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ABSTRACT 
The optimal digital autopilot needed to control of the roll for an aircraft in the presence of an arbitrary 

unmeasured disturbances is addressed in this paper. Such autopilot has to achieve a desired lateral motion 

control of this aircraft via minimizing the upper bound on the absolute value of the difference between the given 

and true roll angles. It is ensured by means of the two digital controllers. The inner controller is designed as the 

discrete-time PI controller in order to stabilize a given roll rate. This variable is formed by the external P 

controller. The necessary and sufficient conditions under which the two-circuit feedback discrete-time control 

system will be stable are derived. To optimize this control system, the controller parameters are derived utilizing 

the so-called l1-optimization approach advanced in modern control theory. A numerical example demonstrating 

the l1-optimization technique and results of some simulation experiments are presented to illustrate the 

performance of the l1-optimal controller. The robustness properties of this controller are established. 

Index Terms-Aircraft, Lateral Dynamics, Digital Control System, Discrete Time, Stability, l 1-Optimization, 

Random Search Algorithm, Robustness. 
 

I. INTRODUCTION 
The problem of efficiently controlling the 

motion of an aircraft in a non-stationary 

environment capable to ensure its high performance 

index is important enough from the practical point 

of view and remains actual up to now [1], [2]. To 

solve this problem, different approaches based on 

achievements of the modern control theory, 

including adaptive and robust control, neural 

networks, etc., have been reported by many 

researches (see, for example, [3] – [9]). Recently, 

new results in this research direction have been 

presented, in particular, in [10]. Unfortunately, 

most of these works dealt with an ideal case when 

there are no external persistently exciting 

disturbances. Nevertheless, they are always present 

in reality. To implement approaches advanced in 

modern control theory, digital technique is 

appropriate. Point is that, by the end of the 

twentieth century, digital control has become a 

highly developed technology in control 

applications [11], [12]. Digital control systems 

have some features associated with sampling [12], 

[13]. Namely, it leads to arising the discrete-time 

system description. It turns out that accurate 

discrete-time models can be derived for sampled 

continuous-time systems under digital control [14]. 

One of the efficient methods devised in the modern 

control theory for rejecting any unmeasured 

disturbance is based on the so-called l1-

optimization concept [15] – [17] applicable to 

discrete-time control systems. This concept has 

been utilized in [18] to design the digital lateral 

autopilot for an UAV capable to cope with a gust.In 

order to implement the l1-optimization of any 

digital controller, the information with respect to 

the dynamics model of a plant to be controlled 

including its structure and parameters is required. 

In practice, however, it may not be available in full 

detail. In this real situation, the following question 

naturally arises: is the l1-optimal PI controller 

designed via the use of a priori knowledge of the 

so-called nominal lateral dynamics model robust? 

This paper extends the approach which we have 

first reported among other authors in [18] to deal 

with a digital autopilot for the lateral motion 

control. Its aim is to synthesize a digital autopilot 

which is able to maintain a given roll orientation of 

an aircraft with a desired accuracy and to reject an 

arbitrary external disturbance (in particular, the 

gust). Again, this controller needs to be robust with 

respect to parametric and nonparametric 

uncertainties. As in traditional continuous-time 

(analogue) control systems [5], the digital control 

system is designed as the two-circuit closed-loop 

system having the inner feedback loop and the 

external feedback loop. The distinguishing feature 

of the digital autopilot is that it is designed as the 

so-called l1-optimal controller containing the 

discrete-time PI and P controllers. 

The novel contribution of this paper includes the 

following: 

1. The l1-optimal PI and P controller parameters 

of the digital autopilot are calculated 

simultaneously (in contrast with [18]). 

2. The aileron servo dynamics is taken into 

account to derive the stability condition for l1-

optimizing the controller parameters. 
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3. Random search algorithm is used to find the 

three optimal values of the autopilot 

parameters. 

4. Robustness properties of the l1-optimal 

autopilot are established. 

The rest of the paper is organized as 

follows. In Section II, the problems of the 

designing the l1-optimal autopilot is stated. Section 

contains the main results of this work and deals 

with the synthesis of l1-optimal controller needed to 

achieve the perfect performance of the lateral 

motion of an aircraft. In Section IV, a numerical 

example is given. In Section V, the robustness 

properties of l1-optimal autopilot are established 

and results of some simulation experiments are 

presented. Section VI concludes this paper. 

