
Manju Susan Thomas. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 9, (Part -2) September 2017, pp.53-57

www.ijera.com DOI: 10.9790/9622-0709025357 53 | P a g e

Identification of classification criteria for testing Concurrent

Software Systems

Manju Susan Thomas, MPhil
*(Assistant Professor, Department of Computer Science and Applications, SAFI Institute of Advanced Study,

Vazhayoor, Kerala, India)

Email: manjuthomasmail@gmail.com)

ABSTRACT

Many recent software systems are composed of multiple execution flows that run simultaneously,

spanning from applications designed to exploit the power of recent multi-core architectures to

distributed systems consisting of multiple components deployed on different physical systems. We

collectively refer to such systems as concurrent systems. Concurrent systems are difficult to test, since

the problems that derive from their concurrent nature depend on the interleavings of the actions

performed by the individual execution flows. Testing techniques that target this problem must take

into account the concurrency aspects of the systems. The increasingly rapid spread of parallel and

distributed architectures led to a deluge of concurrent software systems, and the explosion of testing

techniques for such systems in the last decade. The current lack of a comprehensive classification,

analysis and comparison of the more testing techniques for concurrent systems limits the

understanding of the strengths and weaknesses of each approach and hampers the future

advancements in the field. This study provides a framework to capture the key features of the

available techniques to test concurrent software systems, identifies a set of classification criteria to

review and compare the available techniques, and discusses in details their strengths and weaknesses,

leading to a thorough assessment of the field and paving the road for future progresses.

Keywords: Classification Criteria, Testing, Concurrent Systems, Parallel Systems, Distributed

Systems

--- ----------

Date of Submission: 25-08-2017 Date of acceptance: 09-09-2017

--- ----------

I. INTRODUCTION
Concurrent software systems are composed

of multiple execution flows that execute

simultaneously, and the need to synchronize the

execution flows leads to new problems and

introduces new design and verification challenges.

The behavior of concurrent systems depends not

only on the sequence of actions executed within each

individual flow, but also on the interleavings of the

actions in the different execution flows. Wrong

interleavings may lead to concurrency faults

regardless of the correctness of the computation of

each execution flow. The problem of developing

reliable concurrent systems has attracted a lot of

interest in the software engineering community, and

has led to several solutions for designing,

implementing, and refactoring, modeling, verifying

and validating concurrent software systems.

Concurrency faults are intrinsically non-

deterministic, since they occur only in the presence

of specific interleavings, and the interleavings

depend on execution conditions that are not under

the direct control of the program. The testing

techniques that address the problem of efficiently

exploring the space of the interleavings consider one

or more of the following activities: (i) generating test

cases, which are sequences of operations that

stimulate the system; (ii) selecting a subset of

interleavings for the execution flows; (iii) executing

the system with the selected test cases and

interleavings and validating the results.

Although the problem of testing concurrent

systems has attracted the attention of the research

community since the late seventies, and has grown

considerably in the last decade, to the best of our

knowledge a precise survey and classification of the

progresses and the results in the field is still missing.

In this paper, we provide a comprehensive

survey of the state-of-the-art in testing concurrent

software systems. We studied the recent literature by

systematically browsing the main publishers and

scientific search engines, and we traced back the

results to the seminal work of the last forty years.

RESEARCH ARTICLE OPEN ACCESS

Manju Susan Thomas. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 9, (Part -2) September 2017, pp.53-57

www.ijera.com DOI: 10.9790/9622-0709025357 54 | P a g e

We present a general framework that captures the

different aspects of the problem of testing concurrent

software systems and that we use to identify a set of

classification criteria that drive the survey of the

different approaches. The survey classifies and

compares the state-of-the-art techniques, discusses

their advantages and limitations, and indicates open

problems and possible research directions in the area

of testing concurrent software systems.

1. CONCURRENT SOFTWARE SYSTEMS
In this section, we define the scope of our

analysis and introduce the terminology that we adopt

in this paper. To do so, we define a conceptual

framework that captures the main elements of the

different approaches to test concurrent software

systems. In the remainder of the paper, we use the

framework to structure our survey.

