
 

 

  

 

Rabie Al-Mejbas.et.al. Int. Journal of Engineering Research and Application                   www.ijera.com 

ISSN: 2248-9622, Vol. 7, Issue 10, (Part -7) October 2017, pp.40-46 

 

 
www.ijera.com                             DOI:  10.9790/9622-0710074046                              40 | P a g e  

 

 

 

 

 
 

A Modified Differential Evolution Algorithm to Optimize the 

Design of Gas Transmission Network 
 

Rabie Al-Mejbas
1
, Sadegh Torabi

1
, and Turki H. Darweesh

2 

(Department of Computer Engineering, Kuwait University,  

Department Of Electronics, College of Technological Studies,  

Corresponding Author:  Rabie Al-Mejbas 

 

ABSTRACT 

A modified Differential Evolution (DE) is used in optimization of a gas transmission network. The goal is to 

reduce the annual operating and maintenance costs by optimizing many network parameters such as the number 

of compressors, lengths and diameters of the pipeline segments, flow rate in each pipeline segment, discharge 

and suction pressures at each compressor. The design must satisfy several constraints,. The values of some 

parameters are dependent on other parameters, which increases the complexity of the network, using the 

standard DE technique. Hence, A modification strategy is needed to improve the searching for the global 

optimum values. The modified DE has been successfully applied to this complex and non-linear problem and 

needed a very shorter computational time to converge to the optimal solution. Previously, this problem was 

tackled using many techniques including nonlinear programming and DE techniques on a certain network 

configuration and setting. However, their optimal solutions did not satisfy all constraints, and the costs were still 

high compared to the results obtained by the modified DE algorithm. In addition, the proposed modified 

algorithm can be used for any network configuration. The modified Differential Evolution algorithm is 

presented here and compared with the previously used ones. 
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I. INTRODUCTION 
    The design of the gas transmission network 

is one of the classical non linear constraint problems 

in chemical engineering [1, 2]. The design of the 

network is primarily concerned with reducing the 

annual cost of operation, maintenance of the gas 

transmission network.  The design needs to have the 

minimal possible cost while operates as required and 

does not violate any of the design constraints. A gas 

transmission network is made of several connected 

pipeline segments, compressor stations at several 

sites to maintain the pressure, a source of gas and 

several destinations at the end points. The design of 

an efficient gas transmission network involves 

Differential Evolution (DE), developed by K. Price 

and R. Storm [3], is one of the best evolutionary 

computation methods.  The convergence speed of DE 

is considered high and DE has been successfully 

applied to many complex problems.  

Many people have worked on several 

aspects of gas transmission networks, and others 

have actually designed it. Larson and Wong [4] 

determined the optimal suction and discharge 

pressures of a straight pipeline with compressors 

connected in series, while the length and diameter of 

the pipeline segment were kept constants. Martch 

and McCall [5] added branches to the pipeline 

segments. Cheesman [6] applied a computer 

optimizing code to the Martch and McCall [5] 

problem where the length and diameter of the 

pipeline segments were variable. 

The first major contribution to the 

optimization of the design of the gas transmission 

network came from Olorunniwo [7] and Olorunniwo 

and Jensen [8]. They used dynamic programming 

with optimization logic and included many design 

factors such as: maximum number of compressors, 

location of compressor stations, minimum 

recommended thickness of the main pipe, optimal 

diameter sizes, thicknesses and lengths of any 

required parallel pipe loops on each arc of the 

network, operating pressures of the compressors and 

the gas flow rate in the pipelines. 

The second major contribution was by 

Edgar & Himmelblau [9] where linear programming 

was used to optimize the solution by making sure 

that the design factors are clear. An assumption was 

made for the gas quantity to be used in the problem 

statement.  They figured  out that by optimizing the 

number of compressor stations, the length of pipeline 

segments between the compressors stations, the 
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diameters of the pipeline segments, and the suction 

and discharge pressures at each compressor station, 

then the objective function would result in an optimal 

value. In 2003, Babue and Rakesh [10] used DE to 

solve the same problem configuration and 

formulation used in [9] and proved that DE will 

result better convergence speed while maintaining all 

constrains, the thing that Edgar & Himmelblau could 

not fully satisfy using non-linear programming 

techniques. 

