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ABSTRACT       
Bifurcation analysis of a triply diffusive couple stress fluid is investigated in terms of a simplified model 

consisting of seven nonlinear ordinary differential equations which reproduces results obtained by modified 

perturbation theory, to second order, for the full two-dimensional problem and also the linear stability analysis 

results are identical with those for the full problem. Condition for the occurrence of direct and Hopf bifurcations 

is obtained. Modified perturbation technique is used to analyze the stability of bifurcating equilibrium solution. 

It is found that subcritical bifurcation is possible depending on the choices of parametric values. The transient 

behavior of the Nusselt numbers is investigated by solving nonlinear autonomous ordinary differential equations 

using Runge-Kutta-Gill method. 
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I. Introduction 
Many fluid dynamical systems occurring in 

nature and industrial applications involve three or 

more stratifying agencies having different molecular 

diffusivities. More complicated systems can be found 

in magmas and molten metals (Jakeman and Hurle 

[1]). This has prompted researchers to study 

convective instability in triple diffusive fluid systems 

both theoretically and experimentally (Griffiths [2], 

Turner [3], Pearlstein et al. [4], Terrones and 

Pearlstein [5], Moroz [6], Lopez et al. [7]). The 

possibilities of existing of some interesting situations 

which were not observed either in singly or doubly 

diffusive systems have been reported. The effects of 

cross-diffusion on the onset of convective instability 

in a horizontally unbounded triply cross-diffusive 

fluid layer have been investigated by Terrones [8]. 

Straughan and Walker [9] have analyzed various 

aspects of penetrative convection in a triply diffusive 

fluid layer, while multicomponent convection – 

diffusion with internal heating or cooling in a fluid 

layer has been considered by Straughan and Tracey 

[10].   

The previous studies on triple diffusive 

convection are dealt with only Newtonian fluid 

theory. As propounded earlier, many fluid dynamical 

systems such as molten polymers, salt solutions, 

slurries, geothermally heated lakes, magmas and their 

laboratory models, synthesis of chemical compounds 

usually involve more than two diffusing components 

and can be well characterized by couple stress fluid 

theory rather than Newtonian theory. The couple-

stress fluid theory represents the simplest 

generalization of the classical viscous fluid theory 

that allows for polar effects and whose microstructure 

is mechanically significant in fluids. For such a 

special kind of non-Newtonian fluids, the constitutive 

equations are given by Stokes [11] which allows the 

sustenance of couple stresses in addition to usual 

stresses. This fluid theory shows all the important 

features and effects of couple stresses and results in 

equations that are similar to Navier-Stokes equations. 

Recently, Shivakumara and Naveen Kumar [12] have 

investigated the effect of couple stresses on linear 

and weakly nonlinear stability of a triply diffusive 

fluid layer. 

Nonetheless, a different approach is followed in 

the present paper to analyze bifurcation in a triply 

diffusive couple stress fluid systems.  Instead of 

grappling with the full problem a simplified extended 

Lorenz model which reproduces qualitative features 

of the full system with remarkable fidelity is 

considered. This model problem, consisting of seven 

coupled nonlinear autonomous ordinary differential 

equations, are solved with sufficient accuracy by a 

combination of analytical and numerical techniques. 

Heat and mass transfer are calculated in terms of 

Nusselt numbers.  

 

II. Mathematical Formulation 
We consider an incompressible horizontal couple 

stress fluid layer of thickness d  in which the density 

depends on three stratifying agencies namely, 

temperature T   and solute concentrations 
1C  and 

2C  

having different diffusivities. The density is assumed 

constant everywhere except in the body force and the 

off-diagonal contributions to the fluxes of the 

stratifying agencies are neglected. A Cartesian 

coordinate system (x, y, z) is used with the origin at 

the bottom of the fluid layer and the z-axis vertically 

upward. The gravity is acting vertically downwards 

with the constant acceleration, ˆg gk 
r

 where k̂  is 

the unit vector in the vertical direction. The lower 
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boundary 0z   of the fluid layer is maintained at 

higher temperature 0T T  and higher solute 

concentration 0i iC C  (i =1, 2), while the upper 

boundary z d  is maintained at temperature 0T  and 

solute concentration 0iC (i =1,2). Following 

Shivakumara and Naveen Kumar [12], the governing 

equations in dimensionless form can then be shown 

to be: 
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                where ( , , )x z t is a two-dimensional stream 

function, 
3 /t tt TR gd     is the thermal 

Rayleigh number, 1
3

1 1 / ts c CR gd    and 

2
3

2 2 / ts c CR gd    are the solute Rayleigh 

numbers, 
2/c c d   is the couple stress 

parameter, / tPr    is the Prandtl number, 

11 /c t    and 22 /c t    are the ratios of 

diffusivities, 2 2 2 2 2/ /x z       is the 

Laplacian operator and  ,J     stands for the 

Jacobian with respect to x  and z . Here, c is the 

couple stress viscosity,   is the dynamic viscosity,  

  is the kinematic viscosity, t  is the thermal 

diffusivity, 1c  and 2c  are the solute analogs of 

t , t  is the thermal volume expansion coefficient,  

1c  and 2c  are the solute analogs of t . 

