RESEARCH ARTICLE

OPEN ACCESS

Solutions To The Pell Equation $x^2 - D.y^2 = 2^k$ Where $D = r^2s^2 + 2.s$ And Recurrences

Özen Özer*, Yılmaz Çeven**

*Köyceğiz Vocational High School, Muğla University, Muğla, 48800, Turkey Department of Mathematics, Faculty of Science and Arts, Süleyman Demirel University, Isparta, 32000, Turkey

Abstract

Let $r, s \ge 1$ and $k \ge 0$ be arbitrary integers and also $D = r^2 s^2 + 2.s$ be a positive non-square integer. In this paper, we consider the Pell equation $x^2 - D.y^2 = 2^k$ and we get all positive integer solutions of this equation for all $k \ge 0$ integers. Moreover, we derive recurrence relations on the solutions of the Pell equation $x^2 - D.y^2 = 2^k$.

Mathematics Subject Classification: 11A55, 11D09, 11D61, 11D99, Keywords: Continued Fraction, Quadratic Equation, Exponential Equation, Solutions of Pell Equation

I. Introduction

The equation

$$x^2 - Dy^2 = \mp N$$
 (1)

with given integers D, N and unknowns x, y is called Pell's Equation. if D is negative, it can have only a finite number of solutions. if D is a perfect square, say $D=t^2$, the equation reduces to $(x-ty)(x+ty)=\mp N$ and there is only a finite number of solutions. The most interesting case of equation arises when $D \neq 1$ be a positive non-square integer.

For N=1, the Pell equation $x^2 - Dy^2 = \mp 1$ (2)

Is known as classical Pell equation and it has infinitely many solutions (x_n, y_n) for $n \in N$. There are different methods for finding the first non-trivial (x_1, y_1) solution called the fundamental solution from which all other solutions are easily computed (see [2]-[3]).

Also, there are many papers in which details on Pell equations and different types of Pell's equation are considered (see [1]-[4]-[5]-[6]).

In this paper, in the case of $D=r^2s^2+2.s$ where $r, s \ge 1$, we consider the Pell equation

 $x^2 - D \cdot y^2 = 2^k$ when $k \ge 0$ integer and by constructing some criteria we get all positive solutions of this equation. We consider the problem in three cases:

$$(i) r = s = 1$$

(ii) $r \ge 2, s = 1$
(iii) $r, s \ge 2$

for k = 0 and $k \ge 1$ respectively. Moreover, we give nümerical examples o all new constructed theorems and also by using method of ([5]), we derive recurrences relations on the solutions of this equation.

II. Preliminary Notes

We need the following theorems for the proof of our theorems.

Theorem 2.1. If N is a quadratic non-residue modulo D, then the Pell equation $x^2 - Dy^2 = N$ has no integer solution .([5])

Theorem 2.2. Let (x_1, y_1) be a fundamental solution to the equation $x^2 - Dy^2 = +1$. Then all positive integer solutions of the equation

$$x^{2} - Dy^{2} = +1 \text{ are given by}$$

$$x_{n} + \sqrt{D} y_{n} = \left(x_{1} + \sqrt{D} y_{1}\right)^{n} \qquad (3)$$
with $n \ge 2.([3])$

Theorem 2.3. Let D be a positive integer, that is not a perfect square. Then the continued fraction expansion of \sqrt{D} such that

 $\sqrt{D} = [a_0; \overline{a_1, \dots, a_{l-1}, 2a_0}]$ where is $l(\sqrt{D}) = l$ is the period length and the a_j 's are given by the recursion formulas;

$$a_0 = \lfloor \sqrt{D} \rfloor,$$

 $a_t = \lfloor \alpha_t \rfloor$ and $\alpha_{t+1} = \frac{1}{\alpha_t - \alpha_t}, t = 0, 1, 2, ...$

Recall that $a_l = 2a_0$ and $a_t = a_{l+t}$ for $t \ge 1$. The n^{th} convergent of \sqrt{D} for $n \ge 0$ is given by

$$\frac{p_n}{q_n} = [a_0; a_1, a_2, \dots, a_n]$$
$$= a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots \frac{1}{a_{n-1} + \frac{1}{a_n}}}}}$$