 

II. PROBLEM FORMULATION 
A. Basic Assumptions  

Let ( )t  and ( )t  denote the roll rate 

angle and the aileron deflection of an aircraft, 

respectively, at a time .t  According to [19, chap. 3] 

its lateral dynamics equation derived from the 

linearized lateral equation of the aircraft motion can 

be described by the continuous-time transfer 

function 

 1
( ) ( ) ,

( 1)

K
W s W s

s s T s



 



 


  (1) 

where K
  and T

  are the aerodynamic derivatives 

(more specifically, T
  is the damping derivative in 

the roll channel and K
  is the roll moment). 

As in [19, chap. 4], it is assumed that continuous-

time transfer function describing the aileron servo 

dynamics is  

 
S

S

S

( ) ,
1

K
W s

T s



  (2) 

where 
S

K  and 
S

T  are its gain and time constant, 

respectively. 

Let ( )d t  be an external signal (in particular, a 

gust) disturbing the angular velocity .  This signal 

plays a role of some unmeasurable arbitrary 

disturbance. Without loss of generality, it is 

assumed that it has to be upper bounded in 

modulus. This implies that  

 | ( ) | .
d

d t C  
   (3) 

 

B. Control Objective 

Denote by 
0

( )t  the desired roll orientation at the 

time .t  It is assumed that 
0

( )t  is a continuous 

upper bounded function of .t  This means that there 

exists a constant C


 such that 

 
0

| ( ) | .t C


   


   (4) 

Defining now the output error 

 
0

( ) ( ) ( ) ,e t t t     (5) 

introduce the performance index of the control 

system to be designed as  

 
0

: lim su p | ( ) ( ) | .
t

J t t 
 

 
 

(6) 

The problem to be stated is formulated as follows. 

Devise a digital controller which is able to 

minimize J  given by (6) assuming that the 

variables ( )t  and ( )t  can be measured and the 

constraints of the forms (3) and (4) take place. 

Hence, the aim of the controller design may be 

written as the requirement  

 
{ ( )}

lim su p | ( ) | in f ,
t u t

e t
 

     (7) 

where (5) has been utilized. The controller 

satisfying (7) is called optimal. 

The question that we also need to answer in this 

paper is as follows. Can this l1-optimal controller 

be robust? 

 

III. DIGITAL LATERAL AUTOPILOT 

DESIGN 
A. Control Strategy  

To implement the controller design 

concept proposed in this paper, two feedback loops 

similar to that in [18], [19] are incorporated in the 

autopilot system, as shown in Fig. 1. But, in 

contrast with [19], they are designed as the 

discrete-time closed-loop control circuits using two 

separate controllers. To this end, two samplers are 

incorporated in the feedback loops; see Fig. 1. 

These samplers are required in order to convert 

analogue signals ( )t  and ( )t  in digital form at 

each nth time instant 
0

t n T  ( 0 , 1, 2 , )n    to 

producing the discrete-time signals 
0

( )n T  and 

0
( ) ,n T  respectively, with the sampling period 

0
.T  On the other hand, the signal 

0
( )u n T  formed 

by digital controller at the same time instant 

converts to analogue form 

( )u t using the so-called zero-order hold 

(ZOH) [11], [13]. This makes it possible to 

represent the control input, ( )u t  as follows: 

0
( ) ( )u t u n T    for   

0 0
( 1) .n T t n T    
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Fig. 1. Structure of digital autopilot system 

 

The aim of the inner control loop 

exploiting the discrete-time PI control is to stabilize 

the roll rate 
0

( )n T  at a given value, 0

0
( ) ,n T  

which is the output of the external control loop, as 

shown in Fig. 1. The feedback control law of this 

digital controller is  

in in

0 p 0 I 0

0

( ) ( ) ( )

n

i

u n T k e n T k e iT
 



   
 (8) 

where 
0

( )e n T


 is the deflection of the true 

angular velocity, 
0

( ) ,n T  from a given angular 

velocity, 
0

0
( ) ,n T  at the time instant 

0
t n T  

given by  
0

0 0 0
( ) ( ) ( ),e nT nT nT


  


   

and 
in

P
k  and 

in

I
k  represent the PI controller 

parameters. 

