Because the border – points \mathbb{B}_1 and \mathbb{B}_2 do not situate on the same super – plane, we have

$$\underbrace{(-2)}_{(-2)} < u_1 \overline{\oplus} u_2 < \check{2}; \ \underbrace{(-2)}_{(-2)} < v_1 \overline{\oplus} v_2 < \check{2}; \ \underbrace{(-2)}_{(-2)}$$
$$< w_1 \overline{\oplus} w_2 < \check{2}$$

and so,

$$\begin{cases} \overbrace{(-1)}^{(1)} < (\overbrace{\frac{1}{2}}^{\widetilde{1}}) \overline{\odot}(u_1 \overline{\oplus} u_2) < 1 \\ \\ \overbrace{(-1)}^{(-1)} < (\overbrace{\frac{1}{2}}^{\widetilde{1}}) \overline{\odot}(v_1 \overline{\oplus} v_2) < 1 \\ \\ \overbrace{(-1)}^{(-1)} < (\overbrace{\frac{1}{2}}^{\widetilde{1}}) \overline{\odot}(w_1 \overline{\oplus} w) < 1 \end{cases}$$

by (0.10) we can see, that (1.12) is fulfilled.

Considering the points $\mathcal{P} = (u, v, w)$ of super – plane, the vector – equation (1.11) is equivalent with the equation system

$$(1.14)$$

$$\begin{pmatrix}
u = \left(\left(\overline{\frac{1}{2}}\right)\overline{\odot}(u_{1}\overline{\oplus}u_{2})\right)\overline{\oplus}\left(\tau\overline{\odot}\left(\left(u_{1}\overline{\ominus}u_{2}\right)\overline{\oslash}\right]|\mathcal{B}_{1}\overline{\ominus}\mathcal{B}_{2}|[\right)\right)\\
v = \left(\left(\overline{\frac{1}{2}}\right)\overline{\odot}(v_{1}\overline{\oplus}v_{2})\right)\overline{\oplus}\left(\tau\overline{\odot}\left(\left(v_{1}\overline{\ominus}v_{2}\right)\overline{\oslash}\right]|\mathcal{B}_{1}\overline{\ominus}\mathcal{B}_{2}|[\right)\right)\\
w = \left(\left(\overline{\frac{1}{2}}\right)\overline{\odot}(w_{1}\overline{\oplus}w_{2})\right)\overline{\oplus}\left(\tau\overline{\odot}\left(\left(w_{1}\overline{\ominus}w_{2}\right)\overline{\oslash}\right]|\mathcal{B}_{1}\overline{\ominus}\mathcal{B}_{2}|[\right)\right)\\
, \tau \in \mathbb{R}.$$

$$(1) = t = t = t$$

If $u_1 = u_2$ then $u = \left(\frac{\overline{1}}{2}\right)\overline{\odot}(u_1\overline{\oplus}u_2)$. If $v_1 = v_2$ then $v = \left(\overline{\frac{1}{2}}\right)\overline{\odot}(v_1\overline{\oplus}v_2)$. If $w_1 = w_2$ then $w = \left(\overline{\frac{1}{2}}\right)\overline{\odot}(w_1\overline{\oplus}w_2)$.

As $\mathcal{B}_1 \neq \mathcal{B}_2$, it is necessary that one among the inequations $u_1 \neq u_2$, $v_1 \neq v_2$, $w_1 \neq w_2$ is fulfilled, at least. Assuming that $u_1 > u_2$.by (1.13)

$$\left(\left(\overline{\frac{1}{2}}\right)\overline{\odot}(u_1\overline{\oplus}u_2)\right)\overline{\oplus}\left(\left(\overline{-\frac{1}{2}}\right)\overline{\odot}(u_1\overline{\ominus}u_2)\right) < u$$
$$<\left(\left(\overline{\frac{1}{2}}\right)\overline{\odot}(u_1\overline{\oplus}u_2)\right)\overline{\oplus}\left(\left(\overline{\frac{1}{2}}\right)\overline{\odot}(u_1\overline{\ominus}u_2)\right)$$

that $isu_2 < u < u_1$ is obtained. (The assuption $u_1 < u_2$ results $u_1 < u < u_2$.) A similar argumentation used in the case of the other two inequations.

Finally, by (1.14) we have

$$u = \left(\frac{1}{2}\right) \overline{\odot} \left(u_1 \overline{\oplus} u_2\right) \text{ or } (\overline{-1}) \leq \min(u_1, u_2) < u$$

$$< \max(u_1, u_2) \leq \check{1}$$

$$v = \left(\overline{\frac{1}{2}}\right) \overline{\odot} \left(v_1 \overline{\oplus} v_2\right) \text{ or } (\overline{-1}) \leq \min(v_1, v_2) < v$$

$$< \max(v, v_2) \leq \check{1}$$

$$w = \left(\overline{\frac{1}{2}}\right) \overline{\odot} \left(w_1 \overline{\oplus} w_2\right) \text{ or } (\overline{-1}) \leq \min(w_1, w_2) < w$$

$$w < \max(w_1, w_2) \leq \check{1}.$$

Hemce, we can see that for the parameter - domain

$$\left(-\frac{1}{2}\right)\overline{\odot}||\mathcal{B}_1 \ \overline{\ominus} \ \mathcal{B}_2|| < \tau < \left(\frac{1}{2}\right)\overline{\odot}||\mathcal{B}_1 \ \overline{\ominus} \ \mathcal{B}_2||$$

the super – passage of the super – line is an extra – line with the border – points

 $\mathcal{B}_1 = (u_1, v_1, w_1) \text{ and } \mathcal{B}_2 = (u_2, v_2, w_2).$

Example 1.15. Let us discover the extra line determined by the border points

$$\mathcal{B}_1 = \left(\left(-\frac{1}{2} \right), \left(-\frac{1}{2} \right), (-1) \right)$$
 and $\mathcal{B}_2 = \left(\left(\frac{1}{2} \right), \left(\frac{1}{2} \right), 1 \right)$.
Solution.