By means of the
$$n^{th}$$
 convergent of \sqrt{D} ,
we can give the fundamental solution of the
 $x^2 - Dy^2 = \mp 1$. Let $p_{-1} = 1$, $p_0 = a_0$ and
 $q_{-1} = 0$, $q_0 = 1$. In general
 $p_n = a_n p_{n-1} + p_{n-2}$
 $q_n = a_n q_{n-1} + q_{n-2}$ (4)
for $n \ge 1$. Then the fundamental solution of
 $x^2 - Dy^2 = +1$ is

$$(x_{1}, y_{1}) = \begin{cases} (p_{l-1}, q_{l-1}) & ; if \ l \ is \ even \\ (p_{2l-1}, q_{2l-1}) & ; if \ l \ is \ odd \end{cases} (5)$$

([1],[2, *p*.154]).

Theorem 2.4. If (u_1, v_1) and (x_{n-1}, y_{n-1}) are integer solutions of $x^2 - Dy^2 = \mp N$ and $x^2 - Dy^2 = \pm 1$, respectively, then (u_n, v_n) is also a positive solution of $x^2 - Dy^2 = \mp N$, where $u_n + \sqrt{D}v_n = (x_{n-1} + \sqrt{D}y_{n-1})(u_1 + \sqrt{D}v_1)$ (6) for $n \ge 2$. ([4])

III. The Main Results on The Pell Equation $x^2 - D.y^2 = 2^k$

By using recurrence on infinite sequence of positive solutions of the Pell equation $x^2 - D.y^2 = 2^k$ where $D = r^2 s^2 + 2.s$ with $r, s \ge 1$ integers and $k \ge 0$ is also an integer. First we consider the case k = 0, that is the classical Pell equation $x^2 - (r^2s^2 + 2s)y^2 = 1$. Then, we can give following theorem.

Theorem 3.1. Let $D=r^2s^2+2.s$ with $r,s\geq 1$ integers. Then the following conditions satisfy: (a) The continued fraction expansion of

(a) The continued fraction expansion of \sqrt{D} is;

$$\sqrt{D} = \begin{cases} \begin{bmatrix} 1; \overline{1, 2} \end{bmatrix} & ; if \quad r = s = 1 \\ \begin{bmatrix} r; \overline{r, 2r} \end{bmatrix} & ; if \quad r \ge 2, \ s = 1 \\ \begin{bmatrix} rs; \overline{r, 2rs} \end{bmatrix} & ; if \quad r \ge 2, \ s \ge 2 \end{cases}$$

(b) The fundamental solution of $x^2 - Dy^2 = 1$ is;

$$(x_1, y_1) = \begin{cases} (2,1) & ; if \quad r = s = 1 \\ (r^2 + 1, r) & ; if \quad r \ge 2, \ s = 1 \\ (r^2 s + 1, r) & ; if \quad r \ge 2, \ s \ge 2 \end{cases}$$

(**c**) For $n \ge 4$,

$$(x_n) = \begin{cases} (3(x_{n-1} + x_{n-2}) - x_{n-3}) & ; if \quad r = s = 1 \\ ((2r^2 + 1)(x_{n-1} + x_{n-2}) - x_{n-3}) & ; if \quad r \ge 2, \ s = 1 \\ ((2r^2 s + 1)(x_{n-1} + x_{n-2}) - x_{n-3}) & ; if \quad r \ge 2, \ s \ge 2 \end{cases}$$

and

$$(y_n) = \begin{cases} (3(y_{n-1} + y_{n-2}) - y_{n-3}) & ;if \quad r = s = 1 \\ ((2r^2 + 1)(y_{n-1} + y_{n-2}) - y_{n-3}) & ;if \quad r \ge 2, \ s = 1 \\ ((2r^2s + 1)(y_{n-1} + y_{n-2}) - y_{n-3}) & ;if \quad r \ge 2, \ s \ge 2 \end{cases}$$

Proof: (a) Assume that r = s = 1, by Theorem 2.3., it is easily seen that the continued fraction $\sqrt{3}$ is $\sqrt{3} = [1; \overline{1, 2}]$.

