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ABSTRACT 
The triply-diffusive convection in a Maxwellian viscoelastic fluid layer is mathematically investigated through 

porous medium. Following the linearized stability theory and normal mode analysis, the dispersion relation is 

obtained. For the case of stationary convection, the solute gradients play stabilizing role in the system while 

medium permeability plays destabilizing role. The dispersion relation is also analyzed numerically. Further, the 

solute gradients are found to introduce oscillatory modes, which were non-existent in their absence. The 

sufficient conditions for the non-existence of overstability are also obtained. 
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I. INTRODUCTION 

The study of a layer of fluid heated from 

below in porous media is motivated both by 

theoretical and practical applications in engineering. 

Among the applications in the engineering discipline 

one can find the food process industry, chemical 

process industry, solidification, and centrifugal 

casting of metals. The development of geothermal 

power resources has increased the general interest in 

the properties of convection in porous media. The 

formation and derivation of the basic equations of a 

layer of fluid heated from below in a porous medium, 

using Boussinesq approximation, has been given in a 

treatise by Joseph [1]. When a fluid permeates an 

isotropic and homogeneous porous medium, the gross 

effect is represented by Darcy’s law. An extensive 

and updated account of convection in porous media 

has been given by Nield and Bejan [2]. 

The theoretical and experimental results on 

thermal convection in a fluid layer under varying 

assumptions of hydrodynamics have been given by 

Chandrasekhar [3] in his monograph. The problem of 

thermohaline convection in a layer of fluid heated 

from below and subjected to a stable salinity gradient 

was investigated by Veronis [4]. Nield [5] considered 

the thermohaline convection in a horizontal layer of 

viscous fluid heated from below and salted from 

above. There has been considerable interest in the 

study of the breakdown of the stability of a layer of 

fluid subject to a vertical temperature gradient in a 

porous medium and the possibility of convective 

flow. The stability of flow of a single component 

fluid through a porous medium taking into account 

the Darcy resistance has been studied by Lapwood 

[6] and Wooding [7]. Conditions under which 

convective motions through porous medium are 

important in geophysics are usually far removed from 

the consideration of a single component fluid and 

rigid boundaries and therefore it is desirable to 

consider a two component fluid and free boundaries.  

In the standard Be'nard problem, the 

instability is driven by a density difference caused by 

a temperature difference between the upper and lower 

planes bounding the fluid. If the fluid, additionally 

has salt dissolved in it then there are potentially two 

destabilizing sources for the density difference, the 

temperature field and salt field. The solution behavior 

in the double-diffusive convection problem is more 

interesting than that of the single component situation 

in so much as new instability phenomena may occur 

which is not present in the classical Benard problem. 

When temperature and two or more component 

agencies, or three different salts, are present then the 

physical and mathematical situation becomes 

increasingly richer. For example, Degens et al. [8] 

reported that the saline waters of geothermally heated 

Lake Kivu are strongly stratified by temperature and 

a salinity which is the sum of comparable 

concentrations of many salts, while the oceans 

contain many salts in concentrations less than a few 

per cent of the sodium chloride concentration. It has 

been recognized previously that there are important 

fluid mechanical systems in which the density 

depends on three or more stratifying agencies having 

different diffusivities, which can be called multiply 

diffusive convection [9]. By analogy with the doubly 
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diffusive case in which the density depends on two 

independent diffusing stratifying agencies, we refer 

to the isothermal quaternary and non-isothermal 

ternary (i.e. three components) cases as being triply-

diffusive. Very interesting results in triply diffusive 

convection have been obtained by Pearlstein et al. 

[9]. They demonstrate that for triple diffusive 

convection linear instability can occur in discrete 

sections of the Rayleigh number domain with the 

fluid being linearly stable in a region in between the 

linear instabilities ones. This is because for certain 

parameters the neutral curve has a finite isolated 

oscillatory instability curve lying below the usual 

unbounded stationary convection one. Straughan and 

Tracery [10] investigated the effect of an internal 

heat source on the problem of triply-diffusive 

convection. Recently, Rionero [11] has study the 

problem of triple convective diffusive fluid mixture 

saturating a porous horizontal layer, heated from 

below and salted from above and below. 

The previous studies on triple diffusive 

convection are dealt with only Newtonian fluid 

theory. Recently interest in viscoelastic flows through 

porous media has grown considerably, due largely to 

the demands of such diverse fields as biorheology, 

geophysics, chemical, and petroleum industries. 

