

Afsal K.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 7, (Part -8) July 2017, pp.92-94

www.ijera.com DOI: 10.9790/9622-0707089294 92 | P a g e

Sparse Matrix to Decimal Coding (SMDC) Algorithm

Afsal K
#1

, Sainul Abideen
#2

, Dr. V kabeer
#3

#
Department of Computer Science Farook College, Calicut, India

Corresponding Author: Afsal K

ABSTRACT
We recently introduced a new method for Sparse matrix storage[1] which will considerably reduce the storage

space by storing only nonzero elements along with the weight of each row(or column) and the number of

rows(or column). This paper discusses two algorithms, SMDC Algorithm to convert a sparse matrix into deci-

mal coding format and Reverse SMDC Algorithm to convert a decimally coded matrix back into the normal

sparse matrix format. SMDC is a space optimized storage method for storing sparse matrices. It can store a

sparse matrix with m rows and n columns and nnz nonzero elements, with smaller (m or n) + nnz +1 storage

space, which is very much space efficient storage compared to most of the sparse matrix storage methods.

Keywords: Sparse matrix, decimal coding matrix storage, Dense matrix storage, Decimal coding algorithm,

sparse matrix storage algorithm.

--- ---------

Date of Submission: 17-07-2017 Date of acceptance: 26-07-2017

--- ---------

I. INTRODUCTION
Sparse matrix storage is a very important

area of mathematics and computer science. Sparse

matrices are matrices with a considerable number of

zero value elements and the storage methods mainly

developed to reduce storage space[8] by storing in-

formation only related to nonzero elements. Most of

such methods used in optimizing data storage size,

perform data processing, increasing computation

performance etc in computer science[3][4][5].

The basic idea of sparse matrix storage is to

store only nonzero elements in memory with its ad-

dress (positions) and avoid zero elements to reduce

memory space[7][8]. So, if N is the number of non-

zero elements in a sparse matrix, V will be an array

of nonzero elements and R will be the row reference

array which will be stored the raw reference and C

will be the column reference array which will be

containing column reference. So in the normal

method, if N is the number of nonzero elements, 3N

will be the storage space needed to store the matrix.

By getting the nonzero values and references, we

can regenerate the sparse matrix anytime in need.

We are able to do basic matrix operations also by

using the values stored in memory.

There are dozens of sparse matrix storage

methods used in the industry according to the situa-

tions. few applications need time efficient storage

methods and few will need space efficient methods,

storage methods are selected according to the pur-

pose and applications[5][2][6].

Here, we discuss the algorithms used to

convert the sparse matrix into decimal coded repre-

sentation and the decimally coded representation

back into the sparse matrix. We already proposed the

method in the previous paper which found more

efficient in memory utilization. Most of the test cas-

es show considerably less memory space to store a

sparse matrix by using this method instead of using

conventional methods. Moreover sparse matrices,

we tried the method with a slight modification for a

normal dense matrix which is having any particular

non-zero element repeating instead of zero, and we

were able to store that matrix too with considerably

reduced storage space. The same method can be ap-

plied for storing a dense matrix but the only differ-

ence is that we have to consider repeated value too

instead of zero in the system and it will consume one

more storage space. Then the total memory space

used to store a dense matrix will be small(m / n) +

nnr +2, where m is the number of rows, n is the

number of columns and nnr is the number of ele-

ments other than the repeated most repeated element.

II. METHOD
Consider a m x n sparse matrix A

 a11 a12 a13 ……. a1n

 a21 a22 a23 ……. a2n

 a31 a32 a33 ……. a3n

 . . . ……. .
 . . . ……. .
 . . . ……. .
 am1 am2 am3 ……. amn

RESEARCH ARTICLE OPEN ACCESS

S. Dewangan.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 7, (Part -I) July 2017, pp.00-00

www.ijera.com DOI: 10.9790/9622-0707089294 93 | P a g e

Where m is the number of rows and n is the

number of columns and nnz is the number of non-

zero elements in the matrix A. The sparse matrix A

can be represented as two one dimensional arrays P,

V as follows. Array P stores the horizontal/vertical

weight of each row/column. The first position of P

will be stored with the number of row/column of the

given matrix A. Its needed to store the number of

row/column to understand the actual number and

any one of the above we can identify from the num-

ber of weights.

