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ABSTRACT 
Camera calibration is favored as an important issue in photogrammetry and computer vision literatures. The 

importance of this issue can be due to two reasons: firstly, every recently camera should be calibrated before 

being used to correct its lens distortion and interior orientation elements. In addition, it is a main preprocessing 

step at many vision applications. This paper aims to provide an overview of concept, objective, methods and 

mathematical equations for camera calibration. 
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I. INTRODUCTION 

Many years, photogrammetry researchers 

and recently, computer vision researchers have taken 

camera calibration issue into consideration [1–17]. 

Every recently camera should be calibrated to correct 

its lens distortion and interior orientation elements. In 

addition, it is a main preprocessing step towards 

many important applications in photogrammetry and 

vision such as camera localization, 3D 

reconstruction, object localization, visual inspection 

and robot navigation [3, 5].The objective of the 

geometric calibration of a digital camera system is to 

reconstruct the precise geometry of the bundle of rays 

that entered the camera at the instant of exposure 

from the 2D measurement of points on the resulting 

imagery [18, 19]. We aim to provide an overview of 

concept, methods and equations for camera 

calibration.The reminder of the paper is organized as 

follows: In section 2, a concept of camera calibration 

is presented. Then, section 3 provides the objective of 

camera calibration. The camera calibration methods 

are introduced in section 4 in terms of 

photogrammetry and computer visioncategorizations. 

Finally, the mathematical equations for single-image 

calibration and multi-image self-calibrationare 

provided in section 5.  

 

 

 

 

 

 

 

II.  CAMERA CALIBRATION CONCEPT 
In photogrammetry literatures, the camera 

calibration can be defined as the process of  

 

 

determining geometric characteristics (called as 

"interior orientation elements") of a camera system 

[20]. Of course, Li (1999) provided a comprehensive 

definition for camera calibration: "it can be 

considered as a process of and compensating for 

systematic errors of the camera system and imaging 

process, through which the system's properties can be 

determined and the metric performance of the camera 

system be enhanced [19].Two important terms should 

be defined to better perceive of camera calibration 

concept: Interior orientation elements (IOE) and 

exterior orientation elements (EOE).IOE also called 

as intrinsic or internal parameters includes of 

principal point location at fidual marks coordinate 

system (xo, yo), principal distance (c) or focal length 

(f), skew factor (s) and aspect ratio (). In metric 

cameras, s=0 and =1 and there are only three 

unknown parameters i.e. (xo, yo, f) [21–

23].Establishing relationship between image space 

(or image coordinate system) and object space (or 

object coordinate system) is called as "exterior 

orientation". It is accomplished by locating the 

camera center in the object coordinate system. For 

this purpose, three translation parameters (XO, YO, 

ZO) i.e. the position of camera center or image center 

at object coordinate system and three rotation 

parameters (, , ) i.e. the rotation of camera 

related to object coordinate system axes (X, Y, Z) are 

needed. These parameters are called as EOE [21]. 
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III.  OBJECTIVE OF CAMERA 

CALIBRATION 
As previously said, the objective of camera 

calibration is to compensate systematic errors 

affected on the geometric position of the image 

points [19]. Generally, this process is included of 

both elements related to lens system and elements 

related to camera focal plane which are as follows 

[19, 24]: 

1–Principal point location (at fidual marks coordinate 

system); 

2– Camera focal length/principal distance/constant 

(calibrated); 

3– Lens distortion (both radial and decentering 

distortion); 

4– Geometry of sensor plane (planarity, pixel size, 

orthogonality of axes); 

5– Variation of the interior geometry of the camera 

system with a focusable lens; 

6– Stability of the above elements. 

The most of projects in the regards of 

camera geometric calibration have been performed 

considering chiefly the lens part of the camera and a 

few considered the sensor aspect [19].  

 

IV. CAMERA CALIBRATION METHODS 
As said at Introduction, camera calibration 

has been favored by both of photogrammetry and 

computer vision researchers. In this section, we aim 

to provide the categorizations of camera calibration 

methods in two these fields. 

