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ABSTRACT  
The paper concerns with analytical description of the phenomena observed in stress drop tests, namely, negative 

increment in plastic and creep deformation due to the sudden decrease in the acting stresses while the net stress 

remains positive. The model is developed in terms of the synthetic theory of irrecoverable deformation which 

has been generalized by introducing interplay between the deformation properties of material in the direction of 

acting load and opposite to it. 
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I. INTRODUCTION 
Plastic or creep deformation under 

variable stresses is of great interest due to the rise 

of such phenomenon as negative (reverse) creep, 

which grows out of the competence of the classical 

theories of plastic/creep deformation, is widely 

studied in the literature in terms of both theoretical 

modeling and experimental researches.As an 

example, nuclear fuel cladding tubes are subject, in 

service, to complex multiaxial loading that 

undergoes sudden change. An accurate description 

of the strain response due to varying stresses is 

essential in reliably predicting the accumulated 

plastic strains in the cladding. Direct extrapolations 

of the creep behavior under constant load to 

describe creep due to varying loads would result in 

strains significantly different from those observed, 

mainly due to negative creep transients following 

load drops (Murty, & Yoon, 1979). 

The negative creep is of great importance 

due to it contradicts the hypothesis of creep 

potential (Rabotnov, 1969), according to which the 

creep rate is a single-valued function of acting 

stresses independently of the way these stresses 

have been reached. In contrast to this, the reverse 

creep occurs in the direction opposite to what is 

predicted in terms of this theory.Fig. 1 

demonstrates schematically strain-time diagram in 

the course of stress drop test. Many theories have 

been developed to explain the behavior patterns 

observed in stress-drop tests (SDT). If to omit 

minor details in the interpretation of the processes 

governing creep in SDT, they confirm that: (a) 

dislocation creep is the dominant mechanism; (b) 

high plastic anisotropy is a source of the energy 

inducing processes occurring in material; (c) the 

response is dictated by a competition between the 

rates of recovery and hardening processes. 

 

 
Fig. 1. Strain-time diagram in the stress-drop test; 1-2: creep portion under  stress, 2-3: negative 

contraction  due to stress-drop , 3-4: negative creep (applied stress remains positive!), 4-5: creep delay 

(incubation period) , 5-6: accelerating (inverse) creep , from point 6: steady state creep  

corresponding to  stress. For the case of small stress drop, 3-4 portion is absent and only portions 4-5-6 

are observed after the stress drop. 
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With instantaneous and time-dependent 

negative plastic deformation, the following 

approaches can be distinguished.LRIS (Long range 

internal stress), Composite model (Kassner et al., 

2009,2015). Mughrabi (1983) developed/advanced 

the concept of relatively high (long-range internal) 

stresses in association with heterogeneous 

dislocation substructures (e.g., cell/subgrain walls, 

dipole bundles, persistent slip bands walls, etc.). He 

presented the simple case where “hard” (high 

dislocation density walls, etc.) and “soft” (low 

dislocation density channels, or cell interiors) 

elastic-perfectly-plastic regions are compatibly 

sheared. Each component yields at different 

stresses and it is suggested that the “composite” is 

under a heterogeneous stress-state with the high-

dislocation density regions having the higher stress. 

As soft and hard regions are unloaded in parallel, 

the hard region eventually places the soft region in 

compression while the stress in the hard region is 

still positive. That is, a backstress is created. The 

plasticity occurs on reversal due to “reverse” 

plasticity in the soft region. The concept of 

heterogeneous stresses has also been widely 

embraced for monotonic deformation (Borbély et 

al. 1997, 2000) including elevated-temperature 

creep deformation.Non-Backstress 

explanation.Sleeswyk et al. (1978) proposed a 

different approach; when analyzing the hardening 

features in several metals at ambient temperature, 

he adopted an Orowan-type mechanism (long-

range internal stresses or “back-stresses” not 

especially important) with dislocations easily 

reversing their motion (across cell). He suggested 

gliding dislocations, during work-hardening, 

encounter increasingly effective obstacles and the 

stress necessary to activate further dislocation 

motion or plasticity continually increases. On 

reversal of the direction of straining from a 

“forward” sense, the dislocations will easily move 

past those, non-regularly-spaced, obstacles that 

have already been surmounted. Thus the flow stress 

on reversal is relatively low. Lloyd and McElroy 

(1974) shears the same opinion, considering only 

the unbowing of dislocation segment, immobilized 

in a bowed out configuration, toward a new 

configuration at reduced stress. Another 

observation (Davies, & Wilshire, 1971) says that 

the instantaneous specimen contraction on 

decreasing the stress is greater than would be 

expected from the elastic modulus is a consequence 

of runback of dislocation pile-ups. 

