
B. Srinivasulu et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.1007-1011

www.ijera.com 1007 | P a g e

VNC Viewer Authentication and Security Using Remote Frame

Buffer Protocol

D. Suguna Kuamari, B. Srinivasulu , G. Srinivas , G. Jaya Rao
1,2,3,4

 Department of Computer Science and Engineering,

St.Martin’s Engineering College, Secundedrabad, Andhra Pradesh, India – 500014

Abstract
VNC is remote control software which allows you to view and fully interact with one computer desktop using a

simple program on another computer desktop anywhere on the Internet. The two computers don't even have to be

the same type, so for example you can use VNC to view a Windows Vista desktop at the office on a Linux or Mac

computer at home. VNC is in widespread active use by many millions throughout industry, academia and privately.

A proxy is used to send the image of the desktop to the cellular phone, to convert different devices, to suppress

network traffics, and to support recovery from an unscheduled disconnection. A prototype of the proposed system

has to be implemented using Java and will be tested on android phone. Virtual Network Computing is a simple

protocol for remote access to graphical user interfaces. It is based on the concept of a Remote Frame Buffer (RFB).

Several functions to the remote computer or the server desktop such as viewing the desktop, mouse click

operations, sending a text message, opening of documents or files, opening of the task manager, manipulating of

files and several other functions can be performed from our cellular phone.

Keywords: Virtual Network Computing, Remote Frame Buffer, Remote Control, Remote Desktop, Client-Server,

Zooming-panning, Mouse Driver .

I. INTRODUCTION
Virtual Network Computing (VNC) is an

ultra-thin client system based on a simple display

protocol that is platform independent. VNC was

originally developed at the Olivetti Research

Laboratory in Cambridge, England. It achieves mobile

computing without requiring the user to carry any

hardware. RFB is a simple protocol for remote access

to graphical user interfaces. Because it works at the

framebuffer level it is applicable to all window-ing

systems and applications, including X11, Windows

and Macintosh. RFB is the protocol used in VNC.The

remote endpoint where the user sits (i.e. the display

plus keyboard and/or pointer) is called the RFB client

or viewer. The endpoint where changes to the

framebuffer originate (i.e. the windowing system and

applications) is known as the RFB server. RFB is truly

a “thin client” protocol. The emphasis in the design of

the RFB protocol is to make very few requirements of

the client. In this way, clients can run on the widest

range of hardware, and the task of implementing a

client is made as simple as possible. In computing,

VNC is a graphical desktop sharing system which uses

the protocol to control the computer remotely, but now

according to our methodology remote computers can

be accessed from cellular phones It transmits the

keyboard and a mouse event from remote computer to

cellular phones. The objective of our work is to

develop an application through which user can

monitor the computer over a network and can perform

the administrative tasks from the cellular phones itself.

The rest of the paper has been organized as follows:

Section II proposes the novel approach and

experimental results and Section III concludes the

paper. In VNC system, server machines supplied not

onlyapplications and data but also an entire desktop

environment that can be accessed from any internet-

connected machine using simple software VNC. VNC

provide mobile computing without requiring the user

to carry any device whatsoever. In addition, VNC

allowed a single desktop to be accessed from several

places simultaneously, thus supporting application

sharing in the style of Computer-Supported

Cooperative Work.

1.1 Purpose

VNC is remote control software which

allows you to view and fully interact with one

computer desktop using a simple program on another

computer desktop anywhere on the Internet. The

proposed system VNC Viewer lets you use your

Android mobile device as a client for a VNC server so

that we can view a desktop computer on a mobile

phone. The tool is to be build up using Android SDK,

which makes the application can be deployed on any

android powered mobile phones.

1.2 Scope

One of the fastest growing industries now

days are mobile industry. There are many competitors

in this area who are doing research and development

on new platforms & user experience. One such

technology is Android from Google which is

supported for Google phones. These phones are

RESEARCH ARTICLE OPEN ACCESS

B. Srinivasulu et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.1007-1011

www.ijera.com 1008 | P a g e

described as next Generation mobiles. There is no

such application on mobile which acts as a VNC

Client. We wanted to build an application on android

powered mobile phone so that this phone acts as a

client for a VNC Server.