 

4.1.Categorization in the Photogrammetry  

A categorization of camera calibration methods has 

been provided by Faig (1998) in terms of 

photogrammetry as follows [19]: 

 

4.1.1. Pre/Post–Calibration 

This group contains conventional laboratory, 

test-field and star calibration methods. For the 

calibration. For the calibrated system, calibration 

parameters remain constant or change according to a 

determined pattern during the subsequent evaluation. 

In this group, the calibration and the evaluation are 

processed separately [19]. 

 

4.1.2. On–the–Job Calibration 

In this group, the calibration and the 

evaluation are either combined into one process or 

carried out sequentially in which calibration 

parameters are treated as unknowns. In order to solve 

them, additional object-space control is needed [2, 

25]. 

 

4.1.3. Self–Calibration 

This group may be sometimes confused with 

the group. However, it does not need additional 

object-space control to solve the calibration 

parameters [2]. This group makes use of the 

geometric strength of overlapping images to 

determine these parameters. Therefore, unlike the on-

the-job method which can be implemented either in 

the case of single-image or of multi-image, self-

calibration is only valid when there are overlapping 

images and the configuration of the image acquisition 

has a direct influence upon the final results [19]. 

Brown (1989) stated that there are several 

requirements to meet a successful self-calibration [2]: 

1– Availability of at least three images of the object 

taken by a same camera; 

2– Remaining stability of both the interior geometry 

of the camera and the point to be measured on the 

object during the measurement process; 

3– Availability of the high strength of 

photogrammetric network and a high degree of 

convergence; 

4– Availability of at least one image having a roll 

angle that is significantly different from the others; 

5– Employing a relatively large number of well 

distributed points. 

 

Having abovementioned cases, Brown 

claims “a satisfactory calibration of the camera can 

be performed as an integral part of the triangulation 

without any control points”. However, there is a 

problem with the aerial application of the self-

calibrating bundle adjustment and it is to obtain 

images which have an adequate diversity of camera 

angles [2]. 

 

4.2. Categorization in the Computer Vision  

In 3D computer vision, camera calibration is 

a necessary step for extracting metric information 

from 2D images [8, 23]. From its point of view, a 

categorization for camera calibration methods is 

presented based on the dimension of the calibration 

objects. It is as follows [26]: 

 

4.2.1. 1D Object–Based Calibration 

Calibration objects of this group are 

composed of a set of collinear points. In this case, a 

camera is able to be calibrated by observing a moving 

line around a fixed point, such as a string of balls 

hanging from the ceiling [8]. 

 

4.2.2. 2D Object–Based Calibration 

In this group, a planar pattern shown at a few 

different orientations is observed. In this case, the 

knowledge of the plane motion is not necessary. 

Since almost anyone can make such a calibration 

pattern by him/her-self, therefore the setup is easier 

for camera calibration. 
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4.2.3. 3D Object–Based Calibration 

In this group, camera calibration is 

performed by observing a calibration object whose 

geometry in 3-D space is known with a very good 

precision. The calibration object usually consists of 

two or three planes orthogonal to each other. 

Sometimes, a plane undergoing a precisely known 

translation is also used, which equivalently provides 

3D reference points. This group requires an elaborate 

setup and an expensive calibration device. 

Based on the abovementioned 

categorization, self-calibration can be considered as 

0D calibration method because it employs no 

calibration object and only the corresponding image 

points are needed for calibration. In this case, if 

images are taken by the same camera with fixed 

intrinsic parameters, correspondences between three 

images are adequate to retrieve both of the IOE and 

EOE which can reconstruct primary 3D structure. 

Although no calibration objects are necessary, many 

unknown parameters should be estimated, 

eventuating in a more complex mathematical 

problem [26]. 

 

4.3. Other Categorizations 

Li (1999) presented another categorization 

for digital camera calibration methods based on the 

recovery situation of the calibration parameters [19]. 

He considered two main groups of individual and 

combined methods for camera calibration methods. 

In individual methods, some calibration 

parameters describing lens distortion, principal point 

offset and sensor unflatness are determined 

separately from each other, based on either empirical 

or analytical methods using certain special devices 

such as a laser beam, collimators or a goniometer. 