The sampled-data transfer function derived from 

(8) is determined as follows: 
in

in in I

P

( )
( ) : ,

( ) 1

k zU z
C z k

E z z


  


 

Where 
0

( ) : { ( )}U z Z u n T  and 

0
( ) : { ( )}E z Z e n T

 


   are the Z-transforms of  

the sequences 
0

{ ( )}u n T  and 
0

{ ( )} ,e n T


 

respectively.  

The external feedback loop which contains the 

usual P controller is used to stabilize the roll angle, 

0
( ) ,n T  around the desired value, 

0

0
( ).nT  Its 

control law is defined by  
0 ex

0 P 0
( ) ( )nT k e nT


     (9) 

together with the discrete-time output error  

 
0

0 0 0
( ) ( ) ( ) .e n T n T n T      (10) 

Then the sampled-data transfer function 

corresponding to (9), (10) will be defined as 

 
e x e x

P
( ) .C z k  (11) 

In order to choose the optimal parameters of both 

digital controllers, the so-called  l1-optimization 

approach is utilized. 

B. Background on l1-Optimization Concept 

Before going to the l1-optimization concept 

consider at first a pure discrete-time system 

depicted in Fig. 2. Let its dynamics be described by 

a sampled-data transfer function ( )H z  which 

causes  

( ) ( ) ( )Y z H z X z    (12) 

with corresponding ( ) { }
n

X z Z x  and 

( ) { } .
n

Y z Z y  

 

 
Fig. 2. Schematic representation of a pure discrete-time system 
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If initial conditions are zero, then (12) yields [18] 

0

n

n i n i

i

y h x




     (13) 

Suppose that { }
n

x  is upper bounded implying  

0

| | | | : su p | | ,
n

n

x x


  

      (14) 

where | | | |


  denotes the so-called l∞-norm of the 

corresponding sequence; see [20, item 1.3.1].  

With zero initial conditions, due to (13) together 

with (14) one can write the inequality 

{ } 0

s u p | | | | | | | |

n

n

n i

x i

y x h





 

 
l

  (15) 

in which the notation l∞ of the set of all bounded 

sequences taken from [20] is introduced.  

It is known that if ( )H z  is an asymptotically 

stable discrete-time transfer function, then (15) 

produces  

1
| | | | | | | | | | | | ,y H x

 
      (16) 

where 
0

| | | | : s u p | |,
n n

y y
   
  and 

1
| | | |H  

represents the so-called l1-norm of ( )H z  defined 

as [20, item 1.3.3]  

1

0

| | | | : | |.
n

n

H h





     (17) 

In the expression (17), 
n

h  represents the impulse 

response of H  at nth time instant determined as 

the inverse Z-transform of ( ) :H z  

1
{ ( )} .

n
h Z H z


  

(More exactly, 
1

| | | |H  is indeed the l1-norm of 

{ }
n

h  having the property that 

0 1 2
. . .h h h    

is the absolutely convergent series, i.e., 

0
| |

nn
h




   but not of ( ) .H z ) 

According to the definition (17), the variable 

1
| | | |H  is evaluated by summing the absolute 

values of s
i

h  from i = 0 to i = n and by increasing 

the number n. Suitable estimate of 
1

| | | |H  is 

obtained if n is sufficiently large number. 

In general, for any initial 
0 1 2

, , , . . . ,x x x
 

 instead 

of (16), the following inequality can be shown to be 

valid: 

1
lim su p | | || | | | | | | .

n

n

y H x


 

    

Now, to clarify the l1-optimization approach, the 

typical digital feedback control system subjected to 

external unmeasurable continuous-time 

disturbance, ( ) ,d t  is depicted in Fig. 3. This 

system contains continuous plant described by 

some transfer function ( ) ( ) ( )P s P s P s   and a 

digital controller whose sampled-data transfer 

function is ( ) .C z  

ZOH

Sampler
(period T0)

( )y t

)(td
Disturbance



Digital
Controller



0( )y nT

0( )u nT

PlantSampler
(period T0)

( )C z ( )P s ( )P s

 
(a) 

ZOH

)(td





0( )y nT

0( )u nT
( )C z ( )P s ( )P s

( )P s

0( )v nT

( )u t

 
(b) 