In this paper, a modified differential 

evolution technique is introduced and applied for the 

optimization of a gas transmission network design. A 

network similar to the one presented in [9] and [10] 

was used as a model, and results of the two 

techniques were compared. The modified technique 

can be applied to any network configuration.  

This paper is organized as follows. The 

second section will present the network model 

design. Section 3 will introduce the Differential 

Evolution algorithm while the Modified DE 

algorithm will be discussed in section 4.Experimental 

results will be shown in section 5. Finally, some 

conclusions will be briefed in section 6. 

 

II. MODEL DESIGN 
     The Gas pipeline network to be studied 

consists of a number of compressor stations. Each of 

the compressor stations is represented by a node and 

each of the pipeline segments by an arc as shown in 

Fig 1 [9, 10]. The system is assumed to be horizontal 

with the pressure increases at a compressor and 

decreases along the pipeline segment away from the 

compressor in the direction of the flow of the gas. A 

much more complicated network with various 

branches can also be considered. The capital costs 

ofthe compressors are a linear functions of 

horsepower. From the configuration in Figure 1,it 

can be seen that for N compressors, there must be 

N+1 pipeline segments, each segment with a certain 

length and diameter. Also, there are N-1 suction 

pressures and N discharge pressures. In addition to 

the diameter and length, each segment has an 

associated flow rate, with a predefined initial and 

outlet pressures. Since the flow rate is fixed, it is 

only need to determine the initial pressure, outlet 

pressure, pipeline diameter and length for each 

segment. 

The following assumptions are made: 

1. Pipeline segment is long enough so that by the 

time gas reaches the next compressor it returns to the 

ambient temperature. 

2. The annual capital costs for each pipeline segment 

depend on pipe diameter and length, and have been 

taken as $870/(inch)(mile)(year) as reported by 

Martch and McCall [5]. 

3. Total operating costs are linear function of 

compressor horsepower (Operation and maintenance 

costs per year can be related directly to horsepower 

[11] and have been estimated to be between 8.00 and 

14.0 $/(hp)(year) [3]. 

The fitness function F is used to calculate 

the total annual cost in US dollars including 

operational and maintenance costs for the 

compressors and the pipeline segments together. 

Fitness function is used to minimize the cost and is 

given by equation (1) [10]: 

 

 
  

 
            

Where, 

n = number of compressors in the system 

m = number of pipeline segments in the system (m = 

n + 1) 

C0 = annual operating cost = 8.0 $/(hp)(year) 

Cc = compressor capital cost = 70 $/(hp)(year)  

k = Cp/Cv for gas at suction conditions = 1.26 [12] 
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z = compressibility factor of gas at suction conditions 

= 0.88 

Ps and Pd = suction pressure and discharge pressure 

respectively, psia 

Ti = suction temperature = 520R 

Qi = flow rate into the compressor (million cubic feet 

per day) 

Cs = pipe capital cost = 870 $/(in)(mile)(year) 

Lj = length of pipeline segment j, mile 

Dj = diameter of pipeline segment j, inch 

There are many constraints that should be satisfied 

when the network is designed such as:  

The discharge pressure is always greater than or 

equal to the suction pressure in the operation of each 

compressor such that  Pdi / Psi  ≥  1  for i = 1, 2, 3, …, 

n  

 

Also at each compressor, the compressor ratio should 

not exceed some pre-specified maximum limit K i.e.   

Pdi / Psi  ≤  K  for i = 1, 2, 3, …, n  and  K=2. 