 P = [m/n, W1, W2, W3, …….Wm/n]

Array V stores all nonzero elements in the given

matrix A in row/column major order.

 V = [nz1, nz2, nz3, …...…. nzk]

III. WEIGHT CALCULATION
Consider row major weight calculation, let

the number of columns, n be 4. We take the first

row r1=[a11 a12 a13 a14] where a11, a12, a14 are

zeros and a13 is a nonzero element. Then we consid-

er the nonzero element as 1. So the row r1 will be [0

0 1 0], we consider this row as a binary number

with four bits and convert it to decimal equivalent

Hence the weight of the row will be 2 in decimal

value from the above example. The decimal value

represents the entire row and we will be able to con-

vert it to binary and to create the actual row by re-

placing 1s with actual numbers stored in the array V.

For calculating weight in column major, we have to

do the same procedure with each column in the ma-

trix.
 Let m be 4

 We take the first column c1=

[a11 a21 a31 a41] where a11, a31, a41 are zeros

and a21 is a nonzero element.

 Then we consider the nonzero element as 1.

So the row c1 will be [0 1 0 0], we consider it as a

binary number and convert it to decimal equivalent

as we done in the row major weight calculation.

Hence the weight of the column will be 4 in decimal

value for the given example. The decimal value rep-

resents the entire column and we will be able to con-

vert it to binary and to create the actual row by re-

placing 1s with actual numbers stored in the array V.

We can save space by selecting smallest from the

number of rows and number of columns. If the ma-

trix has 10 rows and 3 columns, it is better to select

row major as P will be having only 3 elements and

another value to store the number of columns.

IV. SMDC ALGORITHM
The SMDC algorithm can be easily con-

structed by two simple iterations through row ele-

ments and column elements. if the element is zero,

just avoid the element, if it is a nonzero element,

push the element to the value array V. After the iter-

ation, the size of the array V will be the number of

nonzero elements in the matrix. Let A be an m x n

matrix with nnz non-zero elements. Let V be a value

array which stores non-zero values and P is an array

to store weight of each row or column. The first el-

ement of P will be the number of rows or columns

according to the weight calculation method selected.

Here we have selected row major weight calculation

method and we can also implement color major al-

gorithm with minor differences. We need to initial-

ise two Arrays V and P which will hold non-zero

elements and weight of each row. We are traversing

through each and every cell in the matrix using two

loops. On each cell, we are checking the value

whether it is zero or not. If it is a non-zero element,

we store it in value array V, and the non-zero ele-

ments of the matrix A will be replaced by 1. By fin-

ishing the process, V will be holding all nonzero

elements and the matrix A will be having only zeros

and ones as cell values.

INITIALISE Array V, P

INITIALISE k=1

FOR i= 1 TILL m

 FOR j= 1 TILL n

 IF A[i][j] != 0

 PUSH A[i][j] TO V[k]

 PUSH 1 TO A[i][j]

PUSH Number of Column to P[1]

FOR i = 1 TO m

 FOR j= n TO 1 STEP -1

 P[i+1] = P[i+1]+ A[i][j] * 2 ^ (n-j)

Next step is the Store number of columns in

the first position of array P, this will help to recon-

struct the Sparse Matrix. Other cells of P will be

filled with the weight of each column. Weight can be

calculated by two nested loops which will parse

through each element in the matrix A and cover the

binary sequence to Decimal using normal binary to

decimal conversion method. Decimally coded

matrix will be stored in arrays V, P, where V con-

tains non-zero values and P is the position matrix,

which contains weights where each value represents

the weight of the row. The first value in the array P

will be the number of columns.

S. Dewangan.et.al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 7, Issue 7, (Part -I) July 2017, pp.00-00

www.ijera.com DOI: 10.9790/9622-0707089294 94 | P a g e

V. REVERSE SMDC ALGORITHM
Reverse SMDC Algorithm is used to convert a

decimally coded matrix to its original sparse matrix format.

Here, we scan through each and every element in P, the

first element will be treated as the number of row and rest

of the elements are decimal values of positional weights.

After converting each decimal value into an n-bit binary

number, a new matrix of size m x n will be created and the

binary values act as the m rows of the matrix. Then we

replace each binary 1 with values of the array V. By repeat-

ing this process till the last decimal value in P, the original

Sparse matrix A can be constructed.