Wang and Tan [12] have studied the stability analysis 

of double diffusive convection in Maxwell fluid in a 

porous medium. It is worthwhile to point out that the 

first viscoelastic rate type model, which is still used 

widely, is due to Maxwell. Keeping in mind the 

importance in various fields particularly in the soil 

sciences, ground water-hydrology, geophysics, 

astrophysics and bio-mechanics, the triply-diffusive 

convection in Maxwell viscoelastic fluid through 

porous medium has been considered in the present 

paper.   

 

II. FORMULATION OF THE PROBLEM 

Consider an infinite horizontal Maxwellian 

viscoelastic fluid layer through porous medium 

heated and soluted from below and confined between 

two horizontal planes situated at 0z  and z d , 

acted upon by a gravity field (0 , 0 , )g g
r

. The 

temperature T and the solute concentrations 
(1)

C  and 
( 2 )

C  at the bottom and top surfaces 0z  , z d are 

0
T  and 

1
;T

(1 )

0
C , (1 )

1
C  and ( 2 )

0
C , ( 2 )

1
C  respectively, 

and a uniform temperature gradient 
d T

d z

 
 

 

 and 

uniform solute gradients
(1 )

'
d C

d z


 
  

 

 and 

( 2 )

''
d C

d z


 
  

 

are maintained. Now the equations 

governing the motion of a Maxwellian viscoelatsic 

fluid through a porous medium and following 

Boussinesq approximation are 

0 0 1

1 1
1 ( . )

1
1 1 1

v
v v

t t

p g v
t t k

    
       

      

       
            

        


 

 
,                                                              

(1) 

. 0v 


,                     (2) 

where v
r

 is  the  filter  velocity,    is  medium  

porosity, 
1

k   is  the  medium permeability and 

 /    . The fluid velocity q


 and the Darcian 

(filter) velocity v


 are connected by the relation

/q v 
 

. A porous medium of very low 

permeability allows us to use the Darcy’s model. For 

a medium of very large stable particle suspension, the 

permeability tends to be small justifying the use of 

Darcy’s model. This is because the viscous drag force 

is negligibly small in comparison with Darcy’s 

resistance due to the large particle suspension.  

When  the  fluid  flows  through  a  porous  medium,  

the  equation  of  heat conduction is

2
( (1 )) ( . )

f s s f

T
c c c v T T

t


          



r
  

          (3) 

and analogous solute concentration equations are 
(1 )

' ' ' (1 ) 2 (1)
( (1 ) ( . ) '

f s s f

C
c c c v C C

t


           



r
,  

              (4) 
( 2 )

'' '' '' ( 2 ) 2 ( 2 )
( (1 ) ( . ) ''

f s s f

C
c c c v C C

t


           



r
. 

                                  (5) 

Since density variations are mainly due to variations 

in temperature and solute concentrations, the 

equation of state for the fluid is given by 
(1) ( 2 )

0
[1 ( ) '( ) ''( )],

a a a
T T C C C C           

                 

                                                                           
(6) 

where 
0

, , , , , ', '', , 't        and '' are the 

fluid density, reference density, time, the kinematic 

viscosity, the thermal diffusivity, the solute 

diffusivities, thermal and solvent coefficients of 

expansion respectively. 
a

T  is the average temperature 

given by 0 1

2
a

T T
T


 where 

0
T  and 

1
T  are the 

constant average temperatures of the lower and upper 

surfaces of the layer and (1 )

a
C , ( 2 )

a
C  are the average 

concentrations given by 
(1) (1)

(1) 0 1

2
a

C C
C


  and 

( 2 ) ( 2 )

( 2 ) 0 1

2
a

C C
C


 , where (1 )

0
C , (1 )

1
C and ( 2 )

0
C , ( 2 )

1
C

are constant average concentrations of the lower and 
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upper surfaces of the layer. Here (1 )
s s

f

c
E

c


    


 

is a constant, 'E and ''E are analogous to E but 

corresponding to solute rather than heat. ,
f

c ; ,
s s

c

stand for density and heat capacity of fluid and solid 

matrix, respectively. 

 

III. BASIC STATE AND 

PERTURBATIONEQUATIONS 

The basic state was assumed to be quiescent and is 

given by 

(0 , 0 , 0 ),v 
r

( ), ( ),
b b

T T z p p z 
(1 )(1)

( )
b

C C z , 

( 2 )( 2 )
( )

b
C C z , ( ) ,

b
z      

with ( ) ,
b a

T z T z  
(1 ) (1 )

( ) ' ,
b a

C z C z  

( 2 ) ( 2 )
( ) ''

b a
C z C z   ,

0 [ 1 ' ' '' '' ]z z z            .                     (7)  

