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ABSTRACT

In this article a typical four point boundary value problem associated with a second order differential equation is
proposed. Then its solution is developed with the help of the Green’s function associated with the homogeneous
equation. Using this idea and Iteration method is proposed to solve the corresponding non linear problem.
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I. INTRODUCTION

The Green’s function plays an important role in solving boundary value problems of differential
equations. The exact expressions of the solutions for some linear ODEs boundary value problems can be
expressed in terms of the Green’s functions of the corresponding problem. The Greens function associated with
the boundary value problem is an effect tool in numerical experiments. The Green’s function method might be
used to obtain an initial estimate in shooting method. Some BVPs for nonlinear integral equations the kernels of
which are the Green’s functions of corresponding linear differential equations. The solutions of associate
integral equations are used to investigate the property of the Green’s functions. The undetermined parametric
method we use in this article is a universal method. The Green’s functions of many boundary value problems for
ODEs can be obtained by similar method. In this article we proposed and study a second-order differential
equations with a typical four-point boundary conditions as

u"+ f(r)=0. tela.b] (1.1)
satisfying the boundary conditions
u(a) = ku(ry). u(b)y = k51 (17, ): (1.2)

where a < 1y <1, < b and k,and k, are real constants
The existence of positive solutions of singular boundary value problems of ordmary differential equations

has been studied by many researchers such as Agarwal and Stanek who established the existence criteria for

positive solutions singular boundary value problems for nonlinear second order ordinary and delay differential
equations using the Vitali’s convergence theorem. In 2007, Zhao investigated the positive solutions for singular
three-point boundary wvalue problems associated with w'" + f(t) =0, t € [a,b] subject to the boundary
conditions u(a) =0, wu'(b) = ku(n) where a < n < b and k is a constant
In (2013), Mohamed investigated the positive solutions to a singular second order boundary value problem.
He consider the Sturm-Liouville boundary value problem
u'" +Ag(t)f(t) =0, te][0,1] subject to the boundary conditions:
ocu(0) — pu'(0) =0 yu(l) +du'(1) =0
where <> 0, f > 0, ¥y > 0 and § > 0 are all constants, A is a positive parameter and [ is singular at u = 0.
Gatical et al proved the existence of positive solution of the boundary value problem
u" + f(t) =0, te]0,1] satisfying the boundary conditions
oc u(0) — pu'(0) = 0 and yu(1l) + du'(1) = 0 using the iterative technique and fixed point theorem for cone
for decreasing mappings.
Wang and Liu proved the existence of positive solution to the boundary value problem
u'" +Ag()f(t) =0, te][0,1] subject to the boundary conditions o u(0) — fu'(0) = 0 and
yu(1l) + du'(1) = 0 using the Schauder fixed point theorem.
This article is organized as follows: In section 2 we construct the Green’s function to the homogeneous BVP

corresponding to (1.1) satistving (1.2) and then using this we proved the existence and uniqueness of the
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solution of the boundary value problem (1.1) satisfying the condition (1.2). In section 3 we present the iterative
method of solution to the corresponding non linear boundary value problem. We illustrated our results by
constructing a suitable example.

I1. THE ASSOCIATED GREEN’S FUNCTION
We have the following results:
Theorem 2.1 Assume {1— kl)(b —kr, 3) = (1— kz)(a —km, ) Then the Green’s function for the second-order four-point
lmear boundary value problem (1.1), (1.2) 1s given by
(K- + kK, (1—m,) [K(m.5)+ [ By (1 —a) + kaky (7, —1) | K (. 9)

G(r.s)=KI(1. (2.1)
(2) ®.3)+ (1—1""1)(b—szh]_(l—kz}(ﬂ—kﬁh)
{(S_;)&.agsgrsb
where K (1.5) = - 2.2)
ii(s_;)(r_b).aifﬂsﬂb
L —-a

Proof: It 1s well known that the Green’s function 1s K(t, s) as in (2.2) for the second-order two-pomt linear boundary

value problem

(1" + f(1)=0. tela.b].

