On Various Types of Ideals of Gamma Rings and the Corresponding Operator Rings

Ranu Paul
Department of Mathematics Pandu College, Guwahati 781012 Assam State, India

Abstract
The prime objective of this paper is to prove some deep results on various types of Gamma ideals. The characteristics of various types of Gamma ideals viz. prime/maximal/minimal/nilpotent/primary/semi-prime ideals of a Gamma-ring are shown to be maintained in the corresponding right (left) operator rings of the Gamma-rings. The converse problems are also investigated with some good outcomes. Further it is shown that the projective product of two Gamma-rings cannot be simple.

AMS Mathematics subject classification: Primary 16A21, 16A48, 16A78
Keywords: Ideals/Simple Gamma-ring/Projective Product of Gamma-rings

I. Introduction
Ideals are the backbone of the Gamma-ring theory. Nobusawa developed the notion of a Gamma-ring which is more general than a ring [3]. He obtained the analogue of the Wedderburn theorem for simple Gamma-ring with minimum condition on one-sided ideals. Barnes [6] weakened slightly the defining conditions for a Gamma-ring, introduced the notion of prime ideals, primary ideals and radical for a Gamma-ring, and obtained analogues of the classical Noether-Lasker theorems concerning primary representations of ideals for Gamma-rings. Many prominent mathematicians have extended fruitfully many significant technical results on ideals of general rings to those of Gamma-rings [1,2,4,7,9].

II. Basic Concepts

Definition 2.1: A gamma ring \((X, \Gamma)\) in the sense of Nobusawa is said to be simple if for any two nonzero elements \(x, y \in X\), there exist \(\gamma \in \Gamma\) such that \(xy \neq 0\).

Definition 2.2: If \(I\) is an additive subgroup of a gamma ring \((X, \Gamma)\) and \(X \Gamma I \subseteq I\) (or \(I \Gamma X \subseteq I\)), then \(I\) is called a left (or right) gamma ideal of \(X\). If \(I\) is both left and right gamma ideal then it is said to be a gamma ideal of \((X, \Gamma)\) or simply an ideal.

Definition 2.3: An ideal \(I\) of a gamma ring \((X, \Gamma)\) is said to be prime if for any two ideals \(A\) and \(B\) of \(X\), \(A \Gamma B \subseteq I \Rightarrow A \subseteq I\) or \(B \subseteq I\). \(I\) is said to be semi-prime if for any ideal \(U\) of \(X\), \(U \Gamma U \subseteq I \Rightarrow U \subseteq I\).

Definition 2.4: A nonzero right (or left) ideal \(I\) of a gamma ring \((X, \Gamma)\) is said to be a minimal right (or left) ideal if the only right (or left) ideal of \(X\) contained in \(I\) are 0 and \(I\) itself.

Definition 2.5: A nonzero ideal \(I\) of a gamma ring \((X, \Gamma)\) such that \(I \neq X\) is said to be maximal ideal, if there exists no proper ideal of \(X\) containing \(I\).

Definition 2.6: An ideal \(I\) of a gamma ring \((X, \Gamma)\) is said to be primary if it satisfies, \(ab \in I, a \notin I \Rightarrow b \notin J \forall a, b \in X\) and \(\gamma \in \Gamma\). Where \(J = \{x \in X: (x\gamma)^{n-1}x \in I\} for some n \in N\) and \(\gamma \in \Gamma\) and \((x\gamma)^{n-1}x = x\) when \(n = 1\).

Definition 2.7: An ideal \(I\) of a gamma ring \((X, \Gamma)\) is said to be nilpotent if for some positive integer \(n\), \(I^n = 0\). Where we denote \(I^n\) by the set \(I \Gamma I \Gamma \ldots \Gamma I\) (all finite sums of the form \(\sum_{1}^{n} x_1 y_1 x_2 y_2 \ldots y_{n-1} x_n\) with \(x_i \in I\) and \(y_i \in \Gamma\)).

