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ABSTRACT 

The objective of the present paper is to study results that are defined using differential operator D
,s,l

,
,  and 

the notions of (j,k)-symmetrical functions. The integral representation and some properties for these class are 

obtained. 
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I. INTRODUCTION 
Let A denote the class of functions of form  

 

 f(z)=z+ 
n=2


 a

n
z
n
, (1) 

which are analytic in the open unit disk Error!, and 

S denote the subclass of A consisting of all function 

which are univalent in U. 

For f and g be analytic in U, we say that the 

function f is subordinate to g in U, if there exists an 

analytic function w in U such that |w(z)|<1 with 

w(0)=0, and f(z)=g(w(z)), and we denote this by 

f(z)g(z). If g is univalent in U, then the 

subordination is equivalent to f(0)=g(0) and 

f(U)g(U). The convolution or Hadamard product of 

two analytic functions f,gA where f is defined by (1) 

and g(z)=z+ 
n=2


 b

n
z
n

, is  

 (f*g)(z)=z+ 
n=2


 a

n
b

n
z
n
. 

The convolution or Hadamard product of two 

analytic functions f,gA where f is defined by (1) 

and g(z)=z+ 
n=2


 b

n
z
n

, is  

 (f*g)(z)=z+ 
n=2


 a

n
b

n
z
n
. 

In order to define a new class of symmetrical 

functions defined in the open unit disk U, we first 

recall the notion of k-fold symmetric functions 

defined in k-fold symmetric domain, where k is any 

positive integer. A domain D is said to be k-fold 

symmetric if a rotation of D about the origin through 

an angle 
2

k
 carries D onto itself. A function f is said 
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to be k-fold symmetric in D if for every z in D we have  

 f 





e
 
2i

k z =e
 
2i

k f(z), zD.  

The family of all k-fold symmetric functions is 

denoted by S
k

, and for k=2 we get class of odd 

univalent functions. In 1995, Liczberski and 

Polubinski [] constructed the theory of 

(j,k)-symmetrical functions for j=0,1,2,…,k1) and 

(k=2,3,…. If D is k-fold symmetric domain and j any 

integer, then a function f:DC  is called 

(j,k)-symmetrical if for each zD, f(z)=
j
f(z).  We 

note that the (j,k)-symmetrical functions is a 

generalization of the notions of even, odd, and 

k-symmetrical functions 

The theory of (j,k)-symmetrical functions has 

many interesting applications; for instance, in the 

investigation of the set of fixed points of mappings, 

for the estimation of the absolute value of some 

integrals, and for obtaining some results of the type 

of Cartan’s uniqueness theorem for holomorphic 

mappings, see []. 

Denote the family of all (j,k)-symmetrical 

functions by S
(j,k)

. We observe that , S
(0,2)

, 

S
(1,2)

 and S
(1,k)

 are the classes of even, odd 

and k-symmetric functions respectively. We have the 

following decomposition theorem: 

Theorem 1 [, Page 16] For every mapping 

f:UC, and a k-fold symmetric set U, there exists 

exactly one sequence of (j,k)-symmetrical functions 

f
j,k

 such that  

 f(z)= 
j=0

k1
 f

j,k
(z),  

where  

 

 f
j,k

(z)= 
1

k
 
v=0

k1
 
vj

f ( )
v
z , zU.  (2) 

Now, we define the differential operator D
,s,l

,
  as follows; The operator D

,s,l

,
  can be written in 

terms of convolution as  

 D
,s,l

,
f(z)=(z)*(z)*......(z)

times
* 

n=1


 n

s
z
n
*f(z)  

 (z)= 






 



l+1
 

z

(1z)
2
 



l+1
 

z

1z
+ 

z

(1z)
* 

z

(1z)
+1

,zU. 

 D
,s,l

,
f(z)=z+ 

n=2


 n

s
 



c(,n) 



 

(n1)+l+1

l+1



a
n

z
n

 

where 

Error!  

Note that D
0,1,0

,
f(z)=D

1,0,0

1,0
f(z)=zf'(z)  and 

D
0,0,0

,
f(z)=f(z).  When  =0  we get 

the  Sǎlǎgean  differential operator  [], 

when  s=l=0,  we obtain the Maslina Darus and 

Rabha W.Ibrahim differential operator  [], 

when  s=0,=0,  we get the multiplier 

transformation  [] and when  =s=l=0,  we obtain the 

Al-oboudi differential operator []. 

We denote by S
*

 and K the familiar subclasses 

consisting of functions which, respectively starlkie 

and convex in U. Al Sarari and Latha introduced and 

studied the classes which are related to 

(j,k)-symmetrical functions. For more details about 

the classes with (j,k)-symmetrical functions see [, , , 

]. 

Definition 1  Let K
,s,l

j,k
(,,,)  

denote the class of functions  

 fA  satisfying the inequality  

 

 









 

(z(D
,s,l

,
f(z))')'

(D
,s,l

,
f
j,k

(z))'

1 < 









 

(z(D
,s,l

,
f(z))')'

(D
,s,l

,
f
j,k

(z))'

+1 ,  (3) 

where,  
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 D
,s,l

,
f
j,k

(z)= 
1

k
 
=0

k1
 
j

D
,s,l

,
f(
z

),
k
=1  (4) 

where 

Error! and j=0,1,2,...,k1.  
II. MAIN RESULTS 

Theorem 2.1  A function fK
,s,l

j,k
(,,,)  if and only if  

 

(z(D
,s,l

,
f(z))')'

D
,s,l

,
f
j,k

(z)

') 
1+z

1z
 

[Sorry. Ignored \begin{proof} ... \end{proof}] 

Remark 2  From Theorem Error! Reference source not found. we have  

 

  











 

(z(D
,s,l

,
f(z))')'

(D
,s,l

,
f
j,k

(z))'

>0  (5) 

since 

  








 
1+z

1z
>0 

Theorem 2.3  If fK
,s,l

j,k
(,,,),  then D

,s,l

,
f
j,k
K.   

[Sorry. Ignored \begin{proof} ... \end{proof}] 

Remark 4  From Theorem   and inequality ( 5), we know that if fK
,s,l

j,k
(,,,),  

then D
,s,l

,
f  is a quasi- convex function.  

2

.1  The Integral Representation 

In this section, we give the integral representation of 

functions in the class 

K
,s,l

j,k
(,,,).   

Theorem 2.5  

LetfK
,s,l

j,k
(,,,). Then  

 

 Error! (6) 

where D
,s,l

,
f
j,k

(z)  is defined by the 

equality  (4),    is analytic in U 

and  (0)=0,  |(z)|<1.   

[Sorry. Ignored \begin{proof} ... 

\end{proof}] 

Theorem 2.6  Let 

fK
,s,l

j,k
(,,,).  Then  

 

 D
,s,l

,
f(z)= 

0

z

  
1


 

0



 exp 









 
1

k
 
=0

k1
  

0




z

  
(1+)(t)

t(1(t))
dt  

1+()

1()
dd  (7) 

where    is analytic in U and  (0)=0,  |(z)|<1.   

[Sorry. Ignored \begin{proof} ... \end{proof}] 
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