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ABSTRACT 
In this paper, hydro magnetic convective flow of an electrically conducting visco-elastic fluid through a rotating 

porous channel has been considered taking hall current into account. The governing equations are formed using 

Brinkman model. The exact solutions of the velocity and the temperature distributions are obtained analytically, 

using Laplace transform technique, which consists of both the steady and transient states. The ultimate steady 

state velocity and temperature distributions are numerically discussed for various values of the flow parameters. 

The numerical values of the shear stresses and the Nusselt number are tabulated and discussed.  
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Nomenclature 

  Density of the fluid   e  Magnetic permeability 

  Coefficient of kinematic viscosity  k Permeability of the medium 

H0 Applied magnetic field   
1

  Normal stress modulus 

T Non- dimensional time   T0    Characteristic temperature 
  Dimensional heat source parameter  g Acceleration due to gravity 

β Coefficient of volume expansion  Q Strength of the heat source   

Cp Specific heat at constant pressure  V Velocity vector 

E Electric field J  Current density vector 

e  Cyclotron frequency   e  Electron collision time 

  Fluid conductivity   e Electron charge  

ep  Electron pressure    H(t) Heaviside’s unit step function 

  Magnetic field parameter     Ekman number 

m Hall parameter    S  Second grade fluid parameter 
1D  Inverse Darcy Parameter   r  Prandtl number 

  Heat source Parameter   R  Pressure gradient Parameter 

Gr1 Grashof number along x direction  Gr2 Grashof number along y direction 

u Dimensionless axial velocity component 

v Dimensionless transverse velocity component  

A Gradient of the temperature along x direction  

B Gradient of the temperature along y direction 

 

I. INTRODUCTION 
 The hydro magnetic rotating flow of non-

Newtonian fluids between parallel plates has 

important applications in magneto hydrodynamic 

(MHD) power generators and pumps, accelerators 

etc. The flow through porous medium is very 

important particularly in the fields of agricultural 

engineering and technology for irrigation processes, 

especially in petroleum industry to study petroleum 

extraction process and transport, and also in chemical 

engineering and technology for filtration and 
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purification processes. Successions of explorations 

were made by Raptis et al. [1-3] into the study of 

two-dimensional flow through porous medium past 

an infinite vertical wall. The MHD flow through a 

duct/planar channel has also been studied by various 

researchers [4-10]. Mazumder et al., [11] analyzed 

the hall effects on combined free and forced 

convection hydro magnetic flow through a channel. 

Singh [12] studied MHD effects on oscillatory flow 

between two parallel flat plates when the entire 

system rotates about an axis normal to the planes of 

the plates. 

 The hall current is very important and it has 

a marked effect on the magnitude and direction of the 

current density and consequently on the magnetic 

force. Debnath et al. [13] have studied the effects of 

hall current on unsteady hydro magnetic flow past a 

porous plate in a rotating fluid system. Veera Krishna 

and Suneetha [14] and Suneetha et al. [15] discussed 

the effects of hall current on the unsteady flow of 

Newtonian fluid between two rigid non-conducting 

rotating plates. Hall effects on an unsteady MHD 

flow of a viscous incompressible electrically 

conducting fluid in a horizontal porous channel with 

variable pressure gradient in a rotating system have 

been discussed by Das et al. [16].   

The industrial applications include many 

transport processes where the simultaneous heat and 

mass transfer occurs as a result of combined 

buoyancy effects of thermal diffusion and diffusion 

of chemical species. The chemical reaction on an 

electrically conducting fluid through a porous 

medium with slip effects have been presented by 

Senapati et al.[17]. Gopal and Balamurugan [18] 

presented the theoretical and computational study of 

unsteady hydrodynamic flow of an electrically 

conducting Maxwell fluid through porous medium in 

a rotating parallel plate channel about an axis normal 

to the channel. VeeraKrishna and Prakash [19] 

discussed the effects of hall current on unsteady 

MHD flow in a rotating parallel plate channel 

bounded by porous bed on the lower half. Gopal et al. 

[20] investigated the effect of Maxwell fluid on the 

unsteady hydro magnetic flow of an electrically 

conducting fluid through porous medium in a rotating 

parallel plate channel about an axis normal to the 

channel. Dharmaiah et al. [21] examined the 

chemical reaction effect on MHD Casson fluid flow 

over an inclined moving plate with heat source/sink. 