The aim of this paper is to model the 

plastic and creep deformation of material due to the 

stress drop as shown in Fig. 1. Here, we focus our 

attention upon 2-3-4 portion in the strain-time 

diagram, i.e. negative increment in plastic and 

creep deformation caused by . The 

implementation of the problem takes place in terms 

of the synthetic theory by means of its 

generalization for the discussed issue. 

 

II. ORDINARY CREEP 

DEFORMATION IN TERMS OF 

THE 

SYNTHETIC THEORY 
The creep rate of material in uniaxial tension at 

point 2 in Fig. 1 is calculated as follows (Rusinko, 

A., & Rusinko, K., 2009,2011) 

 

(

1

) 

 

 

(

2

) 

where  is the creep limit of material. 

Consider the quantities in the formulae 

above. is strain intensity rate which is an 

average measure of the plastic shifts developing 

within one slip system (microlevel of material). A 

macrodeformation is expressed through the 

components of strain rate vector in the Ilyushin 

three-dimensional strain deviator space, while the 

loading is expressed by stress vector in the stress 

deviator space. For the case of uniaxial tension we 

have two vectors and 

. The integration in Eq. (1) gives the rule 

how to calculate deformation on the macrolevel of 

material: one has to sum (integrate) all the 

microstrains developed within activated slip 

systems. The magnitude of  can be found from 

the constitutive equation 

 

(3) 

where is defect intensity, an average measure of 

the defects of crystalline grade induced by 

irrecoverable deformation: 

 

(

4

) 
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where  is the measure of material hardening, 

which expressed via the distance from the origin of 

coordinate to the plane tangential to loading (yield) 

surface (the position of a plane is defined via 

and its normal unit vector , i.e. by angles , , 

and ). The boundary values of , , and  are 

(Rusinko, A., & Rusinko, K., 2011) 

 

(

5

) 

 

(

6

) 

The second term on the right hand side of 

(4) is referred to as rate-integral which accounts for 

the loading rate and its influence upon the 

development of plastic deformation: 

 

(7) 

III. GENERALIZATION OF THE 

SYNTHETIC THEORY 
We establish a law that governs how 

plastic/creep strain in one direction affects the 

material hardening in the opposite direction. In 

terms of the synthetic theory, this question sound 

like “How does a plastic straining, which is 

modeled by the movements of planes with 

normals  at the endpoint of stress vector , affect 

the plane distances with opposite normals , 

? 

According to Eq. (4),  for normals  is 

. 
(8) 

Therefore, the question posed above can be 

rephrased as: “How to set the relation between  

and  as well as between and ?” 

Eq. (7) gives the rate integral  for normals  

as 

 

(

9

) 

Since the rate hardening of material in initial 

loading does not exert any influence upon that in 

the subsequent loading of opposite sign, we say 

that if  is positive, then  is set to be zero and 

vice versa: 

If ,  or if , . 
(10) 

To reflect the influence of upon , the 

following formula is proposed 

 

(11) 

Summarizing, Eq. (4) becomes 

 

(12) 

The non-zero value of  from (11) by 

no means represents any defects generated in the 

course of inelastic deformation because the planes 

with normals  are not at the endpoint of vector 

, while the magnitude of  is directly related to 

the value of irrecoverable strain. Therefore, the 

main postulate of the synthetic theory that 

irrecoverable deformation is modeled by the planes 

shifted by stress vector remains intact. The only 

aim of Eq. (11) is to establish, via Eq. (12), the 

relationship between the plastic deformation 

induced by loading in one direction and the degree 

of hardening relative to the opposite-sign-loading. 

Indeed, the growth of defect intensity  leads to 

the decrease in the distance  in Eq. (12) that 

symbolizes the softening of material with respect to 

the loading of opposite sign. 

The softening of material expressed by 

Eq. (12) is in full harmony with Sleeswyk’s (1978), 

Lloyd’s and McElroy’s (1974) opinion that 

dislocations easily reverse their motion in the 

direction opposite to the initial plastic flows. In 

other words, less stresses are needed to induce 

irrecoverable deformation in the opposite 

direction.In addition, formula (12) correlates with 

the notions of effective and backward stresses and 

their interplay with the dislocation behavior 

(Kassner et al., 2009), Mughrabi (1983), Evans 

(1985). Really, internal stresses defining the 

effective stresses and eventually the degree of 

material softening in reversal loading directly 

depend on the number of defects and stress field 

around them raised in the direct loading. The same 

situation is observed in Eq. (12) where terms  

and  stand for the number of defects and the 

lattice distortion caused by their presence. 
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Consider the domain that is the mirror 

reflection of that from (5): 

 

(13

) 

The defect intensity  and plane distance , 

according to Eqs. (8)-(12), are 

an

d

 

(1

4) 

where  stands for 

. 