(2.3)
|u(a)=0. u(b)=0
and also the solution of (2.3) 1s given by
b
w(t) = [ K(t.5) f (s)ds. (2.4)
i
and wia)=0. w(b) =0, wing)= J K(1np.s) f(s)ds. (2.5)

The four-point boundary value problem (1.1), (1.2) can be obtained from replacing ufa) = 0, u(b) = 0 by u(a) = ku(1,)
and u(b) = kyu(7,) in (2.3). Thus, we seek the solution of the four-point boundary value problem (1.1), (1.2) in the form
u(t)=w(r)+ (c +dt ] [w(}}l) +w(1, }] (2.6)
where ¢ and 4 are constants that will be determined.
From (2.6) we get
u(a)=(ec+ da)[11=(;}1}+ winp, }] and u(b)=|¢ +db)[11.’(f]1}+ 11=(;}_.,}]

() =w(n) +(c+dm) [wap) +w(n,)] and u(py) =wy) + (e +din, )[wm) +wp,)]
Putting this into the boundary condition (1.2) yields

e (1- ky ] [1"“'(’?1) + W(’?:-}]"' d(a- km, ) [“’(’?1}"' w(f}:)] =kw(n,)
€ (1-k, ] [w(’h) +w(n, }] +d (b —ky11, )[“’(’h)"’ “’(’fﬁ)] =k, w(17,)
since (1-k )(b - sz,'r:_) = (1— ks ] (a - klf;rl) , solving the system of linear equations on the unknown numbers ¢, d, using

Cramer’s rule we obtain

__ (kyw(a,) ) (b- ﬂ'lfj ) (kyw(1,)) (a=kap,)
[(1=k)) (b =k, ) —( (a=ka,) [wip,) +wm,)]
)

) k) (k)11
[(1—k1)(b—k1f}) 1-k )(a- k1;}1j| wirg,)+win,)]

Hence, the solution of (1.1) with the boundary condition (1.2) 1s

WwWw.ijera.com DOI: 10.9790/9622- 0702041018 11|Page




Goteti V R L Sarma.et.al. Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 7, Issue 2, ( Part -4) February 2017, pp.10-18

u(t)=w(t)+(c+dr)[win,)+wn,)]

[kl(b ~1)+kk, (t-1n, )] (wiap,))+ [kg (t—a)+kk, (17,- r}](w(r;:})
(1=k ) (b=, ) - (1-ky) (a=kyp,)

=w(f)+
This together with (2.4) implies that

_ B b
. [k(b=0)+kky (t=1,) | [ K (.5 f(s)ds +[ Ey(=a)+ ke, (= 1) ] [ K .5) £ (5)ds
H(F)=£K(ﬁ5‘}f{s:}d&' + a(l—kl)(b—k:,_f3)—[1—253)[&—#1!}1) a

Consequently, the Green’s function G(t, s) for the boundary value problem (1.1), (1.2) 1s as described mn (2.1).

From Theorem 2.1 we obtam the following corollary.

Corollary 2.L.If (1-k)(b—ky,)#(1—k,)(a—kgp, ). then the second-order four-point linear boundary value problem

u'+ f(t)=0. te[a.b].
u(a) = ku(n,). u(b) = kyu(n,)

b
has a unique solution u(1)= J- G(t,s) f(s)ds where G(t,s)asm (2.1).

a

Proof: Assume that the second-order four-point linear boundary value problem (2.7) has two solutions u(t) and v(t), that

15
W'+ f(1)=0. te[a.b].
and 2.7)
|u(a) = k(). u(b) =kyu(rp,)
V4 f(1)=0. te[a.b].
(2.8)
v(a) = k(). v(b)=kv(n,)
Let

z2(f)=v(t)-u(t). t€|a.b]
Then using (2.7) and (2.8) z"(t)=v"(t)—u"(t)=0. te[a.b]
Therefore z(t) = Cjt+C,. (2.10)
where C;and C, are undetermined constants. From (2.7), (2.8) and (2.9) we have
z(a)=v(a)—u(a) =kz(p,). (2.11)
2(b) =v(b) —u(b) = kyz(1p,). (212)