To use linearized stability theory and normal 

mode technique, we assume small perturbations on 

the basic state solution. Let

( , , ) 0 ( ', ', ')v u v w v u v w 
r r

, '
b

     , '
b

p p p 

, '
b

T T T  , (1 )(1) (1)
'

b
C C C  and

( 2 ) ( 2 )( 2 )
'

b
C C C  denote, respectively the 

perturbations in the fluid velocity, density, pressure, 

temperature and concentrations. The change in 

density '
 

caused mainly by the perturbations in 

temperature and concentrations is given by 
(1 ) ( 2 )

0
' [ ' ' ' '' '']T C C         .                   (8) 

Then the linearized perturbation equations are 

 

0

(1 ) ( 2 )

1

1 ' 1
1 1 '

1 ' ' ' '' ' '

v
p

t t t

v
g T C C v

t k

     
          

       

 
        

 




,    (9) 

. ' 0v 


,                                    (10) 

2'
'

T
E w T

t


   


,       (11) 

(1 )

2 (1)'
' ' ' '

C
E w C

t


    


,                   (12) 

( 2 )

2 ( 2 )'
'' '' '' '

C
E w C

t


    


,     (13) 

Analyzing the perturbations into normal modes, 

we assume that the perturbation quantities are of the 

form 

 

(1 ) ( 2 )
, ', ', '

( ) , ( ) , ( ) , ( ) ex p { } ,
x y

w T C C

W z z z z ik x ik y n t

  
 

 Q G Y

(14) 

where 
x

k and 
yk are the wave numbers in x and y

directions respectively, 2 2 1 / 2
( )

x y
k k k  is the 

resultant wave number of propagation and n  is the 

frequency of any arbitrary disturbance which is, in 

general, a complex constant. Using expression (14), 

equations (9)-(13) in non-dimensional form become 

2 2

2 2

1
(1 ) ( )

(1 ) ( ' '' ) 0 ,

l

F D a W
p

g a d
F

 
     

 

       


Q G Y            (15) 

 
2

2 2

1

d
D a E p W


    


Q , 

                     

(16)

 
2

2 2

1

'
' ,

'

d
D a E q W


    


G

                      

(17) 

 
2

2 2

2

''
''

''

d
D a E q W


    


Y .           (18) 

Here, we have put a kd , 
2

n d
 


, 

2
F

d

 
 , 

1
p





, 

1

'
q





, 

2

''
q





, 1

2l

k
p

d
 and *

D d D

[(*) is dropped for convenience]. Consider the case of 

two free boundaries. The case of two free boundaries 

is slightly artificial, except in stellar atmospheres and 

in certain geophysical situations where it is most 

appropriate, but it allows us to find analytical 

solutions and to make some qualitative conclusions. 

Both the boundaries are maintained at constant 

temperatures and constant concentrations. The 

appropriate boundary conditions w.r.t. which 

equations (15)-(18) must be solved are 
2

0 , 0 , 0 , 0 , 0W D W    Q G Y
 
at 0z   and 

1z  .                                                           (19) 

Eliminating various physical parameters from 

equations (15)-(18), we obtain the final stability 

governing equation as 

 

     

2 2

1

2 2 2 2 2 2

1 2

1
(1 )

' ''

l

F D a E p
p

D a E q D a E q D a W

 
      

 

      

   

 

2 2 2 2 2

1 2

2 2 2

1

(1 ) ' ''

(1 )

R a F D a E q D a E q W

S a F D a E p

        

     

 

   

2 2 2

2 1

2 2 2 2

1 1

'' (1 )

' 0 .

D a E q W S a F

D a E p D a E q W

     

      

                                                              
(20) 

Here, 

4
g d

R
 




 is the Rayleigh number, 

4
' '

'

g d
S

 



is the analogous solute Rayleigh 

number and

4

1

'' ''

''

g d
S

 



is another analogous 
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solute Rayleigh number. 

Using the above boundary conditions, it can shown 

that all the even order derivatives of W  must vanish 

for 0z   and 1z   and hence the proper solution of 

equation (20) characterizing the lowest mode is 

0
sin ,W W z                       (21) 

where 
0

W  is constant. Substituting the proper solution 

(21), in equation (20) we get the dispersion relation 

as  

21

1 1

1 1 1 1

22

1 11

1 1
(1 )

(1 ) 1

1 '(1 )

i
R i F

P

i E p i E p
S

i E qi F

     
      

     

        
  

       

 

1 1

3

1 2

1

1 ''

i E p
S

i E q

    
  

    

.                                    (22)

 
Here,

1 4

R
R 



, 
2 4

S
S 



, 1

3 4

S
S 



,
2

2

a
 


, 

1 2
i


 



and 2

l
P p  .  