1.3 Project Overview
The VNC Viewer lets you use your Android

mobile device as a client for a VNC server so that we

can view a desktop computer on a mobile phone. The

tool is to be build up using Android SDK, which

makes the application can be deployed on any android

powered mobile phones.

1.4 Project Description

The Android SDK includes a comprehensive

set of development tools. Requirements include Java

Development Kit, the officially supported integrated

development environment (IDE) is Eclipse (3.2 or

later) using the Android Development Tools (ADT)

Plug in, though developers may use any text editor to

edit Java and XML files then use command line tools

to create, build and debug Android applications. VNC

is in widespread active use by many millions

throughout industry, academia and privately. VNC

Viewer lets you use your Android mobile device as a

client for a VNC server. When we first open VNC

Viewer, we should provide a connection configuration

page. Here we can set up a connection with a VNC

server (by providing IP address, port number,

password), or choose an already configured

connection. When this is done it should be able to

handshake, authenticate and load the first frame.

II. SYSTEM ANALYSIS
Problem Definition

The user can access the data from the server

system when he provided with the other system, so to

avoid such problems, we have designed a VNC viewer

so that the user can access the data from anywhere

through mobile device.

2.1 Existing System

Till now there is no system that fits in the

mobile phone to access the server system, the user can

access the data only when is provided with another

system.

2.2 Proposed System

We have a system that has out and out

features to access the server system through mobile

phone, when the system is provided with VNC server.

The user can view the data in the server system from

anywhere through mobile.

2.3 User Classes and Characteristics

End user of the application is the mobile

phone user. User can connect to any desktop computer

with the help of VNC server and view their desktop in

mobile

2.4 Operating Environment:

 Software Requirements used are Windows

XP and any other latest editions. Java 1.6 and Android

SDK. Hardware Requirements used are P4processor,

512MB of Main Memory (RAM) and 40GB hard

disk and base memory.

2.5 Design and Implementation Constraints

All modules are coded thoroughly based on

requirements from software organization. The

software is designed in such a way that the user can

easily interact with the screen. Software is designed in

such a way that it can be extended to the real time

business.

2.6 User Documentation

In our user manual we are going to keep the

information regarding our product, which can be

understandable by a new person who is going to use it.

If a new person is using it, online help will be

provided in that. We are going to explain each and

every step clearly about our product so that any user

can easily understand it.

2.7 Module Description

In this we have three modules

 Configuration

 RFB Implementation

 Activity GUI

Configuration

In this we specify the configuration of the

VNC Server. This includes supplying IP Address, port

number (5900 here for vnc by default) and password.

We can choose from a list of already defined

configurations. We use socket programming for server

connection.

RFB Implementation

In this module we implement the Remote

Frame Buffer protocol. This is used to access the

remote computer windows GUI

Activity GUI.

In this module we develop all the activities

needed to implement this project. This includes

configuration screen, menu, canvas and settings.

III. PROPOSED METHODOLOGY
3.1 Display Protocol:

The display side of the protocol is based

around a single graphics primitive: “put a rectangle of

pixel data at a given x,y position” However , allowing

various different encodings for the pixel data gives us

a large degree of flexibility in how to trade off various

parameters such as network bandwidth, client drawing

speed and server processing speed. A sequence of

these rectangles makes a framebuffer update (or

simply update). An update represents a change from

one valid framebuffer state to another, so in some

B. Srinivasulu et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.1007-1011

www.ijera.com 1009 | P a g e

ways is similar to a frame of video. The rectangles in

an update are usually disjoint but this is not

necessarily the case. The update protocol is demand-

driven by the client. That is, an update is only sent

from the server to the client in response to an explicit

request from the client. This gives the protocol an

adaptive quality. The slower the client and the

network are, the lower the rate of updates becomes.