We apply Theorem 1.10. Now,

$$\begin{split} & \left(\overline{\frac{1}{2}}\right)\overline{\odot}(\mathcal{B}_{1}\overline{\bigoplus}\mathcal{B}_{2}) = \mathcal{O} = (0,0,0) ; \left(\mathcal{B}_{1}\overline{\bigoplus}\mathcal{B}_{2}\right) = \\ & \left(\overline{(-1)},\overline{(-1)},\overline{(-2)}\right) ; \left]|\mathcal{B}_{1}\overline{\bigoplus}\mathcal{B}_{2}|\right[= \left(\overline{\sqrt{6}}\right) . \\ & \left(\mathcal{B}_{1}\overline{\bigoplus}\mathcal{B}_{2}\right)\overline{\mathcal{O}}\right]|\mathcal{B}_{1}\overline{\bigoplus}\mathcal{B}_{2}|\left[= \left(\overline{\sqrt{6}}\right),\overline{\left(-\frac{1}{\sqrt{6}}\right)}, \left(-\frac{2}{\sqrt{6}}\right)\right); \end{split}$$

$$\widetilde{\left(-\frac{1}{2}\right)}\overline{\odot}]|\mathcal{B}_1 \ \overline{\ominus} \ \mathcal{B}_2|[=\left(-\widetilde{\frac{\sqrt{6}}{2}}\right); \left(\overline{\frac{1}{2}}\right)\overline{\odot}]|\mathcal{B}_1 \ \overline{\ominus} \ \mathcal{B}_2|[=\left(\overline{\frac{\sqrt{6}}{2}}\right).$$

So, by (1.11) and (1.13) we have (1.16)

$$\mathcal{P} = \left(\left(-\frac{1}{\sqrt{6}} \right) \overline{\odot} \tau , \left(-\frac{1}{\sqrt{6}} \right) \overline{\odot} \tau , \left(-\frac{2}{\sqrt{6}} \right) \overline{\odot} \tau \right)$$
$$\left(\overline{-\frac{\sqrt{6}}{2}} \right) < \tau < \overline{\left(\frac{\sqrt{6}}{2} \right)} .$$

The vector equation (1.16) gives the equation system

$$(1.17) \begin{cases} u = \left(-\frac{1}{\sqrt{6}}\right)\overline{\odot}\tau = -\tanh^{-1}\frac{\tanh\tau}{\sqrt{6}} \\ v = \left(-\frac{1}{\sqrt{6}}\right)\overline{\odot}\tau = -\tanh^{-1}\frac{\tanh\tau}{\sqrt{6}} \\ w = \left(-\frac{2}{\sqrt{6}}\right)\overline{\odot}\tau = -\tanh^{-1}\frac{2\tanh\tau}{\sqrt{6}} \\ \end{bmatrix}, \quad -\frac{\sqrt{6}}{\sqrt{6}} < \tanh\tau < \frac{\sqrt{6}}{2}. \end{cases}$$

Comparing (1.8) and (1.17) we can observe that our extra line is $\mathcal{L}_{\mathcal{O},E}$ with contrasted direction. The border point \mathcal{B}_1 with $\tau = \left(\frac{\sqrt{6}}{2}\right)$. is situated on the lower- border, while the border point \mathcal{B}_2 with $\tau = \left(-\frac{\sqrt{6}}{2}\right)$. is situated on the upper – border. Moreover, Fig. 1.9. shows the graph of the extra – line discovered now.

Remark 1.18. We return to the Example 1.6, where the extra – line $\mathcal{L}_{\mathcal{O},\mathcal{E}}$ is determined by the point \mathcal{O} and the "vector" $\mathcal{E} = \left(\overline{\left(\frac{1}{\sqrt{6}}\right)}, \overline{\left(\frac{1}{\sqrt{6}}\right)}, \overline{\left(\frac{2}{\sqrt{6}}\right)}\right)$, has the description (1.8). Considering

$$\lim_{t \to -\frac{\sqrt{6}}{2}} u(t) = -\tanh^{-1}\frac{1}{2}, \lim_{t \to -\frac{\sqrt{6}}{2}} v(t) =$$

$$t > -\frac{\sqrt{6}}{2} \qquad t > -\frac{\sqrt{6}}{2}$$

$$-\tanh^{-112} \quad \text{and} \quad \lim t \to -62t > -62wt = -\infty,$$

the (invisible) border – point
$$\mathcal{B}_1(\mathcal{L}_{\mathcal{O},\mathcal{E}}) = (\overbrace{(-\frac{1}{2})}^{-1}, \overbrace{(-\frac{1}{2})}^{-1}, \overbrace{(-1)}^{-1})$$
 is obtained. Moreover, by

$$\lim_{t \to \frac{\sqrt{6}}{2}} u(t) = \tanh^{-1}\frac{1}{2}, \lim_{t \to \frac{\sqrt{6}}{2}} v(t) = \tanh^{-1}\frac{1}{2}$$

$$\lim_{t \to \frac{\sqrt{6}}{2}} w(t) = \infty,$$

$$\lim_{t \to -\frac{\sqrt{6}}{2}} u(t) = \infty,$$
we have (invisible) border – point $\mathcal{B}_2(\mathcal{L}_{\mathcal{O},\mathcal{E}}) = ((\overbrace{(\frac{1}{2})}^{-1}, (\overbrace{(\frac{1}{2})}^{-1}, 1)).$
Nomination 1.19. If the extra – line $\mathcal{L}_{\mathcal{P}_{O},\mathcal{E}}$ with

 $\mathcal{P}_{o} = \left(\frac{1}{2}\right) \overline{\bigcirc} (\mathcal{B}_{1} \overline{\bigoplus} \mathcal{B}_{2}) \qquad \text{and} \\ \mathcal{E} = \left(\mathcal{B}_{1} \overline{\bigcirc} \mathcal{B}_{2}\right) \overline{\oslash} \left||\mathcal{B}_{1} \overline{\ominus} \mathcal{B}_{2}|\right| \text{ is given by its border}$

points $\mathcal{B}_1(\mathcal{L}_{\mathcal{P}_0,\mathcal{E}})$ and $\mathcal{B}_2(\mathcal{L}_{\mathcal{P}_0,\mathcal{E}})$ we write $\mathcal{L}_{(\overline{1})\overline{\bigcirc}(\mathcal{B}_1\overline{\oplus}\mathcal{B}_2), (\mathcal{B}_1\overline{\ominus}\mathcal{B}_2)\overline{\oslash}]|\mathcal{B}_1\overline{\ominus}\mathcal{B}_2|[} = \mathcal{L}(|\mathcal{B}_1, \mathcal{B}_2[).$

II. THEOREMS FOR EXTRA -COLLINEARITY

Two or more points are said to be extracollinear (super – collinear) if there is an extra –line (super – line) that contains them.

If
$$\mathfrak{M}$$
 is a subset of the Multiverse \mathbb{R}^3 then

(2.1)
$$\mathfrak{M}_{box} = \mathfrak{M} \cap \mathbb{R}^3$$

is called the box- phenomenon of \mathfrak{M} . Clearly, $\widetilde{\mathbb{R}^3}_{box} = \mathbb{R}^2$

Theorem 2.2. If $\mathcal{P}_1 = (u_1, v_1, w_1)$ and $\mathcal{P}_2 = (u_2, v_2, w_2)$ are different points of the three – dimensional space \mathbb{R}^3 then the box- phenomenon of the set, having the points given by the equation (2.3)

$$\begin{array}{l} & \overbrace{\left(\left(\frac{1}{2}\right)\overline{\bigcirc}(\mathcal{P}_{1}\overline{\oplus}\mathcal{P}_{2})\right)}^{-} \overline{\oplus}\left(\tau\overline{\bigcirc}\left(\left(\mathcal{P}_{2}\overline{\bigcirc}\mathcal{P}_{1}\right)\overline{\oslash}\right]|\mathcal{P}_{2}\overline{\bigcirc}\mathcal{P}_{1}|[\right)\right) & , \quad \tau \in \\ & \overbrace{\mathbb{R},} \end{array}$$

is an extra – line which contains the points \mathcal{P}_1 and \mathcal{P}_2 . Shortly: \mathcal{P}_1 and \mathcal{P}_2 are extra-collinear.