 

IV. STATIONARY CONVECTION 

When the instability sets in as stationary convection, 

the marginal state will be characterized by 0  . 

Putting 0  , the dispersion relation (22) reduces to 
2

1 2 3

(1 )
R S S

P

 
  


.                                 (23)

 
Thus, for the case of stationary convection, the 

relaxation time parameter F vanishes with   and 

Maxwellian viscoelastic fluid behaves like an 

ordinary Newtonian fluid. The above relation 

expresses the modified Rayleigh number 
1

R  as a 

function of the parameters
2

S ,
3

S , P  and 

dimensionless wave number  . To study the effects 

of solute gradients and medium permeability, we 

examine the nature of 1

2

d R

d S
, 1

3

d R

d S
and 1

d R

d P
 

analytically. 

From equation (23), we have 

 

1

2

1
d R

d S


 

and 1

3

1
d R

d S
 ,

   
    (24)

 

which show that solute gradients have stabilizing 

effect on the system. 

It follows from equation (23) that 
2

1

2

(1 )d R

d P P

 
 


,

    

(25)

 which shows that medium permeability has a 

destabilizing effect on the system. 

 

 

 

 

V. STABILITY OF THE SYSTEM AND 

    OSCILLATORY MODES 

Multiplying equation (15) by *
W , the 

complex conjugate of W ,  integrating over the range 

of z  and making use of equations (16)-(18) together 

with the boundary conditions (19),  we obtain 
2

*

1 2 1 3

2

*

4 1 5

1 1
[ ]

1

[ ]

l

g a
I I E p I

p F

g a
I E q I

     
      

      

  
 

 

2

*

6 2 7
[ ] 0

g a
I E q I

  
   

 
,          (26) 

where  
2 2 2

1
| | | |I D W a W d z  ,

 
2 2 2

2
| | | | ,I D a d z  Q Q

2

3
| | ,I d z  Q

 
2 2 2

4
| | | | ,I D a d z  G G

2

5
| | ,I d z  G

 
2 2 2

6
| | | | ,I D a d z   

2

7
| | ,I d z   

 
2 2 2 2 4 2

8
| | 2 | | | | ,I D K a D K a K d z  

 
2 2 2

9
| | | |I D K a K d z 

 
where *  is the complex conjugate of  . The 

integrals 
1

I -
9

I
 

are all positive definite. Putting 

r i
i      in equation (26), where

r
 and

i
  are 

real and then equating the real and imaginary parts, 

we get 

 

 

12 2 2

2 2

2 1 3 4 1 5

11

(1 )

[ ]

r r

l r i

r r

F
I

p F F

g a g a
I E p I I E q I

    
   

       

    
    

   

2

6 2 7
[ ] 0

r

g a
I E q I

  
   

 
                     (27) 

and 

 
1

2 2 2

2

1 3

2

1 5

1 1

(1 )l r i

F
I

p F F

g a
E p I

g a
E q I

   
     

         

  


 

  


 

2

2 7
0

i

g a
E q I

   
  

  

.                            (28) 

It is evident from equation (27) that
r

 may be 

negative or positive i.e. system may be stable or 

unstable. Also from equation (28), it can be seen that 

i
  may be zero or non-zero meaning thereby that the 
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modes may be non-oscillatory or oscillatory. Further, 

in the absence of solute gradients, equation (28) 

reduces to 

 
1

2 2 2

2

1 3

1 1

(1 )
0

l r i

i

F
I

p F F

g a
E p I

   
     

            

  
 

   

. (29) 

For the condition
 

2 2 2

1 1

(1 )l r i

F

p F F

 

 
     
 

, the 

coefficient of 
i

  in equation (29) is a positive 

definite and hence implies that 0
i

  . Thus, 

oscillatory modes are not allowed and the principle of 

exchange of stabilities is valid. So, we can say that 

oscillatory modes are introduced due to the presence 

of solute gradients in the system. 
 

VI. THE OVERSTABLE CASE 

Here, we discuss the possibility as to 

whether instability may occur as overstability. 

Equating the real and imaginary parts of equation 

(22) and eliminating
1

R
 
between them, we obtain 

3 2

3 1 2 1 1 1 0
0 ,A c A c A c A   

                              

(30) 

where 2

1 1
c   , 1b    

and 

4 2 2 2

1 1 2

3

' ''
( 1)

F E E E p q q
A b b




  ,      (31) 

2

5 41 1

0

2 3

2 1 1

( ' )1
( 1) ( 1)

( ' )( 1)

E p E qF
A b b b b

P P

S E p E q b b





  
      

 

  

 

2 3

3 1 2
( '' ) ( 1)S E p E q b b   

 .     (32) 

The coefficients 
1

A  and 
2

A being quite lengthy and 

not needed in the discussion of overstability, have not 

been written here.  