Fig. 3. Basic feedback loop configuration of digital control system in the presence of a continuous-time 

disturbance 
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According to [22, subsect. 10.5], after the 

inspection of Fig. 3(a) it can be written  

( ) ( ) ( ) ,Y z H z P D z     (18) 

where  

1
( )

1 ( ) ( )
H z

C z P P z


 
   (19) 

in which  

0

1 1 ( ) ( )
( ) (1 )

t n T

P s P s
P P z z Z L

s

 



    
       

   

 

(see [14, Lemma 3.5]). ( )P D z  denotes the Z-

transform of the sequence 
0

{ ( )}v n T  formed via 

sampling the continuous-time signal  

 
1

( ) ( ) ( )v t L P s D s


  

 resulting in  

  
0

1
( ) : ( ) ( ) ( ) .

t n T
V z P D z Z L P s D s




    (20) 

The equations (18) to (20) make it possible to move 

from the initial block diagram of closed-loop 

discrete-time control system with a continuous-

time signal shown in Fig. 3(a) to its equivalent 

block diagram presented in Fig. 3(b). This fact will 

be used later for l1-optimizing the control system 

whose block diagram has been depicted in Fig. 1.  

It can easily be clarified that if either ( )С z   has 

the one pole at z = 1 or  ( )P s  has the one pole at 

s = 0 then ( )H z  will be 

( ) ( 1) ( )H z z H z     (21) 

that, by virtue of (18) together with (20), gives 

( ) ( )[( 1) ( )].Y z H z z V z    (22) 

 

If the part P   of the plant is simply stable (the 

asymptotic stability is not necessary) and the 

assumption (3) is satisfied then the variable 

1
:

n n n
v v v


    will be upper bounded in 

modulus implying 
0

| | | | : s u p | | .
n

n

v v


  

     

Since  
1

( 1) ( ) ,
n

v Z z P D z


  
 
the ultimate 

inequality  

1
lim su p | | || | | | | | | .

n

n

y H v


 

     (23) 

follows directly from (22) for this case. 

Now, assuming the plant parameters to be fixed, 

one can see from (19), (21) 

that
1 C 1

| | | | | | ( ) | |H H k 
 

depends only on a 

vector 
С

k   of controller parameters setting 

C
( ) ( , ) .C z C z k  (Note that | | | |v


  is 

independent of 
С

k ). Thus, (23) can be rewritten as 

C 1
lim su p | | || ( ) || | | | |

n

n

y H k v


 

     (24) 

It is clear that 
С 1

| | ( ) | |H k  needs to be minimized 

in 
С

k  to guarantee the minimum of the right side 

of (24). Namely, l1-optimization reduces to the 

problem 

С

С 1
| | ( ) || m in .

k

H k     (25) 

 

C. Stability Analysis. 

Inspecting Fig. 1 and recalling the 

notations (1) and (2), one gets the discrete-time 

transfer function of inner feedback loop from 
0

  

to   as 

in

Sin

in

S

( ) ( )
( ) ,

1 ( ) ( )

C z W W z
H z

C z W W z








  (26) 

where 

0

1 1

S S
( ) (1 ) { { ( ) ( )} }

t n T
W W z z Z L W s W s

 

 


 

 [21]. Then, using these notations, the expression 

(26) gives  
2

in 1 2 3

3 2

1 2 3

( ) ,
a z a z a

H z
z b z b z b

 


  
  (27) 

where  
in in

1 P I 1

in in in

2 P 1 P 2 I 2

in

3 P 2

in in

1 1 P 1 I 1

in in in

2 2 1 P 1 P 2 I 2

in

3 P 2 2

( ) ,

,

,

1 ,

,

a k k c

a k c k c k c

a k c

b d k c k c

b d d k c k c k c

b k c d

 


    


  


    


    



   

 (28) 

are the coefficients depending on 

00 S

0 S S 0 S

0 S S 0

0 0 S

0 S S

//

1 S S S S S S S

( ) / /

2 S S S S

( ) / /

S S S

/ /

1

( ) /

2

[ ] / ( ) ,

[

[ ] / ( )

,

.