Proof. Choosing $P_0 = \underbrace{\left(\frac{1}{2}\right)}_{2} \overline{\odot} \left(\mathcal{P}_1 \overline{\oplus} \mathcal{P}_2\right) = \frac{\mathcal{P}_1 + \mathcal{P}_2}{2}$ (see (0.1), (0.2) and (0.4))

and $E = (\mathcal{P}_2 \overline{\ominus} \mathcal{P}_1) \overline{\bigcirc}] | \mathcal{P}_2 \overline{\ominus} \mathcal{P}_1 | [$, (where

 $\left\| \mathcal{P}_2 \ \overline{\ominus} \ \mathcal{P}_1 \right\| \neq 0$ because $\mathcal{P}_2 \neq \mathcal{P}_1$) we consider the Euclidean line $\mathbb{L}_{\mathcal{P}_0, E}$ under (1.1)or under (1.2), where $t = \underline{\tau} \in \mathbb{R}$. It is easy to verify that

by the parameters $\tau_1 = (-\frac{1}{2})\overline{\odot} |\mathcal{P}_2 \overline{\bigcirc} \mathcal{P}_1|[$ and $\tau_2 =$

 $\left(\frac{1}{2}\right)\overline{\odot}\right|\mathcal{P}_2\overline{\odot}\mathcal{P}_1|$ [the (2.3) gives the points \mathcal{P}_1 and \mathcal{P}_2 , respectively. Hence, by (0.1), (0.3) (0.4) and (0.7) we can prove, that the points $\underline{\mathcal{P}}_1$ and $\underline{\mathcal{P}}_2$ (see the parameters

$$t_1 = \underbrace{\underbrace{\left(-\frac{1}{2}\right)\overline{\odot}}\right] |\mathcal{P}_2 \ \overline{\ominus} \ \mathcal{P}_1|[}_{\left(\frac{1}{2}\right)\overline{\odot}\right] |\mathcal{P}_2 \ \overline{\ominus} \ \mathcal{P}_1|[}_{2} = -\frac{\left\|\underline{\mathcal{P}_2 - \mathcal{P}_1}\right\|}{2} \text{ and } t_2 = \underbrace{\left(\frac{1}{2}\right)\overline{\odot}\right] |\mathcal{P}_2 \ \overline{\ominus} \ \mathcal{P}_1|[}_{2} = \frac{\left\|\underline{\mathcal{P}_2 - \mathcal{P}_1}\right\|}{2},$$

respectively) situated on the line $\mathbb{L}_{P_0,E}$. By the axioms of Euclidean geometry the ponts $\underline{\mathcal{P}}_1$ and $\underline{\mathcal{P}}_2$ determine one and only one line. Exploding this line we have that the points given by the equation (2.3) form a super – line $\overline{\mathbb{L}_{P_0,E}}$.Finally, by (1.5) and (2.1) we get that the requested extra-line is $(\overline{\mathbb{L}_{P_0,E}})_{hox}$.

Example 2.4. Let us discover the extra - line determined by the points

 $\mathcal{P}_1 = \mathcal{O} = (0,0,0)$ and $\mathcal{P}_2 = (1,1,2)$.

Solution.

We apply Theorem 1.10. Now, considering (2.3) with $P_0 = \left(\frac{\tanh 1}{2}, \frac{\tanh 1}{2}, \frac{\tanh 2}{2}\right)$ we have:

$$\begin{split} & \underbrace{\left(\frac{1}{2}\right)}{\overline{\odot}}\left(\mathcal{P}_{1}\overline{\bigoplus}\mathcal{P}_{2}\right) \\ &= \left(\tanh^{-1}\frac{\tanh 1}{2}, \tanh^{-1}\frac{\tanh 1}{2}, \tanh^{-1}\frac{\tanh 2}{2}\right); \mathcal{P}_{2} \overline{\ominus} \mathcal{F} \\ &= (1,1,2). \\ & \left||\mathcal{P}_{2} \overline{\ominus} \mathcal{P}_{1}|\right| \\ & = \left(\sqrt{2(\tanh 1)^{2} + (\tanh 2)^{2}}\right); \left(\mathcal{P}_{2} \overline{\ominus} \mathcal{P}_{1}\right) \overline{\oslash} \left||\mathcal{P}_{2} \overline{\ominus} \mathcal{P}_{1}|\right| \\ &= \mathcal{P}_{2} \oslash \left]\mathcal{P}_{2}\left[\right] \end{split}$$

$$\left(\tanh^{-1} \frac{\tanh 1}{\sqrt{2(\tanh 1)^2 + (\tanh 2)^2}}, \tanh^{-1} \frac{\tanh 1}{\sqrt{2(\tanh 1)^2 + (\tanh 2)^2}}, \tanh^{-1} \frac{\tanh 1}{\sqrt{2(\tanh 1)^2 + (\tanh 2)^2}} \right)$$

Considering the points $\mathcal{P} = (u, v, w)$ of super – line $\widetilde{\mathbb{L}_{P_{0},E}}$, the vector – equation (2.3) is equivalent with the equation system

$$\begin{cases} u = \left(\tanh^{-1} \frac{\tanh 1}{2} \right) \overline{\bigoplus} \left(\tau \overline{\odot} \tanh^{-1} \frac{\tanh 1}{\sqrt{2(\tanh 1)^2 + (\tanh 2)^2}} \right) \\ v = \left(\tanh^{-1} \frac{\tanh 1}{2} \right) \overline{\bigoplus} \left(\tau \overline{\odot} \tanh^{-1} \frac{\tanh 1}{\sqrt{2(\tanh 1)^2 + (\tanh 2)^2}} \right) \\ w = \left(\tanh^{-1} \frac{\tanh 2}{2} \right) \overline{\bigoplus} \left(\tau \overline{\odot} \tanh^{-1} \frac{\tanh 2}{\sqrt{2(\tanh 1)^2 + (\tanh 2)^2}} \right) \\ , \tau \in \mathbb{R}, \end{cases}$$

or denoting $t = \tau$

=

$$\begin{cases} u = \left(\frac{\tanh 1}{2} + \frac{t \cdot \tanh 1}{\sqrt{2(\tanh 1)^2 + (\tanh 2)^2}}\right) \\ v = \left(\frac{\tanh 1}{2} + \frac{t \cdot \tanh 1}{\sqrt{2(\tanh 1)^2 + (\tanh 2)^2}}\right) \\ w = \left(\frac{\tanh 2}{2} + \frac{t \cdot \tanh 2}{\sqrt{2(\tanh 1)^2 + (\tanh 2)^2}}\right) \end{cases}, t \in \mathbb{R}.$$