Definition 2.8: Let \((X_1, \Gamma_1)\) and \((X_2, \Gamma_2)\) be two gamma rings. Let \(X = X_1 \times X_2\) and \(\Gamma = \Gamma_1 \times \Gamma_2\). Then defining addition and multiplication on \(X\) and \(\Gamma\) by, \((x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)\), \((a_1, a_2) + (\beta_1, \beta_2) = (a_1 + \beta_1, a_2 + \beta_2)\) and \((x_1, x_2)(a_1, a_2)(y_1, y_2) = (x_1 a_1 y_1, x_2 a_2 y_2)\) for every \((x_1, x_2), (y_1, y_2) \in X\) and \((a_1, a_2), (\beta_1, \beta_2) \in \Gamma\).

\((X, \Gamma)\) is a gamma ring. We call this gamma ring as the Projective product of Gamma rings.
III. Main Results

Theorem 3.1: The projective product of two gamma rings \((X_1, \Gamma_1)\) and \((X_2, \Gamma_2)\) can never be a simple gamma ring.

Proof: Let \((X, \Gamma)\) be the projective product of the gamma rings \((X_1, \Gamma_1)\) and \((X_2, \Gamma_2)\). Let \(x = (x_1, 0), y = (0, y_2) \in X\) be two nonzero elements. Then \(x_1 x \neq 0, y_2 \neq 0\). Then for any \(\alpha = (\alpha_1, \alpha_2) \in \Gamma\), we get
\[xay = (x_1, 0)(\alpha_1, \alpha_2)(0, y_2) = (x_1\alpha_1, 0, \alpha_2 y_2) = (0, 0) = 0\]
Thus for these nonzero \(x, y \in X\), there does not exist any \(\alpha \in \Gamma\) such that \(xay \neq 0\). Thus \(X, \Gamma\) is not a simple gamma ring and hence the result.

If \(R\) and \(L\) are the right and left operator rings respectively of the gamma ring \((X, \Gamma)\), then the forms of \(R\) and \(L\) are
\[R = \left(\sum_{i} [\gamma_i, x_i] : \gamma_i \in \Gamma, x_i \in X\right)\]
and
\[L = \left(\sum_{i} [x_i, \gamma_i] : \gamma_i \in \Gamma, x_i \in X\right)\]
Then defining a multiplication in \(R\) by
\[\left[\sum_{i} [\gamma_i, x_i] \right] \left[\sum_{j} [\beta_j, y_j] \right] = \left[\sum_{i,j} [\gamma_i, x_i, \beta_j, y_j] \right],\] it can be verified that \(R\) forms a ring with ordinary addition of endomorphisms and the above defined multiplication.

Similar verification can also be done on the left operator ring \(L\) with a defined multiplication. In this paper we shall discuss various types of ideals in a gamma ring \((X, \Gamma)\) and their corresponding ideals in the right operator ring \(R\).

Theorem 3.2: Every left (or right) ideal of \((X, \Gamma)\) defines a left (or right) ideal of the right operator ring \(R\) and conversely.

Proof: Let \(I\) be a left ideal of a gamma ring \((X, \Gamma)\). We define a subset \(R'\) of \(R\) by
\[R' = \left(\sum_{i} [\gamma_i, x_i] : \gamma_i \in \Gamma, x_i \in I\right)\]. We show \(R'\) is a left ideal of \(R\). For this let \(x = \sum_{i} [\gamma_i, x_i] \in R'\) and \(r = \sum_{i} [a_i, a_i] \in R\) any elements, where \(\gamma_i, a_i \in \Gamma; x_i \in I; a_i \in X\) for \(i, j\). Now, \(rx = \sum_{i} [a_i, a_i] \sum_{i} [\gamma_i, x_i] = \sum_{i,j} [a_i, a_i, \gamma_j, x_i]\) Since \(x_i \in I\) and \(a_j \in X\), \(\gamma_i \in \Gamma\) for \(i, j\) and \(I\) is a left ideal of \(X\), so
\[a_i \gamma_j x_i \in I \implies \sum_{i,j} [a_i, a_i, \gamma_j, x_i] \in R' \implies rx \in R'\]
Thus \(R'\) is a left ideal of the right operator ring \(R\).