Now, let $r \ge 2$, s = 1. Then

$$\begin{split} \sqrt{r^{2}+2} &= r + \left(\sqrt{r^{2}+2} - r\right) \\ &= r + \frac{1}{\frac{1}{\sqrt{r^{2}+2} - r}} = r + \frac{1}{\frac{\sqrt{r^{2}+2} + r}{2}} \\ &= r + \frac{1}{r + \frac{\sqrt{r^{2}+2} - r}{2}} \\ &= r + \frac{1}{r + \frac{1}{\frac{2}{\sqrt{r^{2}+2} - r}}} = r + \frac{1}{r + \frac{1}{\sqrt{r^{2}+2} + r}} \\ &= r + \frac{1}{r + \frac{1}{\sqrt{r^{2}+2} + r}} \\ &= r + \frac{1}{r + \frac{1}{\sqrt{r^{2}+2} + r}} \\ &= r + \frac{1}{r + \frac{1}{\sqrt{r^{2}+2} - r}} \end{split}$$

Similarly, it can be shown that

$$\sqrt{D} = \sqrt{r^2 s + 2s} = \left[rs; \overline{r, 2rs}\right]$$
 for $r, s \ge 2$.

(**b**) Since $(x_1, y_1) = (2, 1)$ is a fundamental solution of $x^2 - 3y^2 = 1$, the case of

r=s=1 is clear. Also, for $r\geq 2$, s=1 by using the method defined in Theorem 2.3., we get l=2,

 $a_0 = r a_1 = r$. Hence, $(x_1, y_1) = (p_1, q_1) = (r^2 + 1, r)$ is the fundamental solution since $p_{-1} = 1 p_0 = a_0 = r$, $q_{-1} = 0$,

$$q_0 = 1$$
 and $p_1 = a_0 p_0 + p_{-1} = r^2 + 1$
 $q_1 = a_0 q_0 + q_{-1} = r$
and (5).

Finally, we assume that $r, s \ge 2$, by using the method defined in Theorem 2.3., we get l=2,

 $a_0 = rs a_1 = r$. Hence, $(x_1, y_1) = (p_1, q_1) = (r^2 s + 1, r)$ is the fundamental solution since $p_{-1} = 1 p_0 = a_0 = rs$,

$$q_{-1} = 0, q_0 = 1$$
 and $p_1 = a_0 p_0 + p_{-1} = r^2 s + 1$
 $q_1 = a_0 q_0 + q_{-1} = r$
by (4) and (5).

(c) By Theorem 2.2., we can see easily that all solutions (x_n, y_n) of $x^2 - Dy^2 = +1$ can be derived from the fundamental solution (x_1, y_1) of this equation. Assume that r=s=1. In a similar way in (5) it can be shown by induction on *n* that $x_n = 3(x_{n-1} + x_{n-2}) - x_{n-3}$, $y_n = 3(y_{n-1} + y_{n-2}) - y_{n-3}$ for $n \ge 4$. Moreover, in a similar way, we get $x_n = (2r^2 + 1)(x_{n-1} + x_{n-2}) - x_{n-3}$, $y_n = (2r^2 + 1)(y_{n-1} + y_{n-2}) - y_{n-3}$ where $D = r^2 + 2$ for $n \ge 4$ and $x_n = (2r^2s + 1)(x_{n-1} + x_{n-2}) - x_{n-3}$ $y_n = (2r^2s+1)(y_{n-1}+y_{n-2})-y_{n-3}$ where $D = r^2 s^2 + 2.s$ for $n \ge 4$.

Now, we consider the general case for $k \ge 1$.Note that we denote the integer solutions of $x^{2} - (r^{2}s^{2} + 2s)y^{2} = 2^{k}$ by (u_{n}, v_{n}) and denote the integer solutions of $x^2 - (r^2s^2 + 2s)y^2 = 1$ by (x_n, y_n) . Then we have following theorem.