Finally, the points of the requested extra –line is described by the equation – system (2.5)

$$\begin{cases} u = \tanh^{-1} \left(\frac{\tanh 1}{2} + \frac{t \cdot \tanh 1}{\sqrt{2(\tanh 1)^2 + (\tanh 2)^2}} \right) \\ v = \tanh^{-1} \left(\frac{\tanh 1}{2} + \frac{t \cdot \tanh 1}{\sqrt{2(\tanh 1)^2 + (\tanh 2)^2}} \right) \\ w = \tanh^{-1} \left(\frac{\tanh 2}{2} + \frac{t \cdot \tanh 2}{\sqrt{2(\tanh 1)^2 + (\tanh 2)^2}} \right) \\ \text{where} \\ - \left(\frac{1}{\tanh 2} + \frac{1}{2} \right) \sqrt{2(\tanh 1)^2 + (\tanh 2)^2} < t \\ < \left(\frac{1}{\tanh 2} - \frac{1}{2} \right) \sqrt{2(\tanh 1)^2 + (\tanh 2)^2}. \end{cases}$$

Fig.2.5*

For the parameter $t_1 = -\frac{\sqrt{2(\tanh 1)^2 + (\tanh 2)^2}}{2}$ the equation – system (2.5) yields the point $\mathcal{P}_1 = \mathcal{O}$ and for the parameter $t_2 = \frac{\sqrt{2(\tanh 1)^2 + (\tanh 2)^2}}{2}$ the point $\mathcal{P}_2 = (1,1,2)$ is obtained.

Remark 2.6. Despite of that both the extra - line described by the equation - system (2.5) and the Euclidean line described by the equation - system

(2.7)
$$\begin{cases} u = \frac{s}{\sqrt{6}} \\ v = \frac{s}{\sqrt{6}} \\ w = \frac{2s}{\sqrt{6}} \end{cases}$$

∞<s<∞

contain the points $\mathcal{P}_1 = \mathcal{O}$ and $\mathcal{P}_2 = (1,1,2)$ (for the latter see the parameters $s_1 = 0$ and $s_2 = \sqrt{6}$, respectively) they are essentially different. To prove it is sufficient to mention that the extra – line has the border points

$$\left(-\tanh^{-1}\frac{\tanh 1}{\tanh 2},-\tanh^{-1}\frac{\tanh 1}{\tanh 2},\widetilde{(-1)}\right) \text{ and } \left(\tanh^{-1}\frac{\tanh 1}{\tanh 2},\tanh^{-1}\frac{\tanh 1}{\tanh 2},\tanh^{-1}\frac{\tanh 1}{\tanh 2},\widetilde{1}\right),$$

while (2.7) yields that

$$\begin{split} \lim_{s \to -\infty} u &= -\infty \text{ , } \lim_{s \to -\infty} v = -\infty \text{ , } \lim_{s \to -\infty} w = \\ -\infty \text{ and } \lim_{s \to \infty} v = \infty \text{ , } \lim_{s \to \infty} v = \infty. \end{split}$$

Fig. 2.7

The following two theorems are a simple consequence of Theorems 1.10 and 2.2.

Theorem 2.8. Every extra – line containss at least two distinc points situated in the closed three dimensional space \mathbb{R}^3 .

Theorem 2.9. If the following cases, two extra lines each contain

the same two distinc points \mathcal{P}_1 and \mathcal{P}_2 in the (i) universe \mathbb{R}^3 ,

(ii) the same two distinc points, one of them \mathcal{P}_* in the universe \mathbb{R}^3 , and the second one \mathcal{B}_* in the

border of \mathbb{R}^3 ,

(iii) the same two distinc points \mathcal{B}_1 and \mathcal{B}_2 on the border of \mathbb{R}^3 such that they do not situate

on the same super – plane,

then the two extra - lines are equal.

Proof. Choosing in the cases

(i)
$$\mathcal{P}_0 = \mathcal{P}_1 \in \mathbb{R}^3$$
 and $\mathcal{E} = (\mathcal{P}_2 \overline{\ominus} \mathcal{P}_1) \overline{\oslash}] |\mathcal{P}_2 \overline{\ominus} \mathcal{P}_1| [,$

(ii)
$$\mathcal{P}_0 = \mathcal{P}_* \in \mathbb{R}^3$$
 and $\mathcal{E} = (\mathcal{B}_* \overline{\Theta} \mathcal{P}_*) \overline{O}] |\mathcal{B}_* \overline{\Theta} \mathcal{P}_*| [,$

(iii)
$$\mathcal{P}_0 = \left(\left(\underbrace{\widetilde{1}}_2\right)\overline{\odot}(\mathcal{B}_1\overline{\oplus}\mathcal{B}_2)\right) \in \mathbb{R}^3$$
 and $\mathcal{E} =$

 $(\mathcal{B}_2 \ominus \mathcal{B}_1) \oslash || \mathcal{B}_2 \ominus \mathcal{B}_1 ||$ and denoting $P_0 = \underline{\mathcal{P}}_0$ and $E = \underline{\mathcal{E}}$ the super – line $\widetilde{\mathbb{L}_{P_0;E}} = \{ \mathcal{P} \in \overline{\mathbb{R}^3} | \mathcal{P} = \mathcal{P}_0 \overline{\bigoplus} (\tau \overline{\odot} \mathcal{E}), \tau \in \mathbb{R} \}$

is obtained.

Let us consider the the cases (i) - (iii). The extra line $\mathcal{L}_{\mathcal{P},\mathcal{E}} = (\mathbb{L}_{P_0;E})_{box}$ contains the point pairs \mathcal{P}_1 and \mathcal{P}_2 ; \mathcal{P}_* and \mathcal{B}_* ; \mathcal{B}_1 and \mathcal{B}_2 , respectively. Denoting $P = \underline{\mathcal{P}}$ and $t = \underline{\tau}$ we have the line

 $\mathbb{L}_{P_0;E} = \{ P \in \mathbb{R}^3 | \mathcal{P} = P_0 + (t \cdot E), t \in \mathbb{R}. \}$

which contains the pairs of distinc points \mathcal{P}_1 and \mathcal{P}_2 ; $\underline{\mathcal{P}}_*$ and $\underline{\mathcal{B}}_*$; $\underline{\mathcal{B}}_1$ and \mathcal{B}_2 . Having the Euclidean axiom "If two lines each contain the same two distinc points, then the two lines are equal." we have that $\mathbb{L}_{P_0;E}$ is unambiguously determined. Hence $\mathbb{L}_{P_0;E}$ is unambiguously determined, too. Finally, having by (2.1) we have that $\mathcal{L}_{\mathcal{P},\mathcal{E}}$ is unambiguously determined.