With typical applications, changes to the same area of

the frame buffer tend to happen soon after one

another. With a slow client and/or network, transient

states of the framebuffer can be ignored, resulting in

less network traffic and less drawing for the client.

3.2 Input Protocol:
The input side of the protocol is based on a

standard workstation model of a keyboard and multi-

button pointing device. Input events are simply sent to

the server by the client whenever the user presses a

key or pointer button, or whenever the pointing device

is moved. These input events can also be synthesized

from other non-standard I/O devices. For example, a

pen-based handwriting recognition engine might

generate keyboard events.

3.3 Representation of pixel data:

Initial interaction between the RFB client and

server involves a negotiation of the for-mat and

encoding with which pixel data will be sent. This

negotiation has been de-signed to make the job of the

client as easy as possible. The bottom line is that the

server must always be able to supply pixel data in the

form the client wants. However if the client is able to

cope equally with several different formats or

encodings, it may choose one which is easier for the

server to produce. Pixel format refers to the

representation of individual colors by pixel values.

The most common pixel formats are 24-bit or 16-bit

“true color”, where bit-fields within the pixel value

translate directly to red, green and blue intensities and

8-bit “colour map where an arbitrary mapping can be

used to translate from pixel values to the RGB

intensities. Encoding refers to how a rectangle of pixel

data will be sent on the wire. Every rectangle of pixel

data is prefixed by a header giving the X, Y position

of the rectangle on the screen, the width and height of

the rectangle, and an encoding type which specifies

the encoding of the pixel data. The data itself then

follows using the specified en coding.

3.4 Protocol Messages:

 The RFB protocol can operate over

any reliable transport, either byte-stream or message-

based. Conventionally it is used over a TCP/IP

connection. There are three stages to the protocol.

First is the handshaking phase, the purpose of which is

to agree upon the protocol version and the type of

security to be used. The second stage is an

initialization phase where the client and server

exchange ClientInit and ServerInit messages. The final

stage is the normal protocol interaction.

3.5 Security:

Once the protocol version has been decided, the server

and client must agree on the type of security to be

used on the connection. If the server listed at least one

valid security type supported by the client, the client

sends back a single byte indicating which security

type is to be used on the connection: No. of bytes

Type [Value] Description1 U8 security-type If

number-of-security-types is zero, then for some reason

the connection failed(e.g. the server cannot support the

desired protocol version). This is followed by a string

describing the reason (where a string is specified as a

length followed by that many ASCII characters):No.

of bytes Type [Value] Description4 U32 reason-length

reason-length U8 array reason-string the server closes

the connection after sending the reason-string. The

security-type may only take the value 0, 1 or 2. A

value of 0 means that the connection has failed and is

followed by a string giving the reason, as described

above. The security types defined in this document

are: Number Name2 VNC Authentication. Other

registered security types are:

Once the security-type has been decided, data specific

to that security-type follows. At the end of the security

handshaking phase, the protocol normally continues

with the Security Result message. Note that after the

security handshaking phase, it is possible that further

protocol details over an encrypted or otherwise altered

channel.

3.6 FramebufferUpdateRequest:

Notifies the server that the client is interested in the

area of the frame buffer specified by x-position, y-

position, width and height. The server usually

responds to a FramebufferUpdateRequestby sending a

FramebufferUpdate. Note however that a

singleFramebufferUpdate may be sent in reply to

several FramebufferUpdateRequests.The server

assumes that the client keeps a copy of all parts of the

frame buffer in which it is interested. This means that

normally the server only needs to send incremental

updates to the client. However, if for some reason the

client has lost the contents of a particular area which it

needs, then the client sends a Frame buffer Update

Request with incremental set to zero(false). This

requests that the server send the entire contents of the

specified area as soon as possible. The area will not be

updated using the CopyRect encoding. If the client has

not lost any contents of the area in which it is

interested, then it sends a FramebufferUpdateRequest

with incremental set to non-zero (true). If and when

there are changes to the specified area of the frame

buffer, the server will send aFramebufferUpdate. Note

that there may be an indefinite period between

theFramebuffer Update Request and the

FramebufferUpdate. In the case of a fast client, the

client may want to regulate the rate at which it sends

incremental FramebufferUpdateRequests to avoid

hogging the network.