Veera Krishna and Gangadhar Reddy [22] discussed 

MHD free convective rotating flow of a visco-elastic 

fluid past an infinite vertical oscillating plate. Veera 

Krishna and SubbaReddy [23] discussed the unsteady 

MHD convective flow of second grade fluid through 

a porous medium in a rotating parallel plate channel 

with temperature dependent source. 

 In this paper, we have considered the hall 

effects on the hydromagnetic convective flow of an 

electrically conducting visco-elastic fluid through a 

rotating porous channel using Brinkman model.  

 

II. FORMULATION AND SOLUTION OF 

THE PROBLEM: 
We have considered the unsteady hydro 

magnetic convective flow of an electrically 

conducting visco-elastic fluid through porous 

medium between two parallel non conducting plates 

under a uniform transverse magnetic field Ho taking 

hall current into account. At initial stage, both the 

plates and the fluid rotate with the same angular 

velocityΩ . At 0t  , the fluid is possessed by an 

invariable pressure gradient parallel to the plate and 

in addition the lower plate performs non-torsional 

oscillation in its individual plane. We stimulated the 

plates cooled or heated by aconsistent temperature 

gradient in same direction parallel to the plane at the 

plates. The physical configuration of the problem is 

shown in Figure. 1. 

    

      z 

     

    T0  z = l 

 

  
 Flow of Visco-elastic fluid   

     P due to hall current effects 

 

 

                                        O       T0                                         z = 0      x 

     

  y         H0 
 

Figure1. Physical configuration of the Problem 
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We choose a Cartesian co-ordinate system O(x, y, z) such that the plates are at 0z  and z l . The 

boundary layer equations of motion are given by 

 

2 3

1

2 2
2 e y 0

u 1 p u u
Ωv ν μ J H u

t ρ x z z t k

 



   
     

    
 (1) 

 

2 3

1

2 2
2 e x 0

v 1 p v v
+ Ωu ν μ J H v

t ρ y z z t k

 



   
    

    
 (2) 

 ( ( )) = 00

1 p
g 1 β T T

ρ z


   


 (3) 

The energy equation is 

 
1( ) ( ) ( )0 0 02

p

Q
u v T T α T T T T

t x y z ρc

    
       

    
 (4) 

 Since the plates extend to infinity along x and y directions, all the physical quantities except the 

pressure depend on z and t alone.  When the potency of the magnetic field is very hefty, the generalized Ohm’s 

law is tailored to include the hall current, so that 

 ( )e e
e

0 e

ω τ 1
J J B σ E V B p

B en
        (5) 

           In equation (5) the electron pressure gradient, the ion-slip and thermo-electric effects are ignored and also 

the electric field   E=0  and under these assumptions trim down to  

 vσBJmJ 0yx   (6) 

  y x 0J m J σB u  (7) 

where eeτωm    is the hall parameter. 

On solving equations (6) and (7), we obtain 

 ( )
1

0
x 2

σB
J v mu

m
 


 (8) 

 ( )
1

0
y 2

σB
J mv u

m
 


 (9) 

Substituting the equations (8) and (9) in the equations (1) and (2), we obtain 

 

 
 

2 22 3

01

2 2 2

1
2

1

e Hu p u u
v mv u u

t x z z t km

 
 

  

   
       

     
 (10) 

 

 
 

2 22 3

01

2 2 2

1
2

1

e Hv p v v
u v mu v

t y z z t km

 
 

  

   
       

     
 (11) 

Combining equations (10) and (11), takingq= u + iv, we obtain 

 



































q

k

v
q

im

H

tz

q

z

q
v

p
qi

t

q e

)1(

1
2

2

0

2

2

3

1

2

2










 (12) 

Integrating (3) we get, 

 )(),()( 0 tHdzTTggz
p




    

where iyxiyx   ,  

We use (3) in equation (12) and obtain, 

 
 

 
2 22 3

01
02 2

2 2
1

e Hq q q
i q q g T T

z t z z t im k

 
  

  

      
                   

 (13) 

For the completeness of equation (13) we assume that 
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0 1( ) ( ( )T T Ax By H t ) z,t     

where 1( )z,t  is an arbitrary function of z and t, taking 0 1 1T Ax By     as the dimensional temperature 

of the lower and upper plates, for 0t  , we obtain the equation. 