Theorem 2.10. Let be $\mathcal{P}_1, \mathcal{P}_2$ and \mathcal{P}_3 pairwise different points of Multiverse. The equality

$$d_{\widetilde{\mathbb{R}^3}}(\mathcal{P}_1, \mathcal{P}_3) = d_{\widetilde{\mathbb{R}^3}}(\mathcal{P}_1, \mathcal{P}_2) \overline{\bigoplus} d_{\widetilde{\mathbb{R}^3}}(\mathcal{P}_2, \mathcal{P}_3)$$

fufills if and only if $\mathcal{P}_1, \mathcal{P}_2$ and \mathcal{P}_3 are super – collinear and \mathcal{P}_2 is an intermediate point between the points \mathcal{P}_1 and \mathcal{P}_3

Proof. Let us consider the points \mathcal{P}_1 , \mathcal{P}_2 and \mathcal{P}_3 . They are pairwise different points of our universe. By the Euclidean geometry we have that the eqaulity

$$d_{\mathbb{R}^3}\left(\underline{\mathcal{P}}_1,\underline{\mathcal{P}}_3\right) = d_{\mathbb{R}^3}\left(\underline{\mathcal{P}}_1,\underline{\mathcal{P}}_2\right) + d_{\mathbb{R}^3}\left(\underline{\mathcal{P}}_2,\underline{\mathcal{P}}_3\right)$$

fufills if and only if $\underline{\mathcal{P}}_1$, $\underline{\mathcal{P}}_2$ and $\underline{\mathcal{P}}_3$. are collinear and $\underline{\mathcal{P}_2}$ is between $\underline{\mathcal{P}_1}$ and $\underline{\mathcal{P}_3}$.So, having (0.8)

$$a_{\mathbb{R}^{3}}(\mathcal{P}_{1},\mathcal{P}_{3}) = \left(d_{\mathbb{R}^{3}}\left(\underline{\mathcal{P}_{1}},\underline{\mathcal{P}_{2}}\right) + d_{\mathbb{R}^{3}}\left(\underline{\mathcal{P}_{2}},\underline{\mathcal{P}_{3}}\right) \right) = \left(d_{\mathbb{R}^{3}}\left(\underline{\mathcal{P}_{1}},\underline{\mathcal{P}_{2}}\right) \right) \overline{\oplus} \left(d_{\mathbb{R}^{3}}\left(\underline{\mathcal{P}_{2}},\underline{\mathcal{P}_{3}}\right) \right)$$
proves our statement.

III. EXTRA PARALLELITY.

Theorem 3.1. If $\mathcal{P}_0 \in \mathbb{R}^3$ and \mathcal{B} is a point situated on the border of $\overline{\mathbb{R}^3}$ then the set

(3.2)
$$\mathcal{L}([\mathcal{P}_0, \mathcal{B}[) = \left\{ \mathcal{P} \in \mathbb{R}^3 \right\} \mathcal{P} = \mathcal{P}0 \oplus \tau \odot \mathcal{B} \bigcirc \mathcal{P}0 \oslash \mathcal{B} \bigcirc \mathcal{P}0,$$

where $0 \le \tau < ||\mathcal{B} \Theta \mathcal{P}_0||$, form a half extra – line with the border point \mathcal{B} .

Proof. Let be
$$P_0 = \underline{\mathcal{P}}_0$$

and $E = (\underline{\mathcal{B} \ominus \mathcal{P}}_0) \overline{\oslash}] |\underline{\mathcal{B} \ominus \mathcal{P}}_0| [$.Because of (3.2)
we consider with $\underline{\tau} = t$, the vector equation
(3.3) $\underline{\mathcal{P}} = P_0 + \frac{\underline{\mathcal{B}} - \underline{\mathcal{P}}_0}{\|\underline{\mathcal{B}} - \underline{\mathcal{P}}_0\|}.$

t , $0 \leq t < \left\| \underline{\mathcal{B}} - \mathcal{P}_0 \right\|.$ Using (0.1), (0.3), (0.5) and (0.7) we can write $(\mathcal{B} \overline{\Theta} \mathcal{P}_0) \overline{O}] | \mathcal{B} \overline{\Theta} \mathcal{P}_0 | [$

$$= \underbrace{\left(\underline{\mathcal{B}} - \underline{\mathcal{P}}_{0}\right)}_{=} \underbrace{\left(\underline{\mathcal{B}} - \underline{\mathcal{P}}_{0}\right)}_{=} \underbrace{\overline{\mathcal{O}}}_{=} \underbrace{\left(\underline{\mathcal{B}} - \underline{\mathcal{P}}_{0}\right)}_{=} \underbrace{\overline{\mathcal{O}}}_{=} \underbrace{\left(\underline{\mathcal{B}} - \underline{\mathcal{P}}_{0}\right)}_{=} \underbrace{\overline{\mathcal{O}}}_{=} \underbrace{\left(\underline{\mathcal{B}} - \underline{\mathcal{P}}_{0}\right)}_{=} \underbrace{\left(\underline{\mathcal{B}} - \underline{\mathcal$$

By the first inversion formulas for points (see (0.1)), $E = \frac{\underline{B} - \mathcal{P}_0}{\|\underline{B} - \mathcal{P}_0\|}$ is obtained. Hence, $\|E\| = 1$. The points $\underline{\mathcal{P}}$ given under (3.3) forms a passage (closed from the left and open from the right) situared in \mathbb{R}^3 .

By the explosion the equation (3.3) gives that the points under (3.2) form a half extra - line, with the start – point \mathcal{P}_0 . For the parameter $\tau = \left[\left| \mathcal{B} \overline{\Theta} \mathcal{P}_0 \right| \right]$ the border point \mathcal{B} is obtained.

Using the right hand part of (0.1), (0.2), (0.4) and (0.7) by (3.2) the description $(3.4)\mathcal{L}([\mathcal{P}_0,\mathcal{B}[) =$

 $(u, v, w) \in$

 $\mathbb{R}3u$ =tanh-1u0+u0-uB·tB- $\mathcal{P}0v$ =tanh-1v0+v $0 - v\mathcal{B} \cdot t\mathcal{B} - \mathcal{P} 0 w = \tanh - 1w0 + w0 - w\mathcal{B} \cdot t\mathcal{B} - \mathcal{P} 0, 0 \le t$ $< \mathcal{B} - \mathcal{P} 0.$

where $\mathcal{P}_0 = (u_0, v_0, w_0)$, $\mathcal{B} = (u_{\mathcal{B}}, v_{\mathcal{B}}, w_{\mathcal{B}})$ and $t = \underline{\tau}$, is obtained.