The boundaries are considered to be stress-free 

and perfect conductors of heat and solute 

concentrations. Accordingly, the boundary conditions 

are:  

2 4

1 22 4
0T C C

z z

 


 
     
 

 at 0,1z  .     (5) 

To study the above nonlinear boundary value 

problem, a minimal amplitude motion plus the 

distortion of temperature and species concentrations 

fields is constructed (Moroz [6]) as follows:   

   
2 2 ( )
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A t

x z
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                          (6) 
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      (7)                                                                      

     1
2 2 ( ) ( )

cos sin sin 2
D t E t
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2 2 ( ) ( )
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F t G t

C x z z  
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   (9)                                                                         

where 2 2 2    and  is the horizontal wave 

number. The problem now is to determine the 

amplitudes ( )A t to ( )G t . We substitute Eqs. (6) - (9) 

into Eqs. (1) - (5) and consistently neglect all higher 

order terms to obtain the following system of 

nonlinear ordinary autonomous differential equations 

 
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where, 
2 24 /   , 

21 c    and the dot 

above a quantity denotes the derivative with respect 

to t . The above system of equations possesses an 

important symmetry that they are invariant under the 

transformation  

(A, B, C, D, E, F, G)  

                      = (A, B, C, D, E, F, G).   (17a) 

Since the divergence of the flow in a seven 

dimensional phase space 
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A B C D E F G

       
             
       
  

  

              2
1 21 1 1cPr          

  
 (17b)                                                                                                         

is always negative, the solutions are attracted to a set 

of measure zero in the phase space and this may be a 

fixed point, a limit cycle or a strange attractor. 

  

III. Bifurcations from the static solution 
Equations (10)-(16) admit the trivial solution A 

= B = C = D = E = F = G= 0 that corresponds to 

pure conduction of heat and solute concentrations 

with no fluid motion present. The linear stability 

properties of this static solution may be obtained 

from Eq. (10) upon neglecting all nonlinear terms and 

seeking the solutions of the form exp( )t , where   

is the growth rate.   

The direct bifurcation occurs at 
6

1 2

2
1 2

d s s
t

R R
R
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  
                                            (18) 
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and the Hopf bifurcation occurs at               
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provided that   
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Equations (18) and (19) coincide with those of 

Shivakumara and Naveen Kumar [12] obtained from 

the full two-dimensional equations. Moreover, when 

c = 0, Eqs. (18) and (19) coincide with those of 

Pearlstein et al. [3]. It is thus observed that the model 

equations considered gives linear stability theory 

results which are identical with those for the full 

problem. Equation (20) suggests the possibility of 

having two different real positive values of 2  at the 

same   and for each one of these frequency 

values
2( 0)   there is a corresponding real value of 

the thermal Rayleigh number on the Hopf bifurcation 

curve. From the Descartes’ rule of signs, in order for 

Eq.(20) to have two positive roots, it is necessary 

that, 2 0  and 3 0   which is equivalent to 

satisfying one of the conditions 2 1 1   or 

2 1 1   . Thus Hopf bifurcation is possible even if 

the diffusivity ratios are greater than unity; a result of 

contrast compared to double diffusive systems. 

  

IV. Subcritical/Supercritical bifurcation 
The results presented in the previous section do 

not give any information about the stability of 

bifurcating finite amplitude solution. In this section, 

we discuss this aspect. The system is not amenable 

for analytical treatment, in general and has to be 

solved numerically. However, for a steady case 

Eqs.(10)-(16) can be solved in the closed form and 

such a study is useful because it predicts the 

possibility of the occurrence of subcritical instability. 

Equations (10)-(16) admit a non-trivial steady 

solution of the form  
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and A  satisfies the equation 
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This solution does not depend on the Prandtl number. 

Equation (23) is cubic in 2A  and given by 
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Since we are dealing with weakly nonlinear stability 

analysis, the amplitudes are assumed to be small. 

Accordingly, we can expand tR  in powers of 2A  

( 2 1A  ) in the form  

 
2

2 .........d d
t t tR R R A                                        (24) 

Substituting Eq.(24) into Eq.(23), and collecting the 

coefficients of different powers of 2A , we observe 

that at zeroth order in 2A  the linearly stability 

analysis result is retrieved and at first order in 2A  it 

is found that  
2 2 6
1 2

2 1 23 3 2
1 2

( 1) ( 1)d
t s sR R R
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  

 
   .             (25)    

This is the first non-trivial finite amplitude Rayleigh 

number and coincides with the one obtained from the 

full problem. The finite amplitude solution is said to 

be stable (i.e., supercritical) if 2 0d
tR   and unstable 

(i.e., subcritical) if  2 0d

tR    when 2 0  . In the 

absence of additional diffusing components 
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(i.e., 1 20s sR R  ), we find that
2

d d

t tR R , and hence 

subcritical instability is not possible.  