T TT T

T T T T T T T

T T T T T T T

T T T T

T T T T T

c K K T K K T e K K T K K T e T T

c K K T e K K T e

K K T e K K T e T T

d e e

d e



 

  



 

      

 

    



  

  

 

 

     


  




   


   






(29) 

By applying the stability results with 

respect to the three-order control system which can 

be found in [22, subsect. 1.12] to the denominator 

of 
in

( )H z  in (27) we derive the conditions 

guaranteeing the asymptotic stability of inner 

closed loop in the form 
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1 2 0 3

0 , 0 , 1 , 2 , 3,

0

j
j

   

  


  

  (30) 

with 

0 1 2 3

1 3 1 2

2 3 1 2

3 1 2 3

1 ,

3 (1 ) ,

3 (1 ) ,

1 .

b b b

b b b

b b b

b b b









    


    


    

    

   (31) 

It turns out that the set 
in

  of pairs  
in in

P I
,k k  

under which the inner loop will be stable is 

bounded. This fact follows from (30) together with 

(28), (29) and (31).  

In order to study the stability of the external closed 

loop, we again inspect Fig. 1 to obtain the discrete-

time transfer function of the corresponding open 

loop as 
e x

P
( ) ( ) ,G z k G z  

where  

S 0

in

S

( )
( ) .

1 ( ) ( )

W W W z
G z

C z W W z





 


 

Applying the frequency stability criterion taken 

from [20] we establish that the necessary and 

sufficient condition under which the closed loop 

will be stable is given by  
e x

P
0 ,k m        (32) 

where  

m in { R e ( ) : Im ( ) 0} .
j j

m G e G e
 

     (33) 

According to (32), (33), the set 
e x

  of 
e x

P
sk  

guaranteeing the stability of the external loop is 

bounded. 

D.  l1-Optimization Algorithm 

It can be finally established that if T0 is sufficiently 

small then  

 
e x e x

0 С 1
lim su p | ( ) | || ( ) || | | | | | | | | ,

n

e n T H k v O v
  

 

      (34) 

where 

e x

C in in e x

S S 0

1
( , )

1 ( ) ( ) ( ) ( ) ( )
H z k

C z W W z C z C z W W W z
 


  

 

depends on the vector 
in in e x T

C P I P
[ , , ]k k k k  of the 

controller parameters. (Due to space limitation, 

details are omitted). 

Since 
in

  and 
e x

  are both bounded, it is 

possible to utilize the well-known Weierstrass 

theorem [23, chap. 1, sect 3] to solve the l1-

optimization problem (25). By virtue of this 

theorem, there exists some 

in ex

C

ex

C C 1
a rg m in || ( ) || .

k

k H k


 

  (35) 

minimizing the l1-norm of 
e x

C
( )H k  in 

C
.k  

Taking (34) into account, we see that the choice of 

C
k



 
 in accordance with (35) solves the l1-

optimization problem formulated as the 

requirement (6) if only T0 is small enough. 

Unfortunately, the l1-norm of 
e x

C
( )H k  is non-

differentiable function with respect to the 

components 
in in e x

P I P
, ,k k k  of 

C
.k  Therefore, the 

random search technique taken from [23, chap. 6, 

item 4] is proposed to find the optimal parameter 

vector 
C

k


 defined in (35).  

The l1-optimization algorithm employing the 

random search is as follows: 

Step #1: Setting 0k   choose an arbitrary 

0

C

ˆ ,k    where 
in ex

      is the De 

Cartesian product. 

Step #2: Compute a trial point 
C

ˆ ,
k

k


   according 

to the rule  

C C

ˆ ˆ ,
k k k

k k r

   

where 
k

r  is a realization of a suitably distributed 

random vector. 

Step #3: If 
C 1 C 1

ˆ ˆ|| ( ) || || ( ) ||
k k

H k H k


  then 

1

C C

ˆ ˆ ,
k k

k k
 
  else 

1

C C

ˆ ˆ ,
k k

k k


  

Step #4: Increment k by one and go to Step #2. 

 

IV. A NUMERICAL EXAMPLE 
Let the nominal (approximate) transfer function 

( )W s


  in (1) be 

1 0 .8 4
( )

0 .4 9 2 6 1
W s

s





  

that corresponds to the following parameters of an 

aircraft: 1 0 .8 4K

  and 0 .4 9 2 6 sT


  (as in 

[19, formula (3.62)]). According to [19, sect. 4.2], 

the transfer function of aileron servo is given by 

S

1 0
( )

1 0
W s

s



 

that corresponds to 
S

1,K   
S

0 .1 sT 
 
in (2).  