1.1 CONCURRENT SYSTEMS

A system is concurrent if it includes a

number of execution flows1 that can progress

simultaneously, and that interact with each other.

This definition encompasses both flows that execute

in overlapping time frames, like concurrent

programs executed on multi-core, multi-processor

parallel and multi-node distributed architectures, and

flows that execute only in non-overlapping frames,

like concurrent programs executed on single-core

architectures. Depending on the specific architecture

and programming paradigm, execution flows can be

concretely implemented as processes on different

physical machines, processes within the same

machine or threads within the same process, as

common in modern programming languages such as

C++, Java, C# and Erlang.

We distinguish two classes of concurrent

systems based on the mechanism they adopt to

enable the interaction between execution flows,

shared memory and message passing systems. In

shared memory systems, execution flows interact by

accessing a common memory. In message passing

systems, execution flows interact by exchanging

messages. Message passing can be used either by

execution flows hosted on the same physical node or

on different physical nodes (distributed systems).

Conversely, shared memory mechanisms are only

possible when the execution flows are located on the

same node (as in multi-threaded systems).

We model a shared memory as a repository

of one or more data items. A data item has an

associated value and type. The type of a data item

determines the set of values it is allowed to assume.

We model the interaction of an execution flow f with

the repository using two primitive operations: write

operations wx(v), meaning that f updates the value

of the data item x to v, and read operations rx(v),

meaning that f reads the value v of x. Operations are

composed of one or more instructions. Instructions

are atomic, meaning that their execution cannot be

interleaved with other instructions, while operations

are in general not atomic. This model captures both

operations on simple data, like primitive variables in

C, and operations on complex data structures like

Java objects, where types are classes, data items are

objects and operations are methods that can operate

only on some of the fields of the objects.

We model message passing systems using

two primitive operations: send operations sf (m) that

send a message m to the execution flow f, and

receive operations rf (m) that receive a message m

from the execution flow f. Message passing can be

either synchronous or asynchronous. An execution

flow f that sends a synchronous message sf’ (m) to

an execution flow f’ must wait for f’ to receive the

message m before continuing, while an execution

flow f that sends an asynchronous message sf’ (m) to

an execution flow f’ can progress immediately

without waiting for m to be received by f’.

The message passing paradigm can be

mapped to the shared memory paradigm by

modeling a send primitive as a write operation on a

shared queue and a receive primitive as a read

operation on the same shared queue. Thus, without

loss of generality, we refer to shared memory

systems in most of the definitions and examples

presented in this survey.

1.2 INTERLEAVING OF EXECUTION FLOWS
The behavior of a concurrent system

depends not only on the input parameters and the

sequences of instructions of the individual flows, but

also on the interleaving of instructions from the

different execution flows that comprise the system.

We introduce the main concepts of

concurrency under the assumption of a sequentially

consistent model. This model guarantees that all the

execution flows in a concurrent system observe the

same order of instructions, and that this order

preserves the order of instructions defined in the

individual execution flows. We discuss the

implications of relaxing this assumption at the end of

this subsection, and in the survey we consider

approaches regardless of this assumption. Under the

assumption of sequential consistency, we can model

the interleaving of instructions of multiple execution

flows in a concrete program execution with a

history, which is an ordered sequence of instructions

of the different execution flows.

In a shared memory system, histories

include sequences of invocations of read and write

operations on data items. Since in general the

operations on shared data items are not atomic, we

model the invocation and the termination of an

operation op as two distinct instructions. The

execution of an operation o’ overlaps the execution

Manju Susan Thomas. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 9, (Part -2) September 2017, pp.53-57

www.ijera.com DOI: 10.9790/9622-0709025357 55 | P a g e

of another operation o if the invocation of o’ occurs

between the invocation and the termination of o. In a

message passing system, histories include sequence

of atomic send and receive operations.

II. TESTING CONCURRENT SYSTEMS
In this paper we focus on software testing

techniques that target concurrency faults, which are

faults caused by unexpected interleavings of

instructions of otherwise correct execution flows.

Concurrency faults can be extremely hard to reveal

and reproduce, since they manifest only in the

presence of specific interleavings that may be rarely

executed. To expose concurrency faults, testing

techniques for concurrent systems need to sample

not only a potentially infinite input space, but also

the space of possible interleavings, which can grow

exponentially with the number of execution flows

and the number of instructions that comprise the

flows.