Traditional laboratory methods belong to this group. 

The advantage of this group is the relative 

independence of the calibration parameters which 

makes the results more reliable. By contrast, the high 

time consumption and the necessity for special 

devices are two main disadvantages of this group. 

Moreover, the camera systems must be detached for 

the calibration and calibration is often separated from 

data evaluation. So, for some digital camera systems, 

the variation of their internal geometry may 

sometimes make the calibration results meaningless 

if the variation is unpredictable [19]. 

In contrast to first group, the combined 

methods are being widely used to determine the 

principal point offset, principal distance, lens 

distortion parameters and part of the sensor 

information (orthogonality and affinity) at the same 

time based on the relationship between a well-

controlled test-field composed of an array of 

precisely coordinated targets and its distorted image. 

The general outline of this group is shown in figure 1. 

Calibration parameters can be determined based on 

single or multiple frame resectionifadequatelynumber 

of object-space control points. They can be 

simultaneously determined together with the EOE 

and object coordinates from the photogrammetric 

bundle adjustment. On-the-job and self-calibration 

can be considered as special cases of this group 

differing in the control necessity. Basically, this 

group is based on the mathematical modeling of the 

systematic errors of camera systems [19]. 

 

 
Figure 1. The outline of combined calibration 

methods [19]. 

 

In addition to the previous categorizations, 

another categorization is presented by Liu (1982). 

From his point of view, the calibration of a camera 

(either metric or non-metric type) can be divided into 

two main groups: the physical and the analytical one 

[22]. The physical methods are often called 

laboratory calibration. The use of optical instruments 

such as multi-collimators and goniometers are two 

most important methods of this group [24]. It is 

accomplished according to the physical properties of 

the camera component and it is more applicable for 

metric camera as compared to non-metric one [22]. 

In contrast to the first group, the analytical 

group employs object control points which provides 

for certain geometric conditions such that the camera 

parameters are determined within these conditions. 

This groups is able to be used for the calibration of 

any camera type. During recent years, many 

analytical programs have been developed for both 

metric and non-metric camera calibration. Field 

Calibration, stellar calibration, test-field calibration, 
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plumb line method and self-calibration are the most 

important methods of this group [22]. 

In the following, we aim to briefly describe 

some of abovementioned camera calibration 

methods. 

4.3.1. Goniometer Method 

The principle of this method is to place a 

precise grid, called as a Reseau plate, on the image 

plane of the camera and to illuminate it from behind 

so that the images of the grid crosses were projected 

out into object space [2]. Lenses are usually 

calibrated at infinity focus using a collimator rotated 

about the front node of the lens. In order to locate the 

principal point, the auto-collimation procedure was 

employed. The principle of autocollimation was used 

for location of the principal point. 

Hallert (1960) explained the goniometer 

principle as follows [2]: A precision grid having lines 

in a 10 mm spaced regular array is used. Then, it is 

illuminated and its etched pattern projects through the 

lens. Focused to infinity, a telescope is directed 

towards the camera lens. It is projected on the 

collimating mark of the telescope and adjusted into 

coincidence there. By rotating the telescope, the 

angles are measured (Figure 2). Therefore, by 

recording them to selected intersection points and 

having the grid spacing, estimating all of the camera 

IOEs is soluble. 

 
Figure 2. The moving collimator goniometer 

principle [2]. 

 

4.3.2. Multi-Collimator Method 

The principle of this method is almost 

similar with the goniometer, except in a reverse 

sense. Collimators can be considered as telescopes 

with illuminated cross-hairs, focused at infinity and 

pointing at the lens of the camera from various 

directions. The bank of collimators shone their 

illuminated crosses through the lens and onto the 

image plane of the camera where they are recorded 

on film or a glass plate [24]. 

The locations of the crosses on the exposed 

plate are observed. Then, having the object space 

coordinates of all the collimators by precise 

surveying, the lens distortions is able to be calculated 

in a manner similar to the goniometer procedure [2]. 

The procedure of this method is shown in Figure 3 

where each collimator produces an image at infinity 

of an illuminated cross-hair on the image plane. 

 
Figure 3. Multi-collimator calibration procedure [2]. 