Choose the sampling period equal to 
0

0 .0 1 s .T   

By formulas (29), we first calculate 
1

0 .0 1 0 6 ,c   

2
0 .0 1 0 2 ,c   

1
1 .8 8 4 7 ,d    

2
0 .8 8 6 7 .d   

Next, by using the values of these coefficients, we 

specify the stability region 
in

  of the inner closed 

loop depicted in Fig. 4. Further exploiting the 

inequalities (30) together with (31), we are capable 

to design the three-dimensional stability region 
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in ex

      as shown in Fig. 5. Note that 
0
,    where 

0
  is an outer parallelepiped

.  

 

 
Fig. 4. Stability region of the inner circuit under the conditions of the numerical example 
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Fig. 5. Stability region of the control system under the conditions of the numerical example 

 

Fig. 6 is presented to demonstrate how the 

random search process goes step by step utilizing 

the algorithm described in Section III (D). It shows 

how the vector  sequence 
C

{ }
k

k  generated by this 

algorithm converges to a 
in in e x T

C P I P
[ , , ]k k k k

   


 

equal approximately to 
T

C
[ 4 , 0 .1, 3 .9 ] .k


   

 

 

Fig. 6. Trajectory of random vector sequence 
C

{ }k  from initial 
0

C
k (black point) to final 

2 1

C C
k k



 (red point) 

within the stability region of Fig. 5 
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V. ROBUSTNESS EVALUATION AND A 

SIMULATION 
To study the robustness properties of this 

l1-optimal controller under the parametric 

uncertainty, we assumed that the parameters K


 

and T


 may vary within the following ranges: 

K K K
  
   and T T T

  
   with 

8 .6 7 2 ,K

  12 .47K


  ( 0 .8 ,K K

 
  

1 .15 )K K
 
  and 0 .4 6 8 s ,T


  

0 .59 1 sT

  ( 0 .9 5 ,T T

 
  1 .2 ),T T

 
  

respectively. The parametric uncertainty region 

corresponding to these ranges defined as 

: [ , ] [ , ]K K T T
  

    is depicted in Fig. 7. 

 

 
Fig. 7. Parameter uncertainty region 

 

To evaluate the performance index of the 

control system containing the l1-optimal controller 

without and with uncertainties, two simulation 

experiments were conducted. In these experiments, 

variable ( )d t  similar to the wind gust was 

simulated as Dryden Wind Turbulence Model. It 

turned out that if the parametric uncertainty is 

present then the worst case (in the sense of robust 

stability) is: ,K K
 
  T T


  (see Fig. 7). 

Simulation results corresponding to the absence 

and the presence of this uncertainty are presented in 

Fig. 8. 
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Fig. 8. Behavior of l1-optimal lateral autopilot without  (red color) and with (blue color) parametric uncertainty 

for the worst case 
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To study the robustness properties of the l1-optimal 

controller under nonparametric uncertainty, 

2

0 .1 7 1 ( 1 8 .7 5 )( 0 .1 5 )
( )

( 0 .3 8 0 1 .8 1 3)( 2 .0 9 )( 0 .0 0 4 )

s s s
W s

s s s s


 


   



 

taken from [19, formula 3.51) was set (instead of 

the previous ( )).W s


  Simulation results 

corresponding to this case are presented in Fig. 9.
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Fig. 9. Behavior of l1-optimal lateral autopilot without  (red color) and with (blue color) unparametric 

uncertainty 

Figs. 8 and 9 show that the behavior of the l1-optimal autopilot in both situations is satisfactory. 

 

VI. CONCLUSION 

This paper dealt with synthesizing and 

analyzing the digital autopilot which is able to 

maintain a given roll orientation of an aircraft with 

a desired accuracy and to cope with an arbitrary 

external disturbance (a gust). The digital autopilot 

synthesized as the l1-optimal controller containing 

the discrete-time PI and P controller parts.  

It was established that the l1-optimal lateral 

autopilot may be robust in the presence both of 

parametric and of nonparametric uncertainties.A 

distinguishing feature of the control algorithms is 

that they are sufficiently simple. This is important 

from the practical point of view. 
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