There are upper and lower bounds for each of the 

given four variables: 

 

Pdi
min

 ≤ Pdi ≤ Pdi
max 

,  Psi
min

 ≤ Psi ≤ Psi
max 

,  Li
min

 ≤ Li ≤ 

Li
max 

 and Di
min

 ≤ Di ≤ Di
max 

A quality constrain is set on the total lengths of the 

segment for each branch. For example, the total 

length of all segments for branch 1 is the sum of all 

the main branch segments and branch 1 segments:
 

 

∑ Li (for the main branch) + ∑ Li(for branch 1) = L1  

    & 

∑ Li (for the main branch) + ∑ Li(for branch 2) = L2  

    (2) 

Where L1 and L2 are fixed lengths specified at the 

design step. 

Each pipeline segment must satisfy the Weymouth 

flow rate equation [13]: 

 

Qi = 871Di
(8/3)

 [(Pd
2
 – Ps

2
)/Li] 

(1/2)
  (3) 

Where Qi is a fixed number and Pd & Ps are the 

discharge pressure & suction pressure at the entrance 

and exit of the segment respectively. 

 

To evaluate the efficiency of the adopted modified 

DE algorithm, it was applied to a network 

configuration that has been optimized using linear 

programming in [9] and DE in [10]. The network 

configuration is shown in Fig 1 consisting of 10 

compressor and 11 pipeline segments, with an inlet 

pressure of 500 psi and a flow rate of 600 MMCFD, 

outlet pressures of 600 and 300 psi for the last 

segments of branch 1 and branch 2 respectively. The 

Length of L1 and L2 are set to 175 and 200 miles 

and all the previously stated parameters are applied.   

 

III. DIFFERENTIAL EVOLUTION DE 
     Differential evolution is an evolutionary 

algorithm originally proposed by Price and Storn [3], 

whose main design emphasis is real parameter 

optimization. Differential Evolution is based on a 

mutation operator, which adds an amount obtained 

by the difference of two randomly chosen individuals 

of the current population, in contrast to other 

evolutionary algorithms, in which the mutation 

operator is defined by a probability function.  

The basic algorithm of differential evolution 

is shown in Fig 2, where the problem to be solved 

has n decision variables, fitness function F and 

Crossover Probability CR parameters are given by 

the user, and Xi,j is the i-th decision variable of the j-

th individual in the population. Authors of the 

differential evolution algorithm have suggested that 

by computing the difference between two randomly 

selected individuals from the population, the 

algorithm is actually estimating the gradient in that 

zone (rather than at a point). This approach 

constitutes an efficient way to self-adapt the mutation 

operator. Furthermore,  the local criterion of the 

selection operator is efficient and fast when using 

DE. The version of differential evolution shown in 

Fig 2, is called DE/rand/1/bin, and is recommended 

to be the first choice when trying to apply differential 

evolution to any given problem. However, there are 

some other versions of the differential evolution 

algorithm and the modifications made here to the 

variation operator may have certain similarities with 

some of those versions. 

 

 

 

 

Generate initial population of size NP 

Do 

   For each individual j in the population NP 

  Generate three random integers, r1, r2 and r3 between [1, NP], where r1 ≠ r2 ≠ r3 ≠ j 

 For each gene i within the individual j 

  If rand[0, 1] ≤ CR      {Crossover} 

        Uji = Xr3i + F (Xr1i − Xr2i)   {Mutation} 

  Otherwise 

     Uji  = Xji  

 End For 

    Replace Xj with the child Uj  if Uj has better fitness 



 

 

  

 

Rabie Al-Mejbas.et.al. Int. Journal of Engineering Research and Application                   www.ijera.com 

ISSN: 2248-9622, Vol. 7, Issue 10, (Part -7) October 2017, pp.40-46 

 

 
www.ijera.com                             DOI:  10.9790/9622-0710074046                              43 | P a g e  

 

 

 

 

 Otherwise 

 Keep Xj 

   End For 

Until the termination condition is achieved 

Figure 2: Pseudo-code of the differential evolution algorithm adopted in this work (this version is called 

DE/rand/1/bin) 

 

IV. MODIFIED DE TECHNIQUE 
The proposed approach is based on the basic 

DE algorithm which was described in the previous 

section. Necessary modifications were applied to the 

Initial population generation and to the Mutation 

steps.  