Conversely, let \(P\) be a left ideal of \(R\). Then \(P\) will be of the form
\[P = \left(\sum_{i} [\alpha_i, x_i] : \alpha_i \in \Gamma, x_i \in J \subseteq X\right)\]. We show \(J\) is a left ideal of \(X\). Let \(x \in X, a \in J\) be any two elements. Then for any \(\alpha \in \Gamma\), \([y, x] \in R, [y, a] \in P\). Since \(P\) is a left ideal of \(R\), so, \([y, x,y] \in P = \implies [y, xy] \in P = \implies xy a \in J\) So \(J\) is a left ideal of \(X\) and hence the result.

This result can similarly be proved for right ideals also. Thus every ideal in a gamma ring defines an ideal in the right operator ring.

Theorem 3.3: Every prime ideal of \((X, \Gamma)\) defines a prime ideal of the right operator ring \(R\) and conversely.

Proof: Let \(I\) be a prime ideal of a gamma ring \((X, \Gamma)\). We define a subset \(R'\) of \(R\) by
\[R' = \left(\sum_{i} [\gamma_i, x_i] : \gamma_i \in \Gamma, x_i \in I\right)\]. We show \(R'\) is a prime ideal of \(R\). By Result 3.2, \(R'\) is an ideal of the right operator ring \(R\). We just need to show the prime part. For this let, \(xy \in R'\), where \(x, y \in R\).

Then \(x = \sum_{i} [\alpha_i, x_i], y = \sum_{j} [\beta_j, y_j]\) where \(\alpha_i, \beta_j \in \Gamma\) and \(x_i, y_i \in I\). Now, \(xy = \sum_{i} [\alpha_i, x_i] \sum_{j} [\beta_j, y_j] \in R'\)
\[\implies xy = \sum_{i,j} [\alpha_i, x_i, \beta_j, y_j] \in R'\]
\[\implies x_i \beta_j y_j \in I \text{ for } i, j\]
\[\implies x_i \in I \text{ or } y_j \in I \text{ for } i, j\] Thus \(xy \in R'\) implies \(x \in R'\) or \(y \in R'\). So \(R'\) is a prime ideal of the right operator ring \(R\).

Conversely, let \(P\) be a prime ideal of \(R\). Then \(P\) will be of the form
\[P = \left(\sum_{i} [\gamma_i, a_i] : \gamma_i \in \Gamma, a_i \in J \subseteq X\right)\]. We show \(J\) is a prime ideal of \(X\). Let \(a, b \in X\) be any two elements such that \(ayb \in J\) for \(y \in \Gamma\). Since \(a, b \in X\) and \(y \in \Gamma\), so \([y, a], [y, b] \in R\)
Again, \(ayb \in J = \implies [y, ayb] \in P\)
\[\implies [y, a] [y, b] \in P\]
\[\implies [y, a] \in P \text{ or } [y, b] \in P\] [Since \(P\) is a prime ideal of \(R\)]. If \([y, a] \in P\) then \(a \in J\) and if \([y, b] \in P\) then \(b \in J\). Thus \(ayb \in J = \implies a \in J\) or \(b \in J\). So \(J\) is a prime ideal of \(X\) and hence the result.

Theorem 3.4: Every minimal ideal of \((X, \Gamma)\) defines a minimal ideal of the right operator ring \(R\) and conversely.

Proof: Let \(I\) be a minimal ideal of a gamma ring \((X, \Gamma)\). We define a subset \(R'\) of \(R\) by,
Let $A = \{\sum_{i} [a_i, y_i] : a_i \in \Gamma, y_j \in F \subseteq X\}$. Since A is an ideal of R by result 3.2, J is also an ideal of X.

Since $A \neq R$, there exists an element $x = \sum_{i} [y_i, x_i] \in R$ but $x \not\in A$.

Thus there exists an ideal J of X in between 0 and I, which contradicts the fact that I is a minimal ideal of X, i.e our supposition was wrong. So R is a minimal ideal of R.

Conversely, let $P = \{\sum_{i} [y_i, x_i] : y_j \in F \subseteq X, x_i \in I\}$ be a minimal ideal of R. Then I is a minimal ideal of X.

We show P is a minimal ideal of R.

Since $J \neq I$ and $J \subseteq I$, there exists an element $x \in I \setminus P \setminus X$. Then for any $y \in \Gamma, [y,x] \in P$ but $[y,x] \notin Q = P \neq Q$.