Intermediate remarks.To model portions 2-3 and 3-

4 from Fig. 1, we need to give the following 

preliminary reasoning. Since both of them are of 

compressive nature, they can be modeled only by 

means of planes with normal vectors . The 

occurrence of negative plastic strain increment (2-

3) is possible only if the stress increment vector  

reaches and moves a set of planes with negative 

normals . The description of reverse(negative) 

creep under the constant stress  (3-4) also 

can be modelled only by the manipulations with 

planes with normals . It is feasible only if 

, i.e. if the planes with negative normals 

get over the origin of coordinates. Therefore, the 

initial stress vector must be of such magnitude that 

the plane distances from the first formula in (14) at 

 are negative. 

Special attention must be paid for the rate integral 

 due to it stands for the regulation of time-

dependent strain for the planes with normals . 

To model the reverse creep, it is immediately clear 

that the requirement that  be positive is needed. 

The fact that the negative creep can be observed 

only if it is preceded by negative plastic 

deformation means that a material needs to obtain 

some compressive strain energy which then can be 

released in the form of time-dependent deformation 

(negative creep). 

 

IV. STRESS DROP 

Because of stressdrop , the rate integral , 

according to Eq. (7), yields the following form 

(Fig. 2) 

 

(15) 

To meet the condition , the magnitude of 

 must be greater than  implying 

that  from (15) becomes negative. Then, 

according to Eq. (10), we obtain that 

 

(16

) 

As the stress vector shortens due to the stress drop, 

the planes with normals  are no more at its 

endpoint and they stop producing inelastic 

deformation. This, in turn, means that there is no 

defect increment in positive direction, and Eq. (4) 

remains unchangeable until increments in defect 

intensity  occur. This is possible if planes with 

normals  are shifted by vector . For the 

rest planes Eq. (14) holds true. 

Let us designate through  the length of stress 

vector when it reaches the first plane with negative 

normal. Since this plane is perpendicular to the 

stress vector, , it is distanced from the origin 

as 

 

(17) 

Therefore, to calculate the , we use Eq. (12) 

where (i) the left-hand-side is ; (ii)  is 

given by (14) at  and ; (iii)  is from 

Eq. (16) at  and . As a result, 

 

(1

8) 

 

(1

9) 

Summarizing, the occurrence of negative plastic 

strain increment is possible if the magnitude of  

is positive and the stress  is less than . 

These conditions, in the view of Eq. (19), can be 

met if 
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(20) 

If , the fulfillment of the second inequality 

in (20) provides that of the first one. 

According to Eq. (3), the increments in defect- and 

strain intensity are related to each other as 

 

(21) 

It is worthwhile to remind once more that, in terms 

of the synthetic theory, the increase in defects and, 

consequently, in strain intensity is obtained only if 

the stress vector translates planes on its endpoint, 

i.e. . 

Therefore, the defect intensity increment, relatively 

to the defects at point 2, is determined as 

 

(22

) 

where  is given by (16) and  stands for the 

plane distance at point 2 given by Eq. (14) at 

. The domains of angles , , and  where 

 are 

 

(23) 

 

(24) 

Beyond  (we designate this range through ) 

the planes are not reached by the vector , 

i.e. , and, consequently, do 

not take part in plastic deforming. Decompose  

into two parts, : 

 

(25) 

 

(26) 

includes the planes which is not reached by 

, but moved during the creep on 1-2 portion 

when . includes the planes which did 

not move during the whole process ( ), from 

point 0 to point 2. 

 

 
Fig. 2. Rate integral vs. time plot at . 

 

It is clear that there is no defect intensity increment 

within , i.e. Eq. (14) must be applied to calculate 

 for the range (25)-(26). 

The defect intensity distribution at point 3 

is  

(2

7) 
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where  denotes the defect intensity at point 2 

given by Eq. (14) at . 

Now, the plane distance due to the stress drop is 

 

(28) 

The increment in the compressive plastic strain 

vector component ( ) is calculated by the 

integration of the strain intensity increment given 

by Eqs. (21) and (22) within boundaries (23): 

 

 

(2

9) 

 

V. NEGATIVE (REVERSE) CREEP 

Rate integral  for  behaves as (Fig. 2) 

 

(30

) 

It is easy to see that  for  due to  

vs. time curve constructed via (30) never cuts the 

time-axis. 