Theorem 3.2. Let r=s=1, that is D=3, and $k \ge 1$ be a arbitrary integer. Define a sequence $\{(u_n, v_n)\}$ of positive integers by

$$(u_1, v_1) = \begin{cases} no \ solution & ; if \ k \ is \ odd \\ \left(2^{\frac{k}{2}+1}, 2^{\frac{k}{2}}\right) & ; if \ k \ is \ even \end{cases}$$

$$(7)$$

and ,since k is even, we get

$$u_{n} = 2^{\frac{k}{2}+1} x_{n-1} + 3.2^{\frac{k}{2}} y_{n-1}$$

$$v_{n} = 2^{\frac{k}{2}} x_{n-1} + 2^{\frac{k}{2}+1} y_{n-1}$$
(8)

where $\{(x_n, y_n)\}$ is the sequence of positive solutions of $x^2 - 3 \cdot y^2 = 1$. Then the following conditions satisfy with k is even;

(a)
$$(u_n, v_n)$$
 is a solution of
 $x^2 - 3.y^2 = 2^k$ for any integer $n \ge 1$.
(b) For $n \ge 2$,
 $u_{n+1} = 2u_n + 3v_n$, $v_{n+1} = u_n + 2v_n$
(c) For $n \ge 4$,
 $u_n = 3(u_{n-1} + u_{n-2}) - u_{n-3}$,
 $v_n = 3(v_{n-1} + v_{n-2}) - v_{n-3}$

Proof: (a) Assume that k is odd. Since 2 is a quadratic non-residue mod 3, then

$$\left(\frac{2}{3}\right)^k = (-1)^k = -1$$
.By Theorem 2.1., the Pell

Equation $x^2 - 3 \cdot y^2 = 2^k$ has no integer solution. Now, let k is even. Then it easily seen that

$$(u_1, v_1) = \left(2^{\frac{k}{2}+1}, 2^{\frac{k}{2}} \right)$$
 is a solution of

$$x^2 - 3.y^2 = 2^k$$
, that is

$$u_1^2 - Dv_1^2 = \left(2^{\frac{k}{2}+1} \right)^2 - 3 \cdot \left(2^{\frac{k}{2}} \right)^2 = 2^2 2^k - 3.2^k$$

$$= 2^k$$

Also, (u_n, v_n) is a solution for $n \ge 2$. We

can prove this as follows. Recall that (x_{n-1}, y_{n-1}) is a solution of $x^2 - 3 \cdot y^2 = 1$, that is,

$$x_{n-1}^2 - 3.y_{n-1}^2 = 1 \tag{9}$$

Further, we see
$$(u_1, v_1)$$
 is a solution of
 $x^2 - 3.y^2 = 2^k$, that is,
 $u_1^2 - 3.v_1^2 = 2^k$ (10)

using (9) and (10), we find that

$$u_n^2 - 3v_n^2 = \left(2^{\frac{k}{2}+1}x_{n-1} + 3.2^{\frac{k}{2}}y_{n-1}\right)^2 - 3\left(2^{\frac{k}{2}}x_{n-1} + 2^{\frac{k}{2}+1}y_{n-1}\right)^2$$

= $x_{n-1}^2 \left(2^{k+2} - 3.2^k\right) + x_{n-1}y_{n-1} \left(3.2^{k+2} - 3.2^{k+2}\right) + y_{n-1}^2 \left(3^2.2^k - 3.2^{k+2}\right)$
= $2^k x_{n-1}^2 - 2^k 3y_{n-1}^2 = 2^k \left(x_{n-1}^2 - 3y_{n-1}^2\right) = 2^k$
Therefore, (u_n, v_n) is a solution of $x^2 - 3.y^2 = 2^k$
for even k integers

(**b**) By Theorem 2.2. and Tehorem 2.4., we get $u_{n+1} + \sqrt{D} v_{n+1} = \left(x_n + \sqrt{D} y_n\right) \left(u_1 + \sqrt{D} v_1\right)$ $= \left(x_1 + \sqrt{D} y_1\right)^n \left(u_1 + v_1 \sqrt{D}\right)$

$$= \left(x_1 + \sqrt{D}y_1\right) \left(u_n + \sqrt{D}v_n\right)$$

Since $(x_1, y_1) = (2, 1)$ is a fundamental solution of the Pell equation $x^2 - 3 \cdot y^2 = 1$, we get that

$$u_{n+1} = 2u_n + 3v_n$$
, $v_{n+1} = u_n + 2v_n$

for $n \ge 2$.

