RESEARCH ARTICLE

OPEN ACCESS

Experimental Study on the Effect of Welding Parameters and Tool Pin Profiles on Mechanical Properties of the FSW Joints

Deepak Chouhan, Surjya K Pal, Sandeep Garg

Scholar of Department of mechanical Engineering, Indian Institute of Technology Kharagpur(W.B.) Associate Professor Department of mechanical Engineering, Indian Institute of Technology Kharagpur (W.B.) Assistant Professor, Department of Mechanical Engineering, Shri Vaishnav Institute of Technology and Science, Indore(M.P.)

ABSTRACT

To optimize the tool geometry (Pin profile) and process parameters for the FSW process. In the present investigation, an attempt has been made to understand the effect of rotational speed, welding speed and there different pin profiles on the nugget zone formation in AA 6063-T4 aluminum alloy. Three different tool pin profiles (tapered cylindrical, tapered square and square) have been used to fabricate the joints at the different welding conditions and rotational speed. Tensile properties of the joints have been evaluated and correlated with the nugget zone formation. From this investigation it is found that the tapered cylindrical pin profile tool gives maximum strength as compared to other joints. Also the tensile tests are carried out to study the mechanical properties of the FSW joint.

Key Words: Friction stir welding . Pin profiles . Mechanical properties .

I. INTRODUCTION

The friction stir welding (FSW) process was developed by The Welding Institute (TWI) of Cambridge, England in 1991 [1]. This joining technique is simple, environment friendly, energy efficient, and becomes major attraction for automobile and aircraft industries. Due to the high strength of the FSW joints, it allows considerable weight savings in light weight construction compared to conventional joining technologies. In contrast to conventional joining welding process, there is no liquid state for the weld pool during FSW, the welding takes place in the solid phase below the melting point of the materials to be joined. Thus, all the problems related to the solidification of a fused material are avoided. Materials which are difficult to fusion weld like the high strength Aluminum alloys can be joined with minor loss in strength. In friction stir welding a non-consumable rotating tool with a specially profiled threaded/unthreaded pin and shoulder is rotated at a constant speed. The tool plunges into the two pieces of sheet or plate material and through frictional heat it locally plasticized the joint region. The tool then allowed to "stir" the joint surface along the joining direction. During tool plunge, the rotating tool undergoes only rotational motion at only one place till the shoulder touches the surface of the work material; this is called the dwelling period of the tool. During this stage of tool plunge it produces lateral force orthogonal to welding or joining direction. The upper surface of the weld consists of material that is dragged by the shoulder from the retreating side of the weld, and deposited on the advancing side. After the dwell period the tool

traverse along the joining direction, the forward motion of the tool produces force parallel to the direction of travel known as traverse force. After the successful weld, the tool reaches to termination phase where it is withdrawn from the workpiece [2].

Mandal et al [3] investigated the axial force during plunging of the 2024 aluminum alloy of thickness 12.5mm. It is observed that plunging is completed in 14 s, the peak load of 25 KN is observed at 5 s mark. At the end of the 14 s, the load dropped to approximately 8 KN where it remains steady.

Yong et al. [4] studied the effect of rotational speed on weld joint properties. After analyzing result, found that grains of nugget zone decreases with increase of rotational speed. % of elongation of weld joints increases with increase of rotational speed but further increase of rotational speed it decreases due to grains size.

Elangovana et al [5] studied the influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminum alloy. Tool pin profile plays major roles in deciding the weld quality. In this investigation, an attempt has been made to understand the effect of welding speed and tool pin profile on FSP zone formation in AA2219 aluminum alloy. Five different tool pin profiles (straight cylindrical, tapered cylindrical, threaded cylindrical, triangular and square) have been used to fabricate the joints at three different welding speeds. Joints have been evaluated and correlated with the FSP zone formation. From this investigation it is found that the square pin profiled tool produces mechanically sound and metallurgically defect free welds compared to other tool pin profiles.

Fujii et al [6] investigated the effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys, effect of the tool shape on the mechanical properties and microstructures of 5mm thick welded aluminum plates was investigated. The simplest shape (column without threads), the ordinary shape (column with threads) and the triangular prism shape probes were used to weld three types of aluminum alloys.

II. EXPERIMENTAL WORK

The FSW was conducted on 6063 aluminum alloy, with magnesium and silicon as the alloying elements. The specimen received in standard T4 heat treatment and with dimension 200 mm \times 100 mm \times 6 mm were welded under various processing conditions. Tool made of stainless steel SS316 have been used to fabricate the joints.

The chemical composition of workpiece material and tool material was analyzed by energy dispersive X-ray spectroscopy. The chemical composition of tool material is shown in Table 4. From the EDS analysis it is confirmed that the tool material is SS316 type. The chemical composition and mechanical properties of workpiece