In the initial population generation step, the 

process of randomly regenerating the individual was 

eliminated if it was not satisfying all constraints. 

Instead, for individuals with related constraints, such 

as Pd & Ps, all the possible scenarios were evaluated 

and by calculating new boundary values, this will 

force the generation of the random numbers to be 

within the defined boundaries in order to get a 

random individual which satisfies the constrains. The 

pseudo-code for this step is shown Fig 3. 

 

 In the generation of the initial population, it was 

found that it is better to generate Pd for all segments 

such that it falls between the maximum and 

minimum boundaries. Then, while generating Ps for 

each segment i, the compressor ratio constraint must 

be satisfied and to do so, two different scenarios 

exist. First, if the discharge pressure at the current 

pipeline is less than or equal to the discharge 

pressure at the next segment (Pdi ≤ Pd(i+1)). Second 

scenario is when Pdi > Pd(i+1). In both scenarios, we 

have to check that Pdi is less/greater than Pd(i+1) by 

how much and whether it is less/greater than by 

half/twice or the other way around. However, while 

generating Psi, we might need to change Pdi or Pd(i+1) 

in order to satisfy all constraints.  

 
Generate initial population of size NP such that each individual satisfies all boundaries constrains and relational 

constrains 

   For each individual j in the population NP 

    For each Gene i in the individual j 

   Generate a random value Xji  such that  Xji (Min) ≤ Xji ≤ Xji (Max) 

  [while generating each Psi  check the following: 

   If Pdi ≤ Pd(i+1)   then  

    If Pdi is less than Pd(i+1) /2  then 

     Pdi = Pd(i+1) /2 + rand[0,1] * Pd(i+1) /2 

   Psi = Pd(i+1) /2 + rand[0,1] * (Pdi - Pd(i+1) /2) 

   else 

   If  Pdi > Pd(i+1)   then  

    If Pdi is greater than 2*Pd(i+1)  then 

     Pd(i+1) = Pdi /2 + rand[0,1] * Pdi /2 

   Psi = Pd(i+1) /2 + rand[0,1] * (Pd(i+1) /2) 

  

  If Ps < Pmin  then  Ps = Pmin   ] 

               End for 

   End for 

Figure 3: Modified initial population generation 

 
Modified Mutation  

   For each individual j in the population NP 

               Choose three random numbers r1, r2, r3 such that r1 ≠ r2 ≠ r3 ≠ j 

    For each Gene i in the individual j 

  If rand[0,1] ≤ CR 

    Uji  = Xr1i + [(Xmax - Xr1i)/ Max(Xr1i , Xr1i)]*[ Xr3i – Xr2i] 

   

  [ while mutating each Psi  check the following:  

   U(Ps)i  = Psr1i + [(U(Pd)i - Psr1i)/ Max(Psr1i , Psr1i)]*[ Psr3i – Psr2i] 

 

   If U(Pd)(i+1) > 2*[Psi + (Pd(i+1) - Psi)]  then 
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         U(Ps)i  = Psr1i + [2*(U(Pd)i - Psr1(i+1) )/ Max(Psr1i , Psr1i)]*[ Psr3i – Psr2i] 

   If U(Pd)i < U(Ps)(i-1) 

        U(Pd)i = U(Ps)(i-1) + (Pmax – U(Pd)i )/ Max(Psr1i , Psr1i)] * [ Psr3i – Psr2i]  

   If U(Pd)i < U(Ps)i 

        U(Pd)i = U(Ps)i + (Pmax – U(Pd)i )/ Max(Psr1i , Psr1i)] * [ Psr3i – Psr2i] 

  ] 

  Else 

   Uji  = Xji 

               End for 

   End for 

Figure 4: Modified Mutation 

 

Similarly, in the mutation step, It was 

discovered that the same approach should be 

followed while mutating Pd and Ps values in order to 

maintain the values within the constrains. This step is 

less complicated than the initial generation of the 

individuals because all individuals are required to 

satisfy constrains, and the challenge is to find a new 

child using three other individuals such that the 

constraints are satisfied and if not, maintain the value 

of Pdi to satisfy the compressor ratio constraint.  