 
 

 
2 22 3

01

2 2
2 ( )

1

e H
i q g A iB zH t D

t z z t im k

 
  

 

   
              

 (14) 

where   )(),( tHD 



  

The initial and boundary conditions are 

  , i t i tq z t ae be   at 0z   (15) 

   0q z,t  at z l V 0t  and  Vz (16) 

   0q z,t  at 0z  V 0t  and  Vz (17) 

  
 3

1 2 1 1

02
,

gl
z t

    
 




  at z l  (18) 

Introducing the non-dimensional variables 

 
 

2

111

32

2
,,,,
















  gll

l

t
t

ql
q

l

z
z  

and using the non-dimensionalization process, the unsteady governing equations reduce to (dropping asterisks), 

 

2 3 2
1 2

2 2
2

1

q q q
S iE D q GrzH( t ) R

z z t im t

     
       

     
 (19) 

  
2

1 22
0Pr Gru Gr v H( t )

z t

 


  
     

  
 (20) 

where 





22

0

2

2 lHe  is the Hartmann number (Magnetic field parameter), 
2l


   is the  Ekman 

number, 
2

1S
l




 is the visco-elastic fluid parameter, 

k

l
D

2
1 

 is the  inverse Darcy Parameter, 

1k

C p

r


   

is the Prandtl number,

1

2

k

Ql
  is the Heat source Parameter, D

l
R 










3

3


 is the  Pressure gradient 

Parameter, and 21 iGrGrGr   is the Grashof number. 

The corresponding initial and boundary conditions are 

  , i t i tq z t ae be   at 0z   (21) 

   0q z,t  at 1z  V t ≤ 0, V z (22) 

   0z,t  at 0z  V t ≤ 0, V z (23) 

  
 3

1 2 1 1

02
,

gl
z t

    
 




  at 1z   (24) 

Taking Laplace transforms of the equations (19) and (20), we obtain 

  
2 2

1 2

2

1
1 2 ( )

1

d q
sS s iE D q Gr z H t R

dz im s

   
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 (25) 
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1 22
( ) 0

d
s Pr Pr Gru Gr v H t

dz


       (26) 

Relevant transformed boundary conditions are 

  
a b

q z,s
s i s i 

 
 

at 0z   (27) 

   0q z,s  at 1z   (28) 

   0q z,s  at 0z   (29) 

  
 3

1 2 1 1

02

gl
z,s
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
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 The constants involved are evaluated and the transformed velocity and temperature are given by 
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where 
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
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   
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

s iE D
im

sS
 and    rs2
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 Taking inverse Laplace transforms (Bromwich contour integral formula) of the equations (31) and (32), 

we obtain the following expressions for the velocity and temperature: 
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
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     1 2r Gr Re q(z, t) Gr Im q(z, t)Ρ    (34) 

 The dimensional shear stresses x  and y are obtained at the lower and upper plates from (33) and are 

given by 
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 The rate of heat transfer coefficient (Nusselt number) on the plates, using equation  (34), are given by 

z=0 8(Nu) = α cot( α) +PrGra
 

 

 

 