Theorem 3.5. If $\mathcal{L}([\mathcal{B}_1, \mathcal{B}_2[))$ is an extra – line and $\mathcal{P}_* = (u_*, v_*, w_*)$ is its arbitrary point, then $(3.6) \quad \mathcal{L}(]\mathcal{B}_1, \mathcal{B}_2[) = \mathcal{L}([\mathcal{P}_*, \mathcal{B}_1[) \cup \mathcal{L}([\mathcal{P}_*, \mathcal{B}_1[)$ is valid. Proof. identity $d_{\mathbb{R}^3}(\mathcal{P}_1, \mathcal{P}_2) =$ the Using $||\mathcal{P}_1 \ominus \mathcal{P}_2||$ by Theorem 1.10 we have $(3.7)\mathcal{L}(\mathcal{B}_1,\mathcal{B}_2[) =$ $\mathcal{P} \in \mathbb{R}^3] \mathcal{P} =$ $12OB1\oplus B2\oplus \tau OB1 \ominus B2 Od \mathbb{R}3B1, B2,$

where the parameter – domain
(3.8)
$$(\overline{\left(\frac{1}{2}\right)}\overline{\odot}d_{\mathbb{R}^3}(\mathcal{B}_1,\mathcal{B}_2) < \tau < (\overline{\left(\frac{1}{2}\right)}\overline{\odot}d_{\mathbb{R}^3}(\mathcal{B}_1,\mathcal{B}_2), \quad (\text{see (1.13)}).$$

Moreover, (3.2) yields

 $\mathcal{L}([\mathcal{P}_*,\mathcal{B}_1[)=\left\{\mathcal{P}\in\mathbb{R}^3|\mathcal{P}=\right.$ (3.9) $\mathcal{P}*\oplus \rho OB1 \ominus \mathcal{P}* Od \mathbb{R}3B1, \mathcal{P}*$

and

$$(3.10) \qquad \qquad \mathcal{L}([\mathcal{P}_*, \mathcal{B}_2[) = \left\{ \mathcal{P} \in \mathbb{R}^3 | \mathcal{P} = \mathcal{P}_* \overline{\bigoplus} \left(\sigma \overline{\odot} \left(\left(\mathcal{B}_2 \ \overline{\ominus} \ \mathcal{P}_* \right) \overline{\oslash} \ d_{\overline{\mathbb{R}^3}}(\mathcal{B}_2, \mathcal{P}_*) \right) \right) \right\}$$

with the parameter domains $0 \leq \varrho < d_{\widetilde{\mathbb{R}^3}}(\mathcal{B}_1, \mathcal{P}_*)$ and (3.11) $0 \leq \sigma < d_{\widetilde{\mathbb{R}^3}}(\mathcal{B}_2, \mathcal{P}_*),$

respectively.

Denoting $\underline{\tau} = t$, $\varrho = r$ and $\underline{\sigma} = s$ and compessing the sets under (3.7). (3.9) and (3.10) together their parameter – domains under (3.8) and under (3.11) (

D. 1D-

$$(3.14) \quad \underline{\mathcal{L}([\mathcal{P}_*, \mathcal{B}_2[))} = \left\{ \underline{\mathcal{P}} \in \underline{\mathbb{R}^3} \right\} \underline{\mathcal{P}} = \underline{\mathcal{P}}_* + \frac{\underline{\mathcal{B}}_2 - \underline{\mathcal{B}}_*}{d_{\mathbb{R}^3}(\underline{\mathcal{B}}_2, \underline{\mathcal{P}}_*)} \cdot s \quad ; \quad 0 \le s < d\mathbb{R} 3\mathcal{B}2, \mathcal{P}*$$

are obtained. By (3.12) - (3.14) we have that $\mathcal{L}(\mathcal{B}_1, \mathcal{B}_2[), \mathcal{L}(\mathcal{P}_*, \mathcal{B}_1[) \text{ and } \mathcal{L}(\mathcal{P}_*, \mathcal{B}_2[) \text{ are (open } \mathcal{B}_2[))$ and half open) linear passages in $\overline{\mathcal{B}_1, \mathcal{B}_2}$, $\overline{\mathcal{B}_1, \mathcal{P}_*}$ and $\overline{\mathcal{B}_2}, \overline{\mathcal{P}_*},$ respectively. Considering that $\overline{\mathcal{B}_2}, \overline{\mathcal{P}_*} =$ $\overline{\mathcal{P}_*, \mathcal{B}_2}$ we have

$$(3.15) \qquad \overline{\underline{\mathcal{B}}_1, \underline{\mathcal{P}}_*} \cup \overline{\underline{\mathcal{B}}_2, \underline{\mathcal{P}}_*} = \overline{\underline{\mathcal{B}}_1, \underline{\mathcal{B}}_2}$$

First, we investigate the connection betveen $\mathcal{L}([\mathcal{P}_*, \mathcal{B}_1[) \text{ and } \mathcal{L}(]\mathcal{B}_1, \mathcal{B}_2[). \text{ As } \mathcal{L}(]\mathcal{B}_1, \mathcal{B}_2[) \text{ is an }$ open passage, so, $\underline{\mathcal{B}}_1 \neq \underline{\mathcal{P}}_*$. Let us denote the parameter $t_* \leftrightarrow \underline{\mathcal{P}}_*$, that is $\underline{\underline{\mathcal{P}}}_* = \frac{\underline{\mathcal{B}}_1 + \underline{\mathcal{B}}_2}{2} + \frac{\underline{\mathcal{B}}_1 - \underline{\mathcal{B}}_2}{d_{\mathbb{R}^3}(\underline{\mathcal{B}}_1, \underline{\mathcal{B}}_2)}$ t_* , and consider the parameter interval $t_* \leq t <$ $d_{\mathbb{R}^3}(\mathcal{B}_1, \mathcal{B}_2)$, The (3.12) gives the mapping $d_{\mathbb{R}^3}(\mathcal{B}_1, \mathcal{B}_2) \leftrightarrow \mathcal{B}_1$, so, the mentioned parameter interval determines the (half open) passage $\overline{\mathcal{B}_1, \mathcal{P}_*}$. On the other hand, by (3.13) we can see the mappings $0 \leftrightarrow \underline{\mathcal{P}}_*$ and $d_{\mathbb{R}^3}\left(\underline{\mathcal{B}}_1, \underline{\mathcal{P}}_*\right) \leftrightarrow \underline{\mathcal{B}}_1$. So, the parameter interval $0 \le r < d_{\mathbb{R}^3}(\mathcal{B}_1, \mathcal{P}_*)$ determines determines the (half open) passage $\overline{\mathcal{B}_1, \mathcal{P}_*}$, again. Sscond, we investigate the connection betveen $\mathcal{L}([\mathcal{P}_*, \mathcal{B}_2[) \text{ and } \mathcal{L}(]\mathcal{B}_1, \mathcal{B}_2[). \text{ As } \mathcal{L}(]\mathcal{B}_1, \mathcal{B}_2[) \text{ is an }$