Using (2.10) we obtain
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z(a)=Ca+C,. (2.13)
z(by=Cb+ C,. (2.14)
() = Cap + C5. (2.15)
z(1, ) =Cypy + C5. (2.16)

From (2.11), (2.13) and (2.15) we know that

Cila—kgm)+Cy(1—k)=0. (2.17)
and from (2.12), (2.14) and (2.16) we know that

C(b—km,)+C,(1-k,) =0, (2.18)
Solving the system of equations (2.17) and (2.18), we get C;, =0and C, =0
Therefore z(f) =0.t< [a.b], so u(r) =v(r). t€[a.b]. that establishes uniqueness of the solution.
Corollary 2.2. Suppose the nonlinear function g(t. u) 1s continuous on [a.b] xR, then if
(1 -k )[b — k517, ) # (l— ke, )(a —km, ) , the nonlinear four-point boundary value problem

(u"+g(t.u)=0. te[a.b].

._“(“) = k(). u(b) = kyu(mn,)
1s equivalent to the nonlinear integral equation

b
u(t) = J G(t.5)g(s.u(s))ds where G(ts) as in (2.1)

If the endpoints of the interval are @ =0. b=1 in the boundary condition, from Theorem 2.1, Corollaries 2.1 and 2.2 we
obtain the following corollary.
Covollary 2.3. If (1—k )(1—ky17 ) # (%, —1)(k7,). then the Green’s function for the second-order four-point linear
boundary value problem

(u"+ f()=0. re[0.1].

| 2(0) = kyu(ny,). u(l) = kyu(n,)
is
| k(=) + Ky (1=1,) [K @y 8) +[ Iy () + ey (1, — ) | K (7,.5)

(1-k) 1=k )+ (1=K, ) (kpy )

G(t.s)=K(r.s)+

where

J’(.s'—lj(.r). OD=s=r=1
E(r.5)—
l(s)r—1.0=r=s=1

Hence the problem (2.19) has a unique solution
5
() = _F Gt s) f(s5)ds.
If o(t, 1) 1s continuous omn [O. 1] > | then the nonlinear four-point boundary value problem
(26" 4+ g(r.a) =0. re[0.1].
| 2e(0) = Fyze (7). 2 (1) = Fyea (7720
is equivalent to the nonlinear integral equation
1
() = _F Git.s)e (s.u(s))ds.
0
Example: Solve the second-order four-point boundary value problem:

(0" +siner=0. re[0.1].

u(O):_Tlu|%| H(l}z%ul% |
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Solution

4 (2 "|' -1}
+ ama (e-am)=( 21 2

Since (1K )(1-k7,) —[H_ [] [ 3 Ji 6) " 3

1y 1
:— |=— are not equal, from
5/ 30

(2.20), the Green’s function 1s:
[k (1=Fgpy) —th, (1= ky ) | B(my.5) + [ ey (kapy) + oy (1=, ) | B(1y.5)
k)

1
Git.s)=B(t.s T
(t.s)=B(t.s)+ (1=K, )+ (1=K, ) (g, )

(1-
-1 1 2 1
where kl_? f?l_: k2=—% I-;'l E
-1)(8) (1)1 (2Y(-1) (2 (3
15 || 5 [+l <l 3 (B 3)+L 3 I To I+ 5 34 B @B(fh 5)
G(t.s)=B(t.s)+ —————~ —— —— -
EY EANEY N
2)l9) 13110 ,..|
15t—40]_[1 30e-2] (1
= B(t.s) | < ‘ | Bl s ‘
17 L5 39 L6

|(.5' 1)r).0<s<r<1
From (2.21). Bit.s)=+
[(s)(r—-1).0=r=s<1

Hence the solution of second-order four-point boundary value problem is:

1 r ‘1'. -40] (1 1 [30 1]
u(r}=JG(f.S}f{6‘) j %iﬂi:sﬁﬁ- ! - s|;f{3}ffs
0 oL ! LS -
:sin(f}+|:’1 ‘ sin(1)+ ‘ M;sm |% J+i 30;;2 :]s.u1|% |

Its solution curve 1s obtained using Maple as follows:

0.06 4
0.05 1
0.04 4
0.03 A
0.02 4

0.01 4

T T T T 1
02 04 0.6 08 1
!
-0.01 4
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1. METHOD TO SOLVE NONLINEAR SINGULAR BOUNDARY VALUE PROBLEM
In this section, we study the iterative method to solve the following nonlinear four-point boundary value problem

W+ f(tau)=0. re (0.1).
| u(0) = kqu(p,), u(l) =kyu(rn,)

with 7,77, € (0.1).  (1-ky ) (-7, —1) < (1-ky ) ().

(3-1)

Let J=(0.1). I=[0.1]. R*=[0.e).
D={xe c()|3M, =m, >0.such that m, (1-1) < x() < M, (1-1).t= T},

Concerning the function f we umpose the following hypotheses:
| f(t.u) is nonnegative continuous on JxR",
f(t.u) is monotone inereasing on u, for fixed t€ J, (3.2)

|3g € (0.1) such that £ (r.ru) 2 ¥ f(r,u). V0 <r <1, (f,u)e JTxRE".

Obviously, from (3.2) we obtain
fle.Adu)=2 A f(tu)., VA>1L (tu)eJxR". (33)

It is easy to see that if 0 <a, <1. a,(¢) are nonnegative continuous on I, for1=0,1.2,_.._m, then

f(t.u)=> a,(n)u” satisfy the condition (3.2).
i=l

Concerning the boundary value problem (3.1), we have following conclusions:

Theorem 3.1. Suppose the function fit,u) satisfy the condition (3.2), it may be singular at t=0 and/or t=1, and
1
0< [ f(t.1-1)dt <oo. (34)
]

Then nonlinear singular boundary value problem (3.1) has a unique solution w(t) in C(I)~C*(J). Constructing

successively the sequence of functions

1
h(6)=[G(t.5)f(s.h,(s)ds.  m=12.... (3.5)
]

for any initial function hy(f)20(x0).te then {hﬂ(f}} must converge to w(t) uniformly on I and the rate of
convergence 1s

h (0 -w(n]=0(1-N7). (3.6)

II}EE}X
where 0<N < 1 , which depends on the imitial function h,(t). G(r.s) asin (2.20).
Proof. Let

P={x(]x0e c(1). x(t) 2 0}.

Fx(f) = J‘G(r. 5)f(s.x(s))ds. ¥x(t)e D. G.7)

0

It easy that the operator F': D — P 1s mereasing, From Corollary 2.3 we know that if e D satisfies
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u(t)=Fu(t). fel. (3.8)
then ue C'(7)~C*(J) is a solution of (3.1).
For any x< D, there exist positive numbers 0 <m_<1<M _ such that
my(l—s)<x(s) <M, (1-5). sel.
(m,)” f(s.1-5)< fs.x(s) = (M, )° f(s.1-5). seJ. (3.9)
By (2.20) and (2.21) we have
[kl(l—z)+klk3 (r—n, )] B(;h.s)+[k2(x)+klk3 (7, —r)]B(:;z.s)
(1-k) (1=K ) + (1=K, ) (e, )

—ky —kk, |B(175.5) (3.10)

(=) (1= kp7.) + (1= Fy) (e,

G(t.s)=B(t.s)+

[kl + klkZ]B(ql'

= G(t.s)=({1-D

[k, + kK, | B(n,. Ik, |B(1],.5)

(1-k)(1- sza)+(1 k)(hh)

G(t.s)<t(l-)+(1-0)

[y + ke, | B, 5) + | %— k, —kk, | B(,.s)