The many approaches for testing concurrent

systems that have been proposed so far address

different aspects of the problem. Our detailed

analysis of the literature led to a simple conceptual

framework that captures the different aspects of the

problem and relates the many approaches for testing

concurrent systems. Figure 1 presents the conceptual

framework that we use to provide a comprehensive

view of the problem and to organize this survey.

Approaches for testing concurrent systems

deal with specific types of target systems and

address one or more of the three main aspects of the

problem visualized with rectangles in Figure 1:

generating test cases, selecting interleavings and

comparing the results with oracles. Generating test

cases amounts to sample the program input space

and produce a finite set of test cases to exercise the

target system. Selecting interleavings amounts to

augment the test cases with different interleavings of

the execution flows to exercise the operations that

process the same input data in different order.

Comparing the results with test oracles amounts to

checking the behavior of the target system with

respect to some oracles. The approaches that we

found in the literature focus on generating test cases

or selecting interleavings, sometimes dealing or

comparing with oracles as well.

Figure 1 presents a conceptual framework

for the testing techniques, but does not prescribe a

specific process. Some approaches may first

generate a set of test cases and a set of relevant

interleavings and then compare the execution results

with oracles, while other approaches may alternate

the selection of interleavings and the comparison

with oracle by executing each interleaving as soon as

identified.

The approaches for generating test cases

sample the input space to produce a finite set of test

cases by considering the target system. They

optionally also consider a target property of

interleaving, a system model that provides additional

information about the target system, or both.

Fig. 1: A general framework for testing concurrent

software systems

The approaches for selecting interleavings

identify a subset of relevant interleavings to be

executed, and target either the interleaving space as

a whole or some specific propertie of interleaving.

The techniques that target the interleaving space as a

whole, hereafter space exploration techniques,

explore the space of interleavings randomly,

exhaustively or driven by some coverage criteria or

heuristics. Two relevant classes of space exploration

techniques are stress testing and bounded search

techniques.

III. TRENDS IN RESEARCH ON TESTING

CONCURRENT SYSTEMS
In this section we present an analysis of the

research on testing concurrent systems conducted in

the last fifteen years referring to the seminal work of

the last forty years. Concurrency has been

investigated since the early sixties with pioneer work

on models for concurrent systems, like the research

of Karl Adam Petri the inspiring work on process

algebras of Tony Hoare [2] and Robin Milner [3].

In the seventies, with the emergence of

distributed architectures, the focus of the research

extended towards the analysis and verification of

distributed systems with the Lipton’s influential

work on the theory of reduction [4] and Lamport’s

seminal work on distributed systems [1].

The nineties have seen the introduction of

the term testing concurrent systems with continuity

in the literature [5], [6], [7], and the appearing of

analysis techniques that are at the core of many

popular approaches for testing concurrent systems

[8], [9], [10], [11], [12].

Manju Susan Thomas. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 9, (Part -2) September 2017, pp.53-57

www.ijera.com DOI: 10.9790/9622-0709025357 56 | P a g e

The research on testing concurrent systems

has emerged overbearing in the last fifteen years

fostered by the rapid spread of multi-core

technologies, distributed, Web and mobile

architectures and novel concurrent paradigms. Our

survey indicates that most of the concurrent software

testing techniques developed in the last fifteen years

target shared memory systems, and only few cope

with (distributed) message passing systems, which

are addressed mainly by runtime monitoring and

model based verification approaches.

To provide a comprehensive survey of the

emerging trends in testing concurrent software

systems, we systematically review the literature

from 2000 to 2015: (i) we searched the online

repositories of the main scientific publishers,

including IEEE Explore, ACM Digital Library,

Springer Online Library and Elsevier Online

Library, and more generally the Web through the

popular online search engines such as Google

Scholar and Microsoft Academic Search.

Fig. 2: Number of publications from 2000 to 2015

that witness novel research contributions and address

different concurrency properties

Fig. 3: Number of publications from 2000 to 2015

that witness novel research contributions in different

research communities

IV. CONCLUSION
The current research trends are towards

predictive property based techniques and violations

of expected order invariants rather then low level

memory access conflicts such as data races.