open passage, so, $\mathcal{B}_2 \neq \mathcal{P}_*$. The (3.12) gives the mapping $-d_{\mathbb{R}^3}\left(\underline{\mathcal{B}}_1,\underline{\mathcal{B}}_2\right) \leftrightarrow \underline{\mathcal{B}}_2$. So, the parameter interval $-d_{\mathbb{R}^3}\left(\underline{\mathcal{B}_1},\underline{\mathcal{B}_2}\right) < t \le t_*$ determines the (half open) passage $\overline{\mathcal{B}_2}, \overline{\mathcal{P}_*}$. On the other hand, by (3.14) we can see the mappings $0 \leftrightarrow \underline{\mathcal{P}_*}$ and $d_{\mathbb{R}^3}\left(\underline{\mathcal{B}_2},\underline{\mathcal{P}_*}\right) \leftrightarrow \underline{\mathcal{B}_2}$. So, the parameter interval $0 \le s < d_{\mathbb{R}^3}\left(\underline{\mathcal{B}_1},\underline{\mathcal{P}_*}\right)$ determines determines the (half open) passage $\overline{\mathcal{P}_*,\mathcal{B}_2}$. Collecting our results by (3.15)

$$(3.16) \qquad \qquad \underline{\mathcal{L}([\mathcal{P}_*, \mathcal{B}_1[) \cup \mathcal{L}([\mathcal{P}_*, \mathcal{B}_2[) \cup \mathcal{L}([$$

is obtained. Hence, having the trivial identity $(\mathbb{S}_1 \cup \mathbb{S}_2) = \widetilde{\mathbb{S}_1} \cup \widetilde{\mathbb{S}_2}$; $\mathbb{S}_1, \mathbb{S}_2 \subset \mathbb{R}^3$ and using the right hand side of (0.9) by the explosion (3.16) yields (3.6).

Definition 3.17. Let \mathcal{P}_1 and \mathcal{P}_2 be different points of our universe and \mathcal{B} a point on the border of our universe such that they are non super – collinear points of the Multiverse. The half extra - lines (3.18)

 $\mathcal{L}([\mathcal{P}_{1},\mathcal{B}[) = \{\mathcal{P} \in \mathbb{R}^{3} | \mathcal{P} = \mathcal{P}1 \oplus \mathcal{O}B \oplus \mathcal{P}1 \oslash d\mathbb{R}3\mathcal{P}1, \mathcal{B}; 0 \le \rho < d\mathbb{R}3\mathcal{P}1, \mathcal{B}\}$

and (3.19) $\mathcal{L}([\mathcal{P}_2, \mathcal{B}[) = \{\mathcal{P} \in \mathbb{R}^3 | \mathcal{P} = \mathcal{P}1 \oplus \sigma \odot \mathcal{B} \ominus \mathcal{P}2 \oslash d\mathbb{R}3 \mathcal{P}2, \mathcal{B}; 0 \le \sigma < d\mathbb{R}3 \mathcal{P}2, \mathcal{B}\}$

are called extra – parallel half extra – lines. \blacksquare **Definition 3.20.** If two extra – lines have a joint border point, then they are called extra – parallel extra – lines. If an extra – line and a half extra – line have a joint border point then the half extra – line iscalled to be extra – prallel with respect the extra – line \blacksquare

Remark 3.21. If both border points of two extra – lines are joint points then the two extra – lines are equal. (See, Theorem 2.9, (iii).).

Theorem 3.22. Let be $\mathcal{P}_0 \in \mathbb{R}^3$ and $\mathcal{L}(]\mathcal{B}_1, \mathcal{B}_2[)$ an extra – line such that \mathcal{P}_0 , \mathcal{B}_1 and \mathcal{B}_2 are not super – collinear points. The half extra – lines $(3.23)\mathcal{L}([\mathcal{P}_0, \mathcal{B}_1[) = \{\mathcal{P} \in \mathbb{R}^3]\mathcal{P} = \mathcal{P}0 \oplus \varrho \odot \mathcal{B}1 \odot \mathcal{P}0 \oslash d\mathbb{R}3\mathcal{B}1, \mathcal{P}0, 0 \le \varrho < d\mathbb{R}3\mathcal{B}1, \mathcal{P}0$

and

$$(3.24)\mathcal{L}([\mathcal{P}_{0}, \mathcal{B}_{2}[) = \{\mathcal{P} \in \mathbb{R}^{3} | \mathcal{P} = \mathcal{P}_{0} \overline{\bigoplus} \left(\sigma \overline{\odot} \left(\left(\mathcal{B}_{2} \overline{\bigoplus} \mathcal{P}_{0} \right) \overline{\bigcirc} d_{\mathbb{R}^{3}} (\mathcal{B}_{2}, \mathcal{P}_{0}) \right) \right) \}, 0 \leq \sigma < d_{\mathbb{R}^{3}} (\mathcal{B}_{2}, \mathcal{P}_{0})$$

are extra parallel half extra – lines with respect to the extra line $\mathcal{L}(]\mathcal{B}_1, \mathcal{B}_2[)$ such that

 $\mathcal{L}([\mathcal{P}_0, \mathcal{B}_1[) \cup \mathcal{L}([\mathcal{P}_0, \mathcal{B}_2[)$

is not an extra - line.

Proof. Denoting $\underline{\tau} = t$, $\underline{\varrho} = r$ and $\underline{\sigma} = s$ and compessing the sets under (3.7). (3.23) and (3.24) together their parameter – domains

$$(3.26) \qquad \underline{\mathcal{L}([\mathcal{P}_0, \mathcal{B}_1[)]} = \left\{ \underline{\mathcal{P}} \in \underline{\mathbb{R}^3} \right] \underline{\mathcal{P}} = \underline{\mathcal{P}}_0 + \mathcal{B}1 - \mathcal{P}0d\mathbb{R}3\mathcal{B}1, \mathcal{P}0 \cdot r \quad ; \quad 0 \le r < d\mathbb{R}3\mathcal{B}1, \mathcal{P}0$$

and

(3.27)
$$\underline{\mathcal{L}([\mathcal{P}_0, \mathcal{B}_2[)]}_{\mathcal{B}2 - \mathcal{P}0d\mathcal{R}3\mathcal{B}2, \mathcal{P}0:s \ ; \ 0 \le s < d\mathcal{R}3\mathcal{B}2, \mathcal{P}0} = \underline{\mathcal{P}_0} + \underline{\mathcal{P}_0}_{\mathcal{B}2} + \underline{\mathcal{P}$$