 

4.3.3. Field Calibration Method 

In this method, determined by the accurate 

surveying methods, several ground marks are taken 

by a camera [24]. Then, by comparing object 

coordinates and image coordinates of these marks, 

the calibration parameters can be computed. 

This method has several advantages: in the 

accuracy of these marks, which have been surveyed 

previously; the fact that the camera can be used in 

conditions similar to which it will operate; and 

calibration can take place at a similar time to use. Its 

disadvantage is the presence (for single camera 

calibration) or lack (for multi-camera calibration) of 

3-D detail [2]. 

 

4.3.4. Stellar Calibration Method 

In stellar method, several stars are taken by 

a camera and the angles related to the stars are 

measured and they are compared with their true 

values, then. In this method, the angular position of 

stars should be known to a high degree of accuracy 

and repeatability [24]. Shmid (1974) described the 

calibration of the Orbigon lens. In his study, the 

standard error in position of the stars is less than 0.4 

seconds. Over 2420 star images are visible on each 

plate. Although, the necessity to identify each star 

and apply corrections for atmospheric refraction and 

diurnal aberration is a drawback of the method, the 

large number of observations causes to use the least 

squares estimation process. In addition, calibrated 

focal length, principal point and principal point of 

symmetry, radial and tangential distortion, and 

orientation of tangential distortion have been used in 

his study [2]. 
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4.3.5. Test-Field Calibration Method 

Also called as reference body calibration, 

this method is the use of images of a (3D) object 

having known and accurate geometric positions. The 

principle is as follows: Several images are taken from 

test field or reference body which 3D (or object) 

coordinates of target points are known. Then, image 

coordinates of all target points are measured. Finally, 

the distortion parameters, IOE and EOE are 

computed using a least squares estimation process. 

Several requirements should be considered for this 

method as follows: Test field should have a very 

accurate and stable position during calibration 

process. Grid network should also be stable. In 

addition, there should be the approximate values of 

the camera IOE and EOE [27, 28]. Test field can has 

a variety dimension (millimeter to meter). Figures 4a 

to 4c shows some different test fields for calibration. 

 

 
(a)         (b) 

 
(c) 

Figure 4. Different test fields for calibration with the 

dimensions of: (a) 1.5 × 2.5 × 4.0 meters prepared by 

surveying. (b) 30 × 50 × 50 centimeters prepared by 

high resolution photogrammetry. (c) 14 × 10 × 10 

millimeters prepared by laser [28]. 

 

4.3.6. Plumb-Line Method 

The plumb-line method was firstly used by 

Brown (1971) for calibration of lens distortions. This 

method is based on the presupposition that a straight 

line in object space will project as a straight line in 

image space, if lack of distortion [2] or in other 

words, the 2D image of a 3D line remains straight if 

the camera is a pinhole type (no lens distortion) [29]. 

However in reality, because of existing distortion 

(radial and decentering), the 2D image of a 3D line 

does not remain straight [30]. 

This method can be formulized based on the 

fitting of straight lines to digitized sets of observed x 

and y coordinates on the image plane. Deflecting a 

line from linearity is ascribed to the radial and 

decentering lens distortion (Figure 5a). In fact, it can 

be conceived that each digitized point consists of a 

"true" position plus the effects of radial and 

decentering distortion. To compute the effects of 

decentering distortion, it is necessary to digitize 

several sets of nearly horizontal and vertical lines 

[30]. 

 
(a) 

 
(b) 

Figure 5. (a) Before correction, best fit of plumb line 

data to a straight line. (b) After correction, best fit of 

corrected data to a straight line [2]. 