 

V. RESULTS 
CASE1: When the modified DE algorithm was 

applied to the network with number of population of 

50 (NP=50), Crossover Probability of 0.3 (CR=0.3), 

and 5000 generations (NG=5000), the fitness 

function value was $3.0452 Million/yr. Graphical 

analysis of the solution is shown in Fig 5. All 

solutions converged to the same value after 2000 

generations. 

 
CASE2: Then, CR was changed to be 0.5, NG to be 

2000, and NP= 50. The fitness value improved to be 

$2.53237 Million/Yr. It also converged in almost half 

the time that was needed for case 1 as shown in Fig 

6.   

 

CASE3: CR was set at 0.8 instead while keeping CR 

and NG similar to case 2, the convergence of the 

fitness function was $ 2.80732Million/Yr, which is 

higher than case 2 . However it was noticed that the 

convergence speed is much faster. This means the 

greater CR the faster the convergence. However, this 

does not mean better fitness. See Fig7. 

Similarly, experiment was repeated for NP equals 

100 and CR 0.3, 0.5, 0.8 and 1.0 respectively. All the 

results are shown in Table 1. The resulting optimum 

values of network design parameters that satisfy all 

constraints are shown in Table 2 

 

VI. CONCLUSIONS 
The experimental results presented in 

previous section can be used to draw the following 

conclusions: The best fitness (lowest cost) was $ 

2.31724 Million/Yr which is obviously better than 

the fitness costs obtained using Linear Programming 

($7.389 Million/Yr) [9] and using DE ($7.792 

Million/yr) [10], with all constraints satisfied. The 

best fitness value was achieved with NP=100, 

CR=0.5, and NG=2000 where it was noticed that 

higher value of CR leads to a faster convergence  but 

with higher cost. Therefore, CR  value of around 0.5 

was found to be a good compromise. Furthermore, 

The modified DE significantly reduced the 

computation time, since it forced the randomization 

process to give a valid random value. Finally, it was 

observed that the segments pipeline diameter is the 

major factor on total fitness cost as it has an impact 

on the flow rate.   
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Figure 5: Apply MDE with NP=50, CR=0.3, and NG=5000 
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Figure 6: Apply MDE with NP=50, CR=0.5, and NG=2000 
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Figure 7: Apply MDE with NP=50, CR=0.8, and NG=2000 

  

Table 1: Summary of experimental results 

NP CR Fitness 
($million/yr) 

Convergence speed 

50 0.3 3.0452 At Gen. # 1500 

50 0.5 2.68613 At Gen. # 700 

50 0.8 2.80732 At Gen. # 400 

50 1.0 3.17538 At Gen. # 400 

100 0.3 2.94531 At Gen. # 2000 

100 0.5 2.31724 At Gen. # 1000 

100 0.8 2.54418 At Gen. # 500 

100 1.0 2.67166 At Gen. # 500 
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Table 2: The optimum design using Modified DE algorithm 

 

Pd (psi) Ps (psi) Di ((inch) Li (mile) Qi (MMCFD) 

Segment1 714.132 464.149 5.0098 26.3929 6.76146 

Segment2 555.536 479.436 19.4682 16.1563 166.803 

Segment3  955.687 927.864 7.67296 18.6925 10.5627 

Segment4 941.673 747.42 16.0829 19.8475 184.563 

Segment5 752.623 603.057 9.34544 16.7031 37.1862 

Segment6 937.229 933.426 17.4672 9.23348 49.6544 

Segment7 941.063 600 4.42854 67.9741 4.05074 

Segment8 973.005 772.448 15.0896 3.3024 394.294 

Segment9 772.448 592.707 8.42256 26.7996 24.4748 

Segment10 612.278 489.033 12.0423 14.9737 63.1804 

Segment11 781.566 300 4.62337 93.6825 3.85271 
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