are obtained. By (3.25) - (3.27) we have that $\underline{\mathcal{L}}([\mathcal{B}_1, \mathcal{B}_2[)]$, $\underline{\mathcal{L}}([\mathcal{P}_0, \mathcal{B}_1[)]$ and $\underline{\mathcal{L}}([\mathcal{P}_0, \mathcal{B}_2[)]$ are (open and half open) linear passages in $\overline{\mathcal{B}_1}, \overline{\mathcal{B}_2}$, $\overline{\mathcal{P}_0}, \overline{\mathcal{B}_1}$ and $\overline{\mathcal{P}_0}, \overline{\mathcal{B}_2}$, respectively. Considering that $\mathcal{P}_0, \overline{\mathcal{B}_1}$ and \mathcal{B}_2 are not super – collinear points, $\underline{\mathcal{P}_0} \notin \overline{\mathcal{B}_1}, \overline{\mathcal{B}_2}$. So, $\underline{\mathcal{L}}([\mathcal{P}_0, \mathcal{B}_1[]) \cup \underline{\mathcal{L}}([\mathcal{P}_0, \mathcal{B}_1[])$ is a breaked linear passage. $(d_{\mathbb{R}^3}(\underline{\mathcal{B}_1}, \underline{\mathcal{B}_2}) < d_{\mathbb{R}^3}(\underline{\mathcal{B}_1}, \underline{\mathcal{P}_0}) + d_{\mathbb{R}^3}(\underline{\mathcal{B}_2}, \underline{\mathcal{P}_0}))$ Hence, $\mathcal{L}([\mathcal{P}_0, \mathcal{B}_1[]) \cup \mathcal{L}([\mathcal{P}_0, \mathcal{B}_2[])$ is not an extra – line. Moreover, by Definitions 3.20, $\mathcal{L}([\mathcal{P}_0, \mathcal{B}_1[) \text{ and } \mathcal{L}([\mathcal{P}_0, \mathcal{B}_2[)])$ are extra parallel half extra – lines with respect to the extra line $\mathcal{L}([\mathcal{B}_1, \mathcal{B}_2])$.

Exercise 3.28. Let us prove that the set

$$(3.29) \mathcal{L} = \begin{cases} (u, v, w) \in \\ \end{array}$$

 $\mathbb{R}3u = -\tanh -114 + 914 + tv = \tanh -114 - 114 + tw = \tanh -112 - 27 \cdot t$, where -78 < t < 78

forms an extra – line.

1

Fig. 3.29*

Moreover, let us show there exist twohalf extra - lines setting out from the origo which are extra - parallel half extra - lines with respect to \mathcal{L} , such that their union does not give an extra - line.

Solution. First we prove that the set \mathcal{L} forms an extra – line. Denoting $\underline{u} = x$, $\underline{v} = y$, $\underline{w} = z$ and compressing the set \mathcal{L} (3.30)

$$\underline{\mathcal{L}} = \left\{ (x, y, z) \in \mathbb{R}^3 | \begin{array}{c} x = -\frac{1}{4} - \sqrt{\frac{9}{14}} \cdot t \\ y = \frac{1}{4} - \sqrt{\frac{1}{14}} \cdot t \\ z = \frac{1}{2} - \sqrt{\frac{7}{7}} \cdot t \end{array} \right\},$$

Hence, \mathcal{L} is an extra – line with its border – points $\mathcal{B}_1 = \left((\underbrace{1}_2), (\underbrace{1}_2), 1\right)$ and $\mathcal{B}_1 = ((-1), 0, 0)$.

Second, having that $\mathcal{P}_0 = \mathcal{O}$ we apply Theorem 3.22, by (3.23) and (3.24) we get the half extra - lines $(3.31)\mathcal{L}([\mathcal{O}, \mathcal{B}_1[) =$

$$\left\{ \mathcal{P} \in \mathbb{R}^3 \middle| \mathcal{P} = \varrho \overline{\odot} \left(\mathcal{B}_1 \overline{\oslash} \left(\frac{\sqrt{6}}{2} \right) \right) \right\}, 0 \le \varrho < \left(\frac{\sqrt{6}}{2} \right)$$

and
$$(3,32) f_1([\mathcal{P}_0, \mathcal{B}_2[]) = \left\{ \mathcal{P} \in \mathbb{R}^3 \middle| \mathcal{P} = \sigma \overline{\bigcirc} \mathcal{B}_2 \right\}, 0 \le \varrho$$

$$(3.32)\mathcal{L}([\mathcal{P}_0, \mathcal{B}_2]) = \{\mathcal{P} \in \mathbb{R}^3 | \mathcal{P} = \sigma \bigcirc \mathcal{B}_2\}, 0 \le \sigma < \tilde{1}.$$

Exchanging the vector equations for scalar equation systems

(3.33)
$$\mathcal{L}([\mathcal{O},\mathcal{B}_1[) = \begin{cases} (u,v,w) \in \mathcal{B}_1[) \\ (u,v,w) \in \mathcal{B}_1[\\ (u,v,w) \in \mathcal{$$

 $\mathbb{R}3u=\tanh -116 \cdot \varrho v=\tanh -116 \cdot \varrho w=\tanh -126 \cdot \varrho$, where $0 \le \varrho < 62$

and

$$(3.34) \qquad \qquad \mathcal{L}([\mathcal{O},\mathcal{B}_2[) = \left\{(u,v,w)\in \mathcal{D}_2(u,v,w)\right\} \in \mathcal{L}(u,v,w) \in \mathcal{L}(u,v,w)$$

 $\mathbb{R}3u = -\sigma v = 0w = 0$, where $0 \le \sigma < \infty$

are obtained.

The half extra – line $\mathcal{L}([\mathcal{O}, \mathcal{B}_1[)$ is a part of the extra – line $\mathcal{L}_{\mathcal{O},\mathcal{E}}$ (see (1.8) and Fig. 1.9) and the half extra – line $\mathcal{L}([\mathcal{O}, \mathcal{B}_2[)$ is a part of the "u – axis".

By Fig. 3.35 we can see that $\mathcal{L}([\mathcal{O}, \mathcal{B}_1[) \cup \mathcal{L}([\mathcal{O}, \mathcal{B}_2[)$ is not an extra – line.

ACKNOWLEDGEMENT

The authors are indebted for pecunary assistence of Szeged Foundation

Fig. 3.30*

is obtained. We can see, that \underline{L} is an open linear passage with the endpoints $(\frac{1}{2}, \frac{1}{2}, 1)$ and (-1,0,0) situated on the border of compressed universe $\underline{\mathbb{R}^3}$.

REFERENCE

[1]. István Szalay: Exploded and compressed numbers (enlargement of the universe, Parallel Universes, Extra Geometry), LAMBERT Academic Publishing, Saarbrücken, Germany, 2016, ISBN: 978-3-659-94402-4.

I. Szalay "Extra Geometry I. Extra lines." International Journal of Engineering Research and Applications (IJERA), vol. 8, no. 1, 2017, pp. 23-34.