INITIALIZE Matrix A

ASSIGN P[1] to n

FOR i = 2 TO Size of P

 FOR j= 1 TO n

 IF P[i]-2^(n-j)>=0

 ASSIGN P[i] MOD(2^n-j) TO A[i-1][j]

 ASSIGN P[i]-2^(n-j) to P[i]

 ELSE

A[i-1][j]=0

INITIALISE k =1

FOR i= 2 to Size of P

 FOR j= 1 to n

 IF A[i-1][j]== 1

 REPLACE A[i-1][j] with V[k]

 INCREMENT k by 1

Here, we are initialising matrix A to store Sparse

matrix constructed using the given decimally coded matrix

in the form of value array V and positional weights of rows

in array P. We are aware that first element of P is holding

the number of columns in the sparse matrix. So we copy the

first element of P, P[1] to n. The number of rows will be

the (size of P) -1. By using two nested loops up to the num-

ber of rows and columns, we create the matrix with zeros

and ones as the first step. Each value stored in P will be

converted into binary format and it will be stored in the

matrix. Now we know positions of nonzero values as they

holding one and other cells holding zero. By parsing

through each and every cell of the created matrix with zeros

and ones, we replace all ones with nonzero values in value

array V.

VI. CONCLUSIONS
The algorithm is implemented using computer

environment and different sparse matrices are tested in both

row major and column major scenarios. Sparse matrices

with different size and cell values are tested and both

SMDC and Reverse SMDC algorithms are working

smoothly. Tried basic matrix operations like addition, sub-

traction, transpose etc with the Decimally coded matrix and

the results are obtained.

REFERENCES
[1] Sparse Matrix using Decimal Coding, V.Kabeer,

Afsal K, Sainul Abideen. International Journal of

research in engineering and technology. eISSN :

2319-1163, pISSN : 2321-7308. Vol : 5. Special

Issue : 22

[2] Sparse Matrix Storage Format, Fethulah

Smailbegovic, Georgi N. Gaydadjiev, Stamatis

Vassiliadis Computer Engineering Laboratory,

Electrical Engineering Mathematics and Comput-

er Science Mekelweg 4, 2628CD Delft TU Delft

fethulah@computer.org stamatis,

georgi@ce.et.tudelft.nl

[3] Matrix computing coprocessor for an embedded

system.Bin Zhang , Kuizhi Mei, Jizhong Zhao

Xian Jiaotong University, Xian 710049, China.

[4] A hardwaresoftware co-design approach for im-

plementing sparse matrix vector multiplication on

FPGAs Shweta Jain-Mendon , Ron Sass Recon-

figurable Computing Systems Lab, Department

of Electrical Computer Engineering, University

of North Carolina at Charlotte, United States.

[5] Optimization of sparse matrix-vector multiplica-

tion using reordering techniques on GPUs Vol-

ume 36, Issue 2, March 2012, Pages 65- 77. Juan

C. Pichel, Francisco F. Rivera, Marcos Fernndez,

Aurelio Rodrguez.

[6] Information storage and effective data retrieval in

sparse matrices. Hans J. Bentz, Michael

Hagstroem University of Osnabrueck Germany.

Guenther Palm University of Duesseldorf Ger-

many.

[7] Sparse Matrix Technology. von: Sergio

Pissanetzky Elsevier Reference Monographs,

1984 ISBN: 9781483270401 , 336 Seiten.

[8] Sparse Matrices and their Applications. ISBN13

9781461586777, Publisher :-Springer-Verlag

New York Inc. [11] Iterative Methods for Sparse

Linear Systems. by Yousef Saad, Second edition

with corrections. January 3rd, 2000.

 International Journal of Engineering Research and Applications (IJERA) is UGC approved

Journal with Sl. No. 4525, Journal no. 47088. Indexed in Cross Ref, Index Copernicus (ICV

80.82), NASA, Ads, Researcher Id Thomson Reuters, DOAJ.

Afsal K. "Sparse Matrix to Decimal Coding (SMDC) Algorithm." International Journal of En-

gineering Research and Applications (IJERA) 7.7 (2017): 92-94.