B. Srinivasulu et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.1007-1011

www.ijera.com 1010 | P a g e

3.7 Extended system themes:

When it comes to the look-and-feel of the

user interface, it's important to blend in nicely. Users

are jarred by applications which contrast with the user

interface they've come to expect. When designing

your UIs, you should try and avoid rolling your own

as much as possible. Instead, use a Theme. You can

override or extend those parts of the theme that you

need to, but at least you're starting from the same UI

base as all the other applications. For all the details.

3.7.1 Design your UI to work with multiple screen

resolutions:

Different Android-powered devices will

support different screen resolutions. Some will even

be able to change resolutions on the fly, such as by

switching to landscape mode. It's important to make

sure your layouts and drawables are flexible enough to

display properly on a variety of device screens.

Fortunately, this is very easy to do. In brief, what you

must do is provide different versions of your artwork

(if you use any) for the key resolutions, and then

design your layout to accommodate various

dimensions. (For example, avoid using hard-coded

positions and instead use relative layouts.) If you do

that much, the system handles the rest, and your

application looks great on any device.

 3.7.2 Assume the network is slow:

Android devices will come with a variety of

network-connectivity options. All will have some

data-access provision, though some will be faster than

others. The lowest common denominator, however, is

GPRS, the non-3G data service for GSM networks.

Even 3G-capable devices will spend lots of time on

non-3G networks, so slow networks will remain a

reality for quite a long time to come. That's why you

should always code your applications to minimize

network accesses and bandwidth. You can't assume

the network is fast, so you should always plan for it to

be slow. If your users happen to be on faster networks,

then that's great ,their experience will only improve.

You want to avoid the inverse case though:

applications that are usable some of the time, but

frustratingly slow the rest based on where the user is

at any given moment are likely to be unpopular. One

potential gotcha here is that it's very easy to fall into

this trap if you're using the emulator, since the

emulator uses your desktop computer's network

connection. That's almost guaranteed to be much

faster than a cell network, so you'll want to change the

settings on the emulator that simulate slower network

speeds. You can do this in Eclipse, in the "Emulator

Settings" tab of your launch configuration or via a

command line option when starting the emulator.

3.7.3 Don’t assume touch screen or key board:

Android will support a variety of handset

form-factors. That's a fancy way of saying that some

Android devices will have full "QWERTY"

keyboards, while others will have 40-key, 12-key, or

even other key configurations. Similarly, some

devices will have touch-screens, but many won't.

When building your applications, keep that in mind.

Don't make assumptions about specific keyboard

layouts -- unless, of course, you're really interested in

restricting your application so that it can only be used

on those devices.

3.7.4 Do converse the device battery:
A mobile device isn't very mobile if it's

constantly plugged into the wall. Mobile devices are

battery-powered, and the longer we can make that

battery last on a charge, the happier everyone is —

especially the user. Two of the biggest consumers of

battery power are the processor, and the radio; that's

why it's important to write your applications to do as

little work as possible, and use the network as

infrequently as possible. Minimizing the amount of

processor time your application uses really comes

down to writing efficient code writing efficient code.

To minimize the power drain from using the radio, be

sure to handle error conditions gracefully, and only

fetch what you need. For example, don't constantly

retry a network operation if one failed. If it failed

once, it's likely because the user has no reception, so

it's probably going to fail again if you try right away;

all you'll do is waste battery power. Users are pretty

smart: if your program is power-hungry, you can

count on them noticing. The only thing you can be

sure of at that point is that your program won't stay

installed very long.

3.7.5 No Pan-Trackball Mouse mode is only

available in Fit to Screen scaling and is the only input

mode available then. In this mode the touch screen is

not used. Keyboard events are sent to the server and

the trackball (if the user’s device, like the G1, has a

trackball) controls the VNC mouse. The figure 2.7

shows the screenshot of no pan; trackball mode.

Fig : No pan, Trackball mouse mode

Touch Pan; Trackball Mouse drags on the touch

screen to pan the device display over the VNC

display. Keyboard events are sent to the server. The

trackball controls the VNC mouse. Pressing the

trackball sends a mouse click; holding the ball down

while rolling accomplishes a click and drag. This is

the default input mode when scaling is set to One-to-

B. Srinivasulu et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 6, Nov-Dec 2013, pp.1007-1011

www.ijera.com 1011 | P a g e

One.

DPad Pan; Touch Mouse Mode uses the directional

pad (available on some devices) to pan the display

over the VNC display. Touch the screen to send a

mouse click; touch and slide to send a mouse drag.

Use the camera button while touching the screen to

simulate a right-button click or drag.

SCREEN SHOTS

REFERENCES
[1] Md. Sanaullah Baig, Rajasekar M. and Balaji

P “Virtual Network Computing Based

Remote Desktop Access”, International

Journal of Computer Science and

Telecommunications, Vol. 3, No. 5, 2012.

[2] Margaret Butler, “Android: Changing the

Mobile Landscape”, IEEE Pervasive

Computing.

[3] Ha-Young Ko, Jae-Hyeok Lee, Jong-Ok

Kim, “Implementation and Evaluation of Fast

Mobile VNC Systems”, IEEE Transactions

on Consumer Electronics, Vol. 58, No. 4,

2012.

[4] Daniel Thommes, “RemoteUI: A High-

Performance Remote User Interface System

for Mobile Consumer Electronic Devices”,

IEEE Transactions on Consumer Electronics,

Vol. 58, No. 3, 2012.

[5] Tristan Richardson, Quentin Stafford-Fraser,

Kenneth R. Wood and Andy Hopper,

“Virtual Network Computing”, IEEE Internet

Computing.

[6] The RFB Protocol ,Tristan Richardson , Real

VNC Ltd (formerly of Olivetti Research Ltd /

AT&T Labs Cambridge) Version 3.8

BIOGRAPHY
Mrs D.Suguna Kuamari, Post Graduated in

Computer Science (M.Tech), ANU, 2010,

and Graduated in Information Technology

(B.Tech) From JNTU Hyderabad, 2006. She

is working presently as Associative Professor in

Department of Computer Science & Engineering in

St. Martin’s Engineering College, RR Dist, A.P,

INDIA. She has 5+ years Experience. Her Research

Interests Include Software Engineering, Cloud

Computing, Operating Systems and Information

Security.

Mr. B.Srinivasulu, Post Graduated in

Computer Science (M.Tech) From JNTU,

Hyd in 2010 and Graduated in Information

Technology (B.Tech) from JNTUH, in

2008. He is working as Assistant Professor in

Department of Computer Science & Engineering in

St.Martin’s Engineering College, R.R Dist, AP,

India. He has 3+ years of Teaching Experience. His

Research Interests Include Network Security & Data

Warehousing and Data Mining.

Mr. Gajula Srinivas, Post Graduated in

Computer Science (M.Tech) From JNTU,

Hyd in 2011 and Graduated in Information

Technology (B.Tech) from KAKATIYA

UNIVERSITY, Warangal, 2006. He is working as

Assistant Professor in Department of Computer

Science & Engineering in Visvesvaraya College of

Engineering & Technology, R.R Dist, AP, India. He

has 4 years of Teaching Experience. His Research

Interests Include Network Security & Data

Warehousing and Data Mining.

Mr Gudeme Jaya Rao, Post Graduated in

Computer Engineering (M.Tech) From

VTU, Karnataka 2009, and graduated in

Computer Science & Information

Technology (B.Tech)from JNTU Hyderabad, 2002.

He is working presently as Associate Professor in

Department of Computer Science & Engineering in

St.Martin’s Engineering College, RR Dist, A.P,

INDIA. He is has 9+ years Experience. His Research

Interests Include Software Engineering, Network

Security & Cloud Computing.