 

The parameters for radial and decentering 

distortion can be readily extracted by the analytical 

plumb-line technique. The principal distance and 

offsets of the principal point cannot be determined 

from this method [2]. To illustrate the efficiency of 

plumb-line method, consider that 50 points have been 

digitized for 10 horizontal lines and for 10 vertical 

lines, then 1000 items of data would be available to 

describe those 20 lines plus the parameters xp and yp 

(principal points position), k1, k2 and k3 (radial 

distortion parameters), p1, p2 and p3 (decentering 

distortion parameters).By employing the corrections 

to the image shown in Figure 5a, the image of Figure 

5b is derived. 
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V. MATHEMATICAL EQUATIONS FOR 

CAMERA CALIBRATION 
5.1. Single–Image Calibration 

Mathematical equations for (metric or non-

metric) camera calibration using single-image 

method is space intersection based on collinearity 

condition. These equations are as follows [19]: 

*

*

Z

X
cxxx

o
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*

*

Z

Y
cyyy

o
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(1) 

where, x and y are image coordinates, xo, yo and c 

are the main IOE, x and y are additional 

parameters which model systematic effects and can 

be the functions of the main IOE, radial distortion 

(k1, k2 and k3) and decentering distortion (p1, p2 and 

p3) as follows [19]: 
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32132100

pppkkkyxcfx
x

  

),,,,,,,,(
32132100

pppkkkyxcfy
y

  
(2) 

In addition, 

)()()(
131211

*

OOO
ZZmYYmXXmX   

)()()(
232221

*

OOO
ZZmYYmXXmY   

)()()(
333231

*

OOO
ZZmYYmXXmZ   

(3) 

where, X, Y and Z are object coordinates of an 

optional point, XO, YO and ZO are object 

coordinates of image center and mij are elements of 

rotation matrix between object space and image space 

[19]. 

Having known control points, all the 

unknowns (IOEs, EOEs and additional parameters) 

can be simultaneously determined. It is possible 

using a least squares estimation process and helping 

additional control points. In this case, the observation 

equations are formed and then, the problem is solved 

using normal equations as follows: 

LBV    (4) 

0 WN   (5) 

WN
1

  (6) 

Eq. 4 is the basic observation equation 

where V is the residuals vector, B is the design 

matrix, L is the observations vector and  is the 

unknowns vector containing IOEs, EOEs and all 

additional parameters. Eq. 5 and eq. 6 are the normal 

equations and normal solution corresponding with eq. 

4. 

Of course based on the function forms of x 

and y, systematic errors modeling methods can be 

divided into physical and algebric models or the 

combination of both so called hybrid models [19]. 

The first models are based on the known physical 

properties of the camera system such as radial and 

decentering lens distortions, scale change and non-

orthogonality of image axes. In fact, the principle of 

this group is to model the cause of image 

deformations. So, it is also called as "causes models". 

The most widely used physical models has been 

presented by Fraser (1997) [19]. Table 1 presents 

some physical models for modeling systematic errors 

in digital camera system. 

In contrast to the physical models, the 

algebraic models are constituted based on only 

geometric considerations, usually with orthogonal or 

near orthogonal components with their principle 

strength being low correlation among the parameters 

and being capable of compensating for unpredicted or 

unspecified effects. In fact, this group models the 

effects of image deformation resulting to call it 

"effect models", as well. The most general algebric 

models has been presented by Brown (1976) [19]. 

Two main drawbacks of the physical models 

are: 1) some systematic errors are not physically 

known and so they cannot be completely modeled by 

the abovementioned functions. 2) The over--

parameterization and correlations among the 

additional parameters themselves and among them 

and other orientations parameters will sometimes 

decline the accuracy of the final photogrammetric 

results. By contrast, although the parameters of the 

algebric models are not physically interpretable, this 

group is more popular and usable than the physical 

group [19].  

 

5.2. Multi–Image Self–Calibration 

Also called as simultaneous multi-frame 

analytical calibration (SMAC), this method can be 

thought of as a general method for both of camera 

calibration task (determining IOEs, EOEs and 

additional parameters) and determining object 

coordinates of points [24]. Thus unlike the single-

image calibration method, in multi-image self-

calibration method, the unknown coordinates of 

object points are inserted into the linearized 

collinearity condition equations. Thus: 
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(7) 

where: 

X1:the unknown IOE vector and additional 

parameters (xo, yo, f, k1, k2, k3, p1, p2, p3); 

X2: the unknown EOE vector (XO, YO, ZO, , , ); 

X3: the unknown object coordinates vector (X, Y, Z); 

vx and vy: the residuals of x and y image coordinates; 
0

x
F and 0

y
F : the functions values for the initial values 

and 

XF  :the partial deferential of each function in 

relation to the unknown parameters. 