 

V. Heat and Mass Transport 
         The vigor of convection can be measured in 

terms of either heat/mass flux. However, it is 

convenient to introduce normalized heat and mass 

fluxes through the Nusselt numbers. The thermal 

Nusselt number is defined as  

0

total
t

z

T
Nu

z



 


                                     (26) 

where 1totalT z T    and the angular brackets 

denote the horizontal average. Substituting for T  

from Eq.(7) then Eq.(26) gives 
2
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2
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1
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A
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A
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                                  (27) 

Similarly, the solute Nusselt numbers are defined and 

are given by  
2

1 2 2
1

2
1 2 1s

A
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
                       (28) 

2

2 2 2
2

2
1 2 1s

A
Nu G

A 
   


                       (29)                                                                                              

In the absence of convection (i.e., 0A ), the 

heat/mass transfer is only by conduction and in that 

case 1 21t s sNu Nu Nu   . 

 

VI. Results and Discussion 
The effect of couple stresses on two-dimensional 

triple diffusive convection is analyzed by 

constructing a system of autonomous nonlinear 

ordinary differential equations. Condition for the 

occurrence of direct, Hopf and finite amplitude 

bifurcations is obtained. The critical value of 
d
tR  and 

H
tR  computed numerically with respect to the wave 

number is denoted respectively by 
d
tcR and

H
tcR . The 

critical value of finite amplitude Rayleigh number 
f

tR is computed by finding the double minimum with 

respect to the amplitude A  as well as  from Eq. 

(22) and is denoted by
f

tcR .   

 

           To know the occurrence of subcritical 

bifurcation, the critical Rayleigh numbers ,d H
tc tcR R   

and 
f

tcR obtained as a function of 2sR  for different 

values of c  are compared in Figs. 1(a) and (b) for 

1 1000sR   (i.e., the component is destabilizing) 

and 1000 (i.e., the component is stabilizing), 

respectively. The results presented here are 

for 10.2Pr  , 1 0.22   and 2 0.21  . From the 

figures it is observed that increasing 2sR  and c  is 

to increase the Rayleigh numbers and thus their effect 

is to delay the onset of triple diffusive convection. 

Also, Hopf bifurcation occurs when 2sR  exceeds a 

threshold value which is higher when 1 1000sR    

for a fixed value of c , and also the threshold value 

increases with increasing c . Although the onset of 

convection is via Hopf bifurcation according to the 

linear theory, subcritical bifurcation is found to be 

possible at values of Rayleigh number lower than 

those of 
H
tcR  once  2sR  exceeds certain value. It is 

further noted that the value of 2sR  increases with 

increasing c  and also when 1 1000sR   . Thus for 

certain choices of physical parameters, 

f
tcR <

H
tcR <

d
tcR  indicating the possibility of occurring 

subcritical bifurcation. 
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 Fig. 1 Variation of , and
fd HR R Rtc tc tc  with  2Rs  for 

(a) 1 1000sR   ,(b) 1 1000sR  when 10.2Pr  , 

1 0.22   and 2 0.21  . 
 

          The autonomous nonlinear system of 

differential equations is solved numerically using the 

Runge-Kutta-Gill method with appropriate initial 

conditions for different values of the governing 
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parameters and the transient behavior of Nusselt 

numbers is demonstrated in Figs.2 (a, b, c) for 

10.2Pr  , 1 1000sR  , 2 1000sR   , 1 0.22  , 

2 0.21   and for two values of 0.5c 
 
and 1.0. 

The Nusselt number oscillates initially and reaches a 

steady state value with further increase in time. The 

effect of increasing couple stress parameter is to 

suppress oscillations and to reduce the rate of heat 

and mass transfer. Thus the presence of couple stress 

is to inhibit the onset of convection. From the figures 

it is also evident that the solute Nusselt numbers 

oscillate with time more than the thermal Nusselt 

number. Moreover, the value of thermal Nusselt 

number is lower compared to solute Nusselt numbers. 
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Fig. 2 Variation of (a) tNu , (b) 1sNu and (c) 2sNu  

with time for two values of c with 10.2Pr  , 

1 1000sR  , 2 1000sR   , 1 0.22   , 2 0.21  . 

 

VII. Conclusions 
The results of the foregoing study may be 

summarized as follows: 

 

(i) Hopf bifurcation is possible even if the   

        diffusivity ratios are greater than unity; a result       

        of contrast compared to doubly diffusive fluid                     

        systems. The presence of couple stress is to           

         increase the threshold value of solute Rayleigh  

         number for the existence of Hopf bifurcation. 

(ii) Subcritical bifurcation is possible for certain 

choices of parametric values. Effect of increasing 

couple stress parameter is to delay the onset of 

direct, Hopf and finite amplitude convection.  

(iii) Heat and mass transfer decrease with increasing 

couple stress parameter and increase when the 

diffusing components are destabilizing. 
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