Inspect the strain rate intensity for . First of 

all, it is clear that the creep strain can develop only 

from the domain (23) or its sub-domain, where the 

planes are located on the endpoint of at 

, and . Therefore, the 

formulae for and , according to Eqs. (11) 

and (30), take the form as follows 

 

, 

 

(

3

1

) 

Further, Eqs. (3) and (31) give  as 

 

(3

2) 

The domain of the positive values of  is 

 (33) 

 

 

 

(34) 

Special attention must be paid to the 

relation between the domains of non-zero and 

. In order to avoid a situation when the creep 

deformation develops on the planes which are not 

at the endpoint of the stress vector, we require that 

range (33) be not greater than that from (23) taken 

at , i.e. . To meet this condition, 

the following restriction must be imposed 

 

(35) 

If this inequality holds true, the planes from the 

domain 

 

(36) 

do not take part in the development of reverse 

creep. 

To calculate the negative creep strain rate vector 

component ( ), Eq. (1), together with Eqs. (32) 

and (34), must be utilized. As a result, we have 

 

(3

7) 
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The analysis of the formulae above gives that the 

 is a decreasing function of time and  at 

the instant of time ( ) when . This 

is in a full agreement with portion 3-4 in Fig. 1. 

 

VI. COMPARISON OF THE MODEL 

AND EXPERIMENTAL RESULTS 
My goal here is: 

a) to calculate plastic contraction due to the stress 

drop, 

b) to plot negative creep diagram, 

The results obtained in terms of the synthetic model 

will be compared with experimental data obtained 

in uniaxial tension for Ti3SiC2 alloy (Radovic et al., 

2003). 

The following series of parameters are needed: (i) 

experiment parameters, (ii) material constants, (iii) 

model constants. The first column in Table 1 

contains the parameters of experiment on Ti3SiC2 

conducted by Radovic et al. (2003). The second 

column shows the constants of the synthetic theory 

via which the analytical diagrams are constructed 

(Figs. 3 and 4). 

First of all, we read from Fig. 3 the value of the 

specimen contraction due to the stress drop: 

. According to the Hooke 

law, an elastic contraction caused by the  would 

be . This 

fact implies the onset of plastic contraction due to 

the stress drop, which can be calculated as 

. By utilizing Eq. (29), I have obtained the plastic 

contraction 5.644 , which deviates from 

the experiment only by 8.9%. 

 

Table 1.Calculation parameters 

Material and experiment parameters Model constants 

Stress  40 B 0.3163 

Stress drop  -20  0.00453 

Temperature  1150  38200 

Young modulus ; (Barsoum et al., 1999) 325  502000 

Creep limit ; 3.0 

k 3.0 The creep activation energy ; (Radovic et 

al., 2003) 
4.58×10

5
 

 

To utilize the formulae derived for 

negative creep, we need to determine the value of 

the creep limit. We take creep limit at a given 

temperature as the value of tensile stress resulting 

in the strain rate of .Therefore,  can 

be read from the experimental  line in Fig. 3 if 

to prolong it to the indicated value. 

To calculate steady state creep rate, we use 

formulae obtained by Rusinko (Rusinko, A., & 

Rusinko, K., 2011): 

 

(4.1

.83) 

 

(4.1

.84) 

The model line in Fig. 3, which is obtained via the 

formulae above, shows good agreement with the 

experimental data.Theoretical stress ~ time plot for 

the negative creep portion (Fig. 4) is constructed as 

 

(4.1.85) 

where  is defined by Eq. (37). The value of the 

deformation at the beginning of negative creep 

( ) we have read from the experimental curve 

( ) 
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Fig. 3. vs.  plot for Ti3SiC2 alloy at 1150 ; □ – experiment (Radovic et al., 2003), line – model result. 

( is steady-state creep rate). 

Fig. 4. Negative creep diagram of Ti3SiC2 alloy at 1150 , ; □ – experiment (Radovic et al., 2003), 

line – model result. 

 

V. CONCLUSION 
In terms of the synthetic theory, a model has 

been developed for phenomena accompanying stress-

drop tests such as a) stress-drop induced plastic 

contraction, which is recorded in spite of the fact that the 

net stress remains positive and b)negative creep. These 

results have been achieved by introducing a relation 

between the deformation properties of materials for 

opposite directions, e.g. tension-compression.It is 

possible due to the basic features of the synthetic theory: 

a) the uniformed approach to the modeling of permanent 

deformation independently of instantaneous (plastic) or 

temporary (creep) deformation to be considered, and 

b) the intimate connection between the macro-

deformation and the defect structure on the micro-

level of material. Model results, plastic contraction 

due to the stress-drop and negative creep diagram, 

show good agreement with experimental data. 
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