III. RESULTS AND DISCUSSIONS: 
 We have considered hydromagnetic 

convective flow of an electrically conducting second 

grade fluid through a porous medium in a rotating 

parallel plate channel taking hall current into account 

and in the presence of a temperature dependent heat 

source. The perturbations in the flow are produced by 

a constant pressure gradient along the plates in 

addition to non-torsional oscillations of the lower 

plate. The governing equations are formed using 

Brinkman model. The exact solutions of the velocity 

and the temperature distributions are obtained 

analytically using Laplace transform technique. The 

analytical solution consists of both steady and 

transient states. The quasi-steady parts of the velocity 

and temperature representing the ultimate flow have 

been computed numerically for different sets of 

governing parameters viz. the Hartmann parameter 

M, the inverse Darcy parameter D
-1

, the Ekman 

number E, the hall parameter m,  the second grade 

fluid parameter S, the Grashof number Gr and the 

frequency of oscillation ω.  Their profiles are plotted 

in Figures (2-8) for the oscillating lower plate and for 

plate in rest respectively. For computational purpose 

we have assumed Gr to be real so that the applied 

pressure gradient in the y-direction is zero, and Gr is 

positive or negative according as the plates are heated 

or cooled along the direction of the x-axis (non-zero 

pressure gradient 10R  ).  Also the Prandtl number 

Pr is chosen to be Pr 0.71 . Since the thermal 

buoyancy balances the vertical pressure gradient in 

the absence of any other applied force in the direction 

of rotation, the flow takes place in planes parallel to 

the boundary plates. However the flow is three 

dimensional and all the perturbed variables have been 

obtained using boundary layer type equations, which 

reduce to two coupled partial differential equations 

for a complex velocity and the real temperature. 

 It is evident from the figures (2-8) that the 

velocity profiles are parabolic in nature. We noticed 

that, the magnitude of the velocity component u 

enhances and that of v diminishes throughout the 

fluid region with increasing Ekman number E or 

second grade fluid parameter S or hall parameter m, 

the other parameters being fixed (Fig 2, 5, 6).  The 

resultant velocity also increases with increasing E, S 

and m. Both the velocity components u and v 

experience retardation with increasing the intensity of 

the magnetic field (Hartmann number M). 

 The application of the transverse magnetic 

field plays an important role of a resistive type force 

(Lorentz force) similar to drag force (that acts in the 

opposite direction of the fluid motion) which tends to 

resist the flow thereby decreasing its velocity (Fig 3). 

Similar behaviour is observed for the resultant 

velocity. It is also noted from Fig 4 that magnitude of 

the velocity components u and v diminish throughout 

the fluid region with increasing inverse Darcy 

parameter D
-1

. We observe that the lower the 

permeability of the porous medium the lesser the 

fluid speed in the entire fluid region. The resultant 

velocity is also trim down throughout the fluid 

region. It is observed that an increase in Grashof 

number leads to raise both the primary velocity u and 

the secondary velocity v as shown in Fig (7). This is 

because; increase in Grashof number Gr leads to 

more heating and less density. The resultant velocity 

also boosts up throughout the fluid region. It is 

observed from Fig. (8) that the magnitude of the 

velocity component u oscillates in the entire fluid 

region where as the velocity component v diminishes 

with increasing the frequency of oscillation ω. The 

z=1 9(Nu) = αcsch( α) +PrGra
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resultant velocity also reduces throughout the fluid region. 

 

 
Figure2. The velocity profiles for u and v against E   

11 1 50 1 4 2M ,m ,D ,S , / ,Gr        

 

 
Figure3. The velocity profiles for u and v against M 

11 1 50 1 4 2E ,m ,D ,S , / ,Gr        
 

 
Figure4.  The velocity profiles for u and v against D

-1 

1 1 1 1 4 2E ,m ,M ,S , / ,Gr      
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Figure5.  The velocity profiles for u and v against S 

11 1 50 1 4 2E ,m ,D ,M , / ,Gr        
 

 
Figure6.  The velocity profiles for u and v against m 

11 1 50 1 4 2E ,M ,D ,S , / ,Gr        
 

 
Figure7.  The velocity profiles for u and v against Gr 

11 1 50 1 4 1E ,m ,D ,S , / ,M        
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Figure8.  The velocity profiles for u and v against   

11 1 50 1 1 2E ,m ,D ,S ,M ,Gr       

  

IV. CONCLUSIONS: 

From the above discussion the following conclusions 

are made: 

1. The resultant velocity increases with increasing 

E, S and m.  

2. The transverse magnetic field plays the role of a 

resistive type force similar to drag force which 

tends to resist the flow thereby decreasing its 

velocity. Similar behaviour is observed for the 

resultant velocity.  

3. The Lower the permeability of the porous 

medium the lesser the fluid speed in the entire 

fluid region. The resultant velocity is also trim 

down throughout the fluid region with increasing 

D
-1

.  

4. An increase in Grashof number leads to a raise in 

both the primary velocity u and the secondary 

velocity v. 

5. The resultant velocity also reduces throughout 

the fluid region with increasing ω.   
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