The matrix form of Taylor series expansion for 

eq. 7 is as follows [24]: 
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or 

1213321)69()69(212
BBV
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

mnnnmnmmmnmn
   (8) 

where: 

m and n are the number of images and the number of 

object points, respectively; 

V and  are the residuals and differences vectors, 

respectively; 

B and B are the design matrices (the partial 

differential in relation to the orientation and 

coordinates unknowns) and  and are the correction 

vectors of orientation and coordinates unknowns 

which should be repeatedly added to initial/previous 

unknowns values as follows: 


~

 (9) 

where X
~  and  are the initial values vector and the 

corrections vector of all unknown, respectively. 

If there are the initial values of orientation and 

coordinate unknowns, then: 


 v  (10) 

is a constraint equation where X and vX are the initial 

values and the residual vectors of all unknowns. By 

comparing eq. 10 and eq. 11, eq. 12 











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v
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

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


 
(11) 

is obtained [24] where (1) and (2) are the constraint 

equations for orientation and coordinates unknowns, 

respectively. Eq. 9 and eq. 12 can be combined as 

follows in matrix form [24]: 

 V  (12) 

where 

T

1

T

1

T

1

),,(,),(

0

0,)V,V(V,V

 
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
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







NU

lNN  

where,N= 2mn + 9 + 6m + 3n is the number of 

equations and U = 9 + 6m + 3n is the number of 

unknowns. 

Using least squares estimation process, the 

general form of the normal equations corresponding 

with eq. 13 is as follows: 

CNW)W(
TT

   (13) 

and the normal solution corresponding with eq. 14 is 

as: 

CN
-1

  (14) 

Of course, eq. 14 can be reformed as follows: 
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where [24]: 
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where, N and N are the normal matrices in relation to 

orientation unknowns and coordinates unknowns, 

respectively. 
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Table 1. Some physical models for modeling systematic errors in digital camera [19]. 

Project Model Formats Physical Meaning of 

Parameters 

Bayer's Project 
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x
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2)2(

)(




 

)2(2

)(

22

21

6

3

4

2

2

10

yrpyxp
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y
yy




 

k1, k2, k3: coefficients of 

radial lens distortion; 

p1, p2: coefficients of 

decentering lens 

distortion; 

sx: scale factor in x 

direction; 

a: shear factor 

Burner's 

Project 

yxpxrp

rkrkrkxysxsx
vh

2
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1

6
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4

2
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
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sh, sv: different scale 

between the horizontal and 

vertical pixel spacing; 

: non-perpendicularity 

of the pixel axes; 

Edmundson's 

Project 
yxaxrararaxx
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1
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22
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1
yrayxararayy   

a1, a2: coefficients of 

radial lens distortion; 

a3, a4: coefficients of 

decentering lens 

distortion; 
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Fraser's 

Project 
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c: variation of principle 

distance; 

b1: parameter for 

differential scaling 

between the horizontal and 

vertical pixel spacing; 

b2: parameter for non-

orthogonality between the 

axes; 

Heipke's 

Project 
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A1, A2, r0: parameters for 

radial lens distortion; 

B1, B2: parameters for 

decentering lens 

distortion; 

Li and Faig's 

Project 
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k1, k2, k3: coefficients of 

radial lens distortion; 

p1, p2: coefficients of 

decentering lens 

distortion; 

A, B: coefficients of scale 

change and non-

perpendicularity of 

coordinate axes; 

Litchti and 

Chapman's 

Project 

 

 
As before 

Peterson's 

Project 
 

 
As before 

Wong's Project 

 

 

k: scale correct for x-

coordinates; 

l1, l2: coefficients of radial 

lens distortion; 

p1, p2, p3: coefficients of 

decentering lens 

distortion; 

Where: 

yx , : image coordinates with respect to principle point ),(
oo

yx i.e. 
oo

yyyxxx  , ; 

22
yxr  : radial distance from principle point to the image point under consideration; 

cyx   and ,
00

: variations of IOE  
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