(1= k) (—kgp,) + (1=K ) (e,

G(t.s)<t(1—)+(1-1)

r (3.11)
' [k1+k1k2]B(f;1.s)+[l 2 klkz}B(r;E.s) |
= G(t.s)<(1-0)| 1+ —
)=0=0) (=) (—k) + (=) (k)
||_\ )
Using (3.7), (3.3) and (3.9)-(3.11) and the conditions (3.2), we obtain
1
Fx(f) = J’ G(t.5) f (5. x(s))ds
a
[ K
. [k + ke, | BGr,- 5) 2 ,.5)
=[a-»n m.)? f(s.1—s))ds
! (AT e ) 612
[ + &k, |+ |:——k —klk, - -
=>(1- B 1—s))ds+ | B(7,. 1— eI
>(1-0)(m,)’ =k (k) + (-, ](kl I ) (f(s.1—-5)) +I (17,-5)( f(s.1—5)) ds |
Fx(f) = j’G(r. ) F(s. x(s))ds
. ( [k, + Kk, | B, s)+|:k——k — ki, ]B(;h 5) |
O S T G ) (M) TGt ds G13)
1( [k + ke, | BOR.5) + | k——k ka}B(;;E.S) ]
=(1-5(M,) _‘E; 1+ T @h)ﬂl IRICTN) (fis.1—s5))ds. tel
By (3.4), (3.12) and (3.13) we obtain
F.:D—D.
For any h, € D , we let
1, =sup{l>o|m )< (Fh,) (0.1 1}.
L, =inf{Z>0|Lh, ()= (Fh,)(®.1< I}. Gan
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. : ) 1
m= mhu{ L(Z, ]IT?} M =max /1. (La,,, )1:}

w

o (£) = mhy (1), u,(f) = Fu, (1)
(3.15)
vy (1) = My (1). v (6)=Fv_,(f), n=0L2.

Sice the operator F 1s increasing, from (3.2), (3.14) and (3.15) we know that
wy () Sy (£) - = () <v ()< Zv() Zv(t). tel (3.16)

For f, = 3 . from (3.2), (3.7) and (3.15), it can obtained by induction that

4

u (2(t) v (). tel.n=012 (.17)

From (3.16) and (3.17) we know that
0<u, (1) —u, (1)< v, () —u, (1) < [1 (1) Mho(r}). V. p (3.18)

so that there exist function w(t)€ D such that

u, (1) — wit). v, (t) = w(t). (uniformly onI), (3.19)

w (t)<w(t)<v, (1), reln=01L2.-- (3.20)
From the operator F 1s mncreasing and (3.15) we have

u, () =Fu (1)< Fw(t) < Fv (t)=v_,(f). n=012.--
This together with (3.19) and uniqueness of the limit imply that w(t) satisfy (3.8), hence

w(t)e C*(I)nC?(J) isa solution of (3.1).
From (3.5) and (3.15) and the operator F 1s mcreasing, we obtain
u (<h()<v (r). tel.n=01L12.- (3.21)

thus, from (3.18), (3.20) and (3.21) we know
b, ()= w() < [h, () —u, ()] +

u, (f)— w(r‘)|

<2y, () -u, ()< (1_ (1, )gr.- )M o).

s0 that max
el

h(6) = w(t)| € (1 —(1,)" )M max o (7).

So that (3.6) holds.
From hy(t) which is arbitrary in D we know that wyz) is the unique solution of the Eq. (3.8) in D. Suppose wy(r)

isa C' (r ) ~C? (J ) solution of boundary value problem (3.1). Let

z(t) =wt)—Fwit).te L
Similar to the proof of (2.9) in section 2 we obtain w,(f) = wi(t). hence w(f) is the unique solution of Eq. (3.1) in
CHI)nC(J).
Remark: If f(f u) is continuous on I XR". then it 1s quite evident that the condition (3.4) holds. Hence the unique

solution 1‘1-‘({) eC? (J)
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