Thus we found a proper ideal Q of R which lies in between 0 and P, which contradicts that P is a minimal ideal of R. Thus I is a minimal ideal of X and hence the result.

Theorem 3.5: Every maximal ideal of (X, Γ) defines a maximal ideal of the right operator ring R and conversely.

Proof: Let I be a maximal ideal of a gamma ring (X, Γ). We define a subset P of R by, $P = \{\sum_{i} [y_i, x_i] : y_j \in F \subseteq X, x_i \in I\}$. We show P is a maximal ideal of R. Since I is maximal so I is nonzero and hence R is also nonzero.

By Result 3.2, R is an ideal of the right operator ring R. We need to show the maximal part.

On the contrary, if possible let R be not maximal. Then there exists a proper ideal P of R containing R, i.e $R \subseteq P \subseteq R$. Let $P = \{\sum_{i} [a_i, y_i] : a_i \in \Gamma, y_j \in F \subseteq X\}$. Then J is an ideal of X.

Let $x \in I$ be any element.

Thus there exists a proper ideal J of X containing I, which contradicts that I is a maximal ideal of X. So R is a maximal ideal of the right operator ring R.

Conversely, let $P = \{\sum_{i} [y_i, x_i] : y_j \in F \subseteq X, x_i \in I\}$ be a maximal ideal of R. Then obviously A is an ideal of X. We show A is maximal.

Since M is maximal, so M is nonzero and there does not exist any proper ideal of R containing M.

Let N be a proper ideal of X such that $N \neq \{\}$. We just need to show the maximal part.

Thus we defined a maximal ideal of the right operator ring R.

Theorem 3.6: Every nilpotent ideal of (X, Γ) defines a nilpotent ideal of the right operator ring R and conversely.

Proof: Let I be a nilpotent ideal of a gamma ring (X, Γ). We define a subset P of R by, $P = \{\sum_{i} [y_i, x_i] : y_j \in F \subseteq X, x_i \in I\}$, which is an ideal of the right operator ring R. We show P is a nilpotent ideal of R.

Since I is nilpotent, so there exists a positive integer n such that $I^n = 0 \Rightarrow I \subseteq \Gamma \subseteq \cdots \subseteq \Gamma = 0$. i.e all elements of the form $\sum x_1 y_1 x_2 y_2 \cdots y_{n-1} x_n$ are zero, where $x_i \in I$ and $y_i \in \Gamma$.

Let $x \in P^n$ be any element. Then x will be of the form, $x = a_1 a_2 \cdots a_n$ where $a_i = \sum_{i} [y_{ij}, x_{ij}] \in P$.

Let $x = \sum_{i} [y_{ij}, x_{ij}] = \sum_{i} [y_{ij}, x_{ij} x_{ij} \cdots y_{ij} x_{ij}] = \sum_{i} [y_{ij}, 0] = 0$ (Using 1)

So, $x \in P^n = 0$ which implies $P^n = 0$. So P is a nilpotent ideal of R.

Conversely, let $P = \{\sum_{i} [y_i, x_i] : y_j \in F \subseteq X, x_i \in I\}$ be a nilpotent ideal of R i.e there exists a positive integer n such that $P^n = 0$. Then I is an ideal of X.

We show $I^n = 0$.

Let $t \in I^n$ be a nonzero element. Then $t = t_1 t_2 t_3 \cdots t_{n-1} t_n$, where $t_i \in I$ and $y_i \in \Gamma$ and $t_i \neq 0, y_i \neq 0$.

Since $t_i \in I \Rightarrow [y_{i-1}, t_i] \in P$

So, $[y_i, t_i] = [y_{i-1}, t_i] [y_i, t_2] \cdots [y_{i-1}, t_n] \in P^n$
defines a semi-prime ideal of the right operator ring R. We show R' is a semi-prime ideal of R.

Let $x = \sum \{[y_i, x_i] \mid y_i \in \Gamma, x_i \in A\}$ be any element such that $x^2 \in R'$

Thus we get, $x^2 \in R' \Rightarrow x \in R' \Rightarrow y^2 \in R'$

So, A is semi-prime and hence the result.

References