The research of the last decade has

produced several efficient and effective testing

techniques for concurrent systems that open

promising directions for future investigations:

i) Most testing techniques for concurrent systems

target the selection of relevant interleavings, and few

techniques focus on test case generation. Exploiting

the synergy between these two aspects remains an

open research topic.

(ii) The vast majority of testing approaches target

shared memory systems. Validation and verification

of distributed message passing systems has exploited

mostly static analysis and model checking

approaches, leaving the important area of testing

message passing systems open for future research.

(iii) The last decade has seen a bloom of new

programming paradigms for concurrent software

systems, which enforce patterns of interactions

among execution flows that prevent the occurrence

of some kinds of concurrency faults such as data

races and deadlocks. The new programming

paradigms shift the testing problem from low level

memory access conflicts to high level order

violations, and open the opportunity of devising new

testing approaches that exploit the semantics of

modern programming paradigms.

ACKNOWLEDGEMENTS
Author acknowledge the support from peer group at

SIAS, Kerala

REFERENCES
[1]. L. Lamport, “How to make a multiprocessor

computer that correctly executes multiprocess

programs,” IEEE Transactions on Computers,

vol. C-28, no. 9, pp. 690–691, Sept 1979.

[2]. C. A. R. Hoare, “Communicating sequential

processes,” Communications of the ACM,

vol. 21, no. 8, pp. 666–677, 1978.

[3]. R. Milner, A Calculus of Communicating

Systems. Springer, 1982.

[4]. R. J. Lipton, “Reduction: A method of

proving properties of parallel programs,”

Communications of the ACM, vol. 18, no.

12,pp. 717–721, 1975.

[5]. S. Morasca and M. Pezz`e, “Using high-level

petri nets for testing concurrent and real-time

systems,” Real-time systems: theory and

applications, vol. 132, 1990.

[6]. R. N. Taylor, D. L. Levine, and C. D. Kelly,

“Structural testing of concurrent programs,”

IEEE Transactions on Software Engineering,

vol. 18, no. 3, pp. 206–215, 1992.

Manju Susan Thomas. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 9, (Part -2) September 2017, pp.53-57

www.ijera.com DOI: 10.9790/9622-0709025357 57 | P a g e

[7]. R. H. Carver and K.-C. Tai, “Use of

sequencing constraints for specification-based

testing of concurrent programs,” IEEE

Transactions on Software Engineering, vol.

24, no. 6, pp. 471–490, 1998.

[8]. M. P. Herlihy and J. M.Wing,

“Linearizability: A correctness condition for

concurrent objects,” ACM Transactions on

Programming Languages and Systems, vol.

12, no. 3, pp. 463–492, 1990.

[9]. S. Savage, M. Burrows, G. Nelson, P.

Sobalvarro, and T. E. Anderson, “Eraser: A

dynamic data race detector for multithreaded

programs,” ACM Transactions on Computer

Systems, vol. 15, no. 4,pp. 391–411, 1997.

[10]. E. M. Clarke, E. A. Emerson, and A. P. Sistla,

“Automatic verification of finite-state

concurrent systems using temporal logic

specifications,” ACM Transactions on

Programming Languages and Systems, vol. 8,

no. 2, pp. 244–263, 1986.

[11]. P. Godefroid, “Model checking for

programming languages using verisoft,” in

Proceedings of the Symposium on Principles

of Programming Languages, ser. POPL ’97.

ACM, 1997, pp. 174–186.

[12]. G. J. Holzmann, “The model checker spin,”

IEEE Transactions on Software Engineering,

vol. 23, no. 5, pp. 279–295, 1997.

Manju Susan Thomas. “Identification of classification criteria for testing Concurrent Software

Systems .” International Journal of Engineering Research and Applications (IJERA) , vol. 7,

no. 9, 2017, pp. 53–57.

International Journal of Engineering Research and Applications (IJERA) is UGC approved

Journal with Sl. No. 4525, Journal no. 47088. Indexed in Cross Ref, Index Copernicus (ICV

80.82), NASA, Ads, Researcher Id Thomson Reuters, DOAJ.