(\boldsymbol{c}) We see as above that

$$u_n = 2^{\frac{k}{2}+1} x_{n-1} + 3.2^{\frac{k}{2}} y_{n-1}$$
, $v_n = 2^{\frac{k}{2}} x_{n-1} + 2^{\frac{k}{2}+1} y_{n-1}$

also $u_{n+1} = 2u_n + 3v_n$. In a similar way in ([5]), by induction on *n* and combining these two results, it can be shown that

$$u_n = 3(u_{n-1} + u_{n-2}) - u_{n-3}$$

for $n \ge 4$.

Similarly, combining (8) and

$$v_{n+1} = u_n + 2v_n$$
 results, we get
 $v_n = 3(v_{n-1} + v_{n-2}) - v_{n-3}$ for $n \ge 4$

Example: Let r=s=1 and k=4. Then, by Theorem 3.2., $(u_1, v_1)=(8, 4)$ is a solution of $x^2 - 3.y^2 = 2^4 = 16$, and some other solutions are; $(u_2, v_2)=(28, 16)$, $(u_3, v_3)=(104, 60)$, $(u_4, v_4)=(388, 224)$ $(u_5, v_5)=(1448, 836)$, $(u_6, v_6)=(5404, 3120)$

Remark: Note that in Theorem 3.3. and Theorem 3.4., we will consider the case k is even . When we consider the case k is odd, then we find that there is a solution (u_1, v_1) of $x^2 - (r^2 + 2)y^2 = 2^k$ and $x^2 - (r^2s^2 + 2s)y^2 = 2^k$ respectively, for some values of k, or there is no solution.

For example, r=4, s=2 and k=3, we can not find solution of the Pell equation $x^2-68y^2=2^3=8$. But for k=5, we find that $(u_1, v_1)=(10, 1)$ is a solution of $x^2-68y^2=2^5=32$.

Moreover, for r=5, s=3 and for every odd k, there is no solution of $x^2 - 301 \cdot y^2 = 2^k$.

Also, we can see that Keith Mathews' " Some Bc Math/ PHP Nunber Theory Programs", 2013.

Theorem 3.3. Let s=1, $r \ge 2$ and k be arbitrary integers with $k \ge 1$ is even. Define a sequence $\{(u_n, v_n)\}$ of positive integers by

$$(u_1, v_1) = \left(2^{\frac{k}{2}} \cdot (r^2 + 1), 2^{\frac{k}{2}}r\right)$$
 (11)

and ,since k is even, we get

$$u_{n} = 2^{\frac{k}{2}} (r^{2} + 1) x_{n-1} + 2^{\frac{k}{2}} r (r^{2} + 2) y_{n-1}$$
(12)
$$v_{n} = 2^{\frac{k}{2}} r x_{n-1} + 2^{\frac{k}{2}} (r^{2} + 1) y_{n-1}$$

where $\{(x_n, y_n)\}$ is the sequence of positive solutions of $x^2 - (r^2 + 2)y^2 = 1$. Then the following conditions satisfy with k is even;

(**a**)
$$(u_n, v_n)$$
 is a solution of
 $x^2 - (r^2 + 2)y^2 = 2^k$ for any integer $n \ge 1$.
(**b**) For $n \ge 2$,

$$u_{n+1} = (r^2 + 1)u_n + r(r^2 + 2)v_n$$
, $v_{n+1} = r.u_n + (r^2 + 1)v_n$

$$u_{n} = (2r^{2} + 1)(u_{n-1} + u_{n-2}) - u_{n-3} ,$$

$$v_{n} = (2r^{2} + 1)(v_{n-1} + v_{n-2}) - v_{n-3}$$

Proof: (a) Assume that k is even. Then, it easily

seen that
$$(u_1, v_1) = \left(2^{\frac{k}{2}} \cdot (r^2 + 1), 2^{\frac{k}{2}} r\right)$$
 is a solution of $x^2 - (r^2 + 2)y^2 = 2^k$ since

$$u_1^2 - Dv_1^2 = \left(2^{\frac{k}{2}} \left(r^2 + 1\right)\right)^2 - \left(r^2 + 2\right) \left(2^{\frac{k}{2}} r\right)^2$$
$$= \left(r^2 + 1\right)^2 2^k - \left(r^2 + 2\right) r^2 2^k = 2^k$$