Since 
1


 
is real for overstability i.e. the three values 

of 2

1 1
( )c  should be positive. The product of the 

roots of equation (30) which is 0

3

A

A
 , should be 

positive.  

From the expressions (31) and (32), It is clear that
3

A

is always positive and 
0

A is positive if  

2
1 F

P




 , 

1 1
'E p E q and

1 1 2
''E p E q       (33) 

i.e. if 
1

1

k

 


 , 

'

'

E E

 
 and

''

''

E E

 
 . 

Thus, for the conditions (33), overstability cannot 

occur and the principle of exchange of stabilities is 

valid. Hence, these are the sufficient conditions for 

the non-existence of overstability, the violation of 

which does not necessarily involve the occurrence of 

overstability. 
 

VII. NUMERICAL RESULTS AND 

         DISCUSSION 

For the stationary convection critical 

thermal Rayleigh number for the onset of instability 

is determined for critical wave number obtained by 

the condition 1
0

d R

d x
 and analyzed numerically using 

Newton-Raphson method. 

In Fig. 1, critical Rayleigh number
1

R
 

is plotted 

against solute gradient parameter
2

S for fixed values 

of
3

2 0S  and 0 .1, 0 .5, 0 .9P  . The critical Rayleigh 

number
1

R
 
increases with increase in solute gradient 

parameter
2

S which shows that solute gradient has 

stabilizing effect on the system.  

In Fig. 2, critical Rayleigh number
1

R
 

is plotted 

against solute gradient parameter
3

S for fixed values 

of
2

2 0S  and 0.01, 0 .05, 0 .09P  . The critical 

Rayleigh number
1

R
 
increases with increase in solute 

gradient parameter
3

S which shows that solute 

gradient has stabilizing effect on the system.  

In Fig. 3, critical Rayleigh number
1

R
 

is plotted 

against medium permeability P for fixed value of

2
2 0S  and

3
1 0, 3 0 , 5 0S  . The critical Rayleigh 

number
1

R decreases with increase in medium 

permeability P which shows that medium 

permeability has a destabilizing effect on the system. 

In Fig. 4, critical Rayleigh number
1

R
 

is plotted 

against medium permeability P for fixed value of

3
2 0S  and

2
1 0, 5 0 , 9 0S  . The critical Rayleigh 

number
1

R decreases with increase in medium permeability

P which shows that medium permeability has destabilizing 

effect on the system. 
 

 
Fig. 1: Variations of critical Rayleigh number

1
R with

2
S
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for fixed value of
3

2 0S  and 0 .1, 0 .5, 0 .9P  . 

 Fig. 2: Variations of critical Rayleigh number
1

R with

3
S for fixed value of

2
2 0S  an 0 .01, 0 .05, 0 .09P  . 

 Fig. 3: Variations of critical Rayleigh number
1

R with

P for fixed value of
2

2 0S  and
3

1 0, 3 0 , 5 0S  . 

 
Fig. 4: Variations of critical Rayleigh number

1
R

 
with P

 
for fixed value of

3
2 0S  and

2
1 0, 5 0 , 9 0S  . 

 

CONCLUSIONS 

The subject of double-diffusive convection 

is still an active research area, however, there are 

many fluid systems in which more than two 

components are present. It has been recognized 

earlier that there are important fluid mechanical 

systems in which the density depends on three or 

more stratifying agencies having different 

diffusivities, which can be called multiply diffusive 

convection. By analogy with the doubly diffusive 

case in which the density depends on two 

independently diffusing stratifying agencies, we refer 

to the isothermal quaternary and non-isothermal 

ternary (i.e. three components) case as being triply-

diffusive. Keeping this in view, the triply-diffusive 

convection in Maxwellian viscoelastic fluid through 

porous medium has been considered in the present 

paper.   

The main conclusions from the analysis of this paper 

are as follows: 

(a) For the case of stationary convection the 

following observations are made: 

 The stable solute gradients have stabilizing 

effects on the system. 

 The medium permeability has a destabilizing 

effect on the system. 

(b) It is also observed from the Figs. 1-4 that stable 

solute gradients have stabilizing effects whereas 

the medium permeability has a destabilizing 

effect on the system. 

(c) It is observed that stable solute gradients 

introduce oscillatory modes in the system. 
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(d) The conditions 
1

1

k

 


 , 

'

'

E E

 
 and

''

''

E E

 


 
are the sufficient conditions for the non-

existence of overstability, the violation of which 

does not necessarily involve an occurrence of 

overstability. 
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