Also, (u_n, v_n) is a solution for $n \ge 2$. We can prove this as follows. Note that by definition,

 (x_{n-1}, y_{n-1}) is a solution of $x^2 - (r^2 + 2)y^2 = 1$,that is,

$$x_{n-1}^{2} - (r^{2} + 2)y_{n-1}^{2} = 1$$
(13)

Further, we see above that (u_1, v_1) is a solution of $x^{2} - (r^{2} + 2)y^{2} = 2^{k}$, that is, $u_1^2 - (r^2 + 2)v_1^2 = 2^k$ (14)

applying (13) and (14), we get

(c) For
$$n \ge 4$$
,

$$u_n^2 - (r^2 + 2)v_n^2 = \left(2^{\frac{k}{2}}(r^2 + 1)x_{n-1} + 2^{\frac{k}{2}}r(r^2 + 2)y_{n-1}\right)^2 - (r^2 + 2)\left(2^{\frac{k}{2}}rx_{n-1} + 2^{\frac{k}{2}}(r^2 + 1)y_{n-1}\right)^2$$

$$= x_{n-1}^2 \cdot \left(2^k(r^2 + 1)^2 - r^2(r^2 + 2)2^k\right) + x_{n-1}y_{n-1} \cdot \left(2^{k+1}r(r^2 + 1)(r^2 + 2)\right)(1 - 1)$$

$$- y_{n-1}^2(r^2 + 2)2^k \cdot \left(-r^2(r^2 + 2) + (r^2 + 1)^2\right)$$

$$= 2^k x_{n-1}^2 - 2^k(r^2 + 2)y_{n-1}^2$$
Since $(x_1, y_1) = (r^2 + 1, r)$ is a fundamental solution
of the Pell equation $x^2 - (r^2 + 2)y^2 = 1$, we find
that
Therefore, (u_n, v_n) is a solution of
 $(x_1 - x_1) = (x_1 -$

$$x^2 - (r^2 + 2)y^2 = 2^k$$
 for even k integers

$$u_{n+1} = (r^2 + 1)u_n + r(r^2 + 2)v_n \quad , \quad v_{n+1} = r \cdot u_n + (r^2 + 1)v_n$$

for $n \ge 2$.

(**b**) By Theorem 2.2. and Tehorem 2.4., we get

$$u_{n+1} + \sqrt{D} v_{n+1} = \left(x_n + \sqrt{D} y_n\right) \left(u_1 + \sqrt{D} v_1\right)$$

$$= \left(x_1 + \sqrt{D} y_1\right)^n \left(u_1 + v_1 \sqrt{D}\right)$$

$$= \left(x_1 + \sqrt{D} y_1\right) \left(u_n + \sqrt{D} v_n\right)$$

(c) Recall that

$$u_n = 2^{\frac{k}{2}} (r^2 + 1) x_{n-1} + 2^{\frac{k}{2}} r (r^2 + 2) y_{n-1}$$
, $v_n = 2^{\frac{k}{2}} r x_{n-1} + 2^{\frac{k}{2}} (r^2 + 1) y_{n-1}$

by (12), also $u_{n+1} = (r^2 + 1)u_n + r(r^2 + 2)v_n$.

In a similar way in ([5]), by induction on n and combining these two results, it can be shown that $(2^{2} + 1)^{n}$

$$u_n = (2r^2 + 1)(u_{n-1} + u_{n-2}) - u_{n-3}$$

for $n \ge 4$.

Similarly, combining (12) and $v_{n+1} = r \cdot u_n + (r^2 + 1)v_n$ results, we get $v_n = (2r^2 + 1)(v_{n-1} + v_{n-2}) - v_{n-3}$ for $n \ge 4$.

Example: Let r=3, s=1 and let k=2. Then, we get D=11 and $x^2-11y^2=4$. By Theorem 3.3., $(u_1,v_1)=(20,6)$ is a solution of $x^2-11y^2=4$, and some other solutions are;

$$(u_2, v_2) = (398, 120)$$
,
 $(u_3, v_3) = (7940, 2394)$,
 $(u_4, v_4) = (158402, 47760)$,
 $(u_5, v_5) = (3160100, 952806)$

$$u_{n+1} = (r^2 s + 1)u_n + r(r^2 s^2 + 2s)v_n$$

(c) For $n \ge 4$,

$$u_{n} = (2r^{2}s+1)(u_{n-1}+u_{n-2})-u_{n-3},$$

$$v_{n} = (2r^{2}s+1)(v_{n-1}+v_{n-2})-v_{n-3}$$

Proof : (**a**) Assume that *k* is even. Then, it easily

 $u_{1}^{2} - Dv_{1}^{2} = \left(2^{\frac{k}{2}} \left(r^{2} s + 1\right)\right)^{2} - \left(r^{2} s^{2} + 2s\right) \left(2^{\frac{k}{2}} r\right)^{2}$

seen that $(u_1, v_1) = \left(2^{\frac{\kappa}{2}} \cdot (r^2 s + 1), 2^{\frac{\kappa}{2}} r \right)$ is a

solution of $x^2 - (r^2s^2 + 2s)y^2 = 2^k$ since

Theorem 3.4. Let $r, s \ge 2$ and k be arbitrary integers with $k \ge 1$ is even. Define a sequence

 $\{(u_n, v_n)\}$ of positive integers by

$$(u_1, v_1) = \left(2^{\frac{k}{2}} \cdot (r^2 s + 1), 2^{\frac{k}{2}} r\right)$$
 (15)

and ,since k is even, we get

$$u_{n} = 2^{\frac{k}{2}} (r^{2}s+1) x_{n-1} + 2^{\frac{k}{2}} r (r^{2}s^{2}+2s) y_{n-1}$$
$$v_{n} = 2^{\frac{k}{2}} r x_{n-1} + 2^{\frac{k}{2}} (r^{2}s+1) y_{n-1}$$
(16)

where $\{(x_n, y_n)\}$ is the sequence of positive solutions of $x^2 - (r^2s^2 + 2s)y^2 = 1$. Then the following conditions hold;

(**a**)
$$(u_n, v_n)$$
 is a solution of
 $x^2 - (r^2 s^2 + 2s) y^2 = 2^k$ for any integer $n \ge 1$.
(**b**) For $n \ge 2$,

,
$$v_{n+1} = r.u_n + (r^2s+1)v_n$$

Also, (u_n, v_n) is a solution for $n \ge 2$. We
can prove this as follows. Recall that (x_{n-1}, y_{n-1}) is
a solution of $x^2 - (r^2s^2 + 2s)y^2 = 1$, that is,
 $x_{n-1}^2 - (r^2s^2 + 2s)y_{n-1}^2 = 1$ (17)
Further, we see above that (u_1, v_1) is a

solution of $x^2 - (r^2 s^2 + 2s)y^2 = 2^k$, that is, $u_1^2 - (r^2 s^2 + 2s)v_1^2 = 2^k$ (18) applying (17) and (18), we get

$$= (r^{2}s+1)^{2} 2^{k} - (r^{2}s^{2}+2s)r^{2} 2^{k} = 2^{k}$$

$$u_{n}^{2} - (r^{2}s^{2}+2s)v_{n}^{2} = \left(2^{\frac{k}{2}}(r^{2}s+1)x_{n-1} + 2^{\frac{k}{2}}r(r^{2}s^{2}+2s)y_{n-1}\right)^{2} - (r^{2}s^{2}+2s)\left(2^{\frac{k}{2}}rx_{n-1} + 2^{\frac{k}{2}}(r^{2}s+1)y_{n-1}\right)^{2}$$

$$= x_{n-1}^{2} \cdot \left(2^{k}(r^{2}s+1)^{2} - r^{2}(r^{2}s^{2}+2s)2^{k}\right) + x_{n-1}y_{n-1} \cdot \left(2^{k+1}r(r^{2}s+1)(r^{2}s^{2}+2s)\right)(1-1)$$

$$- y_{n-1}^{2}(r^{2}s^{2}+2s)2^{k} \cdot \left(-r^{2}(r^{2}s^{2}+2s) + (r^{2}s+1)^{2}\right)$$

$$= 2^{k}x_{n-1}^{2} - 2^{k}(r^{2}s^{2}+2s)y_{n-1}^{2} \qquad \text{Hence, } (u_{n},v_{n}) \text{ is a solution of}$$

$$= 2^{k}\left(x_{n-1}^{2} - (r^{2}s^{2}+2s)y_{n-1}^{2}\right) = 2^{k} \qquad x^{2} - (r^{2}s^{2}+2s)y^{2} = 2^{k} \text{ for even } k \text{ integers.}$$

www.ijera.com

(**b**) By Theorem 2.2. and Tehorem 2.4., we get

$$u_{n+1} + \sqrt{D} v_{n+1} = (x_n + \sqrt{D} y_n)(u_1 + \sqrt{D} v_1)$$

$$= (x_1 + \sqrt{D} y_1)^n (u_1 + v_1 \sqrt{D})$$

$$= (x_1 + \sqrt{D} y_1)^n (u_1 + v_1 \sqrt{D})$$
Since $(x_1, y_1) = (r^2 s + 1, r)$ is a fundamental solution of the Pell equation

$$x^2 - (r^2 s^2 + 2s)y^2 = 1$$
, we find that

$$= (x_1 + \sqrt{D} y_1)(u_n + \sqrt{D} v_n)$$

$$u_{n+1} = (r^2 s + 1)u_n + r(r^2 s^2 + 2s)v_n$$
, $v_{n+1} = r \cdot u_n + (r^2 s + 1)v_n$

for $n \ge 2$.

(${\bf c}$) Recall that

$$u_{n} = 2^{\frac{k}{2}} (r^{2}s+1) x_{n-1} + 2^{\frac{k}{2}} r (r^{2}s^{2}+2s) y_{n-1} , \quad v_{n} = 2^{\frac{k}{2}} r x_{n-1} + 2^{\frac{k}{2}} (r^{2}s+1) y_{n-1}$$
, also
$$u_{n+1} = (r^{2}s+1) u_{n} + r (r^{2}s^{2}+2s) v_{n} , \quad v_{n+1} = r u_{n} + (r^{2}s+1) v_{n}$$

by (16), also

Combining these results as ([5]), we find by induction on *n* that $u_n = (2r^2s+1)(u_{n-1}+u_{n-2})-u_{n-3},$ $v_n = (2r^2s+1)(v_{n-1}+v_{n-2})-v_{n-3}$

for
$$n \ge 4$$

Example: Let r=3, s=2 and let k=6. Then, we get D=40 and $x^2 - 40y^2 = 64$. By Theorem 3.4., $(u_1, v_1) = (152, 24)$ is a solution of $x^2 - 40y^2 = 64$, and some other solutions are; $(u_2, v_2) = (5768, 912)$, $(u_3, v_3) = (219032, 34632)$, $(u_4, v_4) = (8317448, 1315104)$, $(u_5, v_5) = (315843992, 49939320)$

IV. Acknowledgement

The research was supported by a grant from the coordination of scientific research projects with project number: 3466-D1-13 of Süleyman Demirel University in 2013.

References

- Baltus.C., Continued Fractions and the Pell Equations: The work of Euler and Lagrange, Comm.Anal. Theory Continued Fractions, 3, 1994, 4 – 31.
- [2] Koblitz, N., A Course in Number Theory and Crytography Graduate Texts in Mathematics, Second Edition, Springer, 1994
- [3] Leveque, J.W., Topics in Number Theory, Vol.1 and 2, Dover Publications, 2002.
- [4] Nagell, T., Introduction to Number Theory, Chelsea Publishing Company, New York, 2001.
- [5] Özer, Ö., Disproof the Conjecture Related to Pell Equation $x^2 - Dy^2 = 2$, Advances in Theoretical and Applied Mathematics, Vol. 7, No.2, 2012, 197-207
- [6] Wright, M., Solving Pell Equations, Undergrad Honors Project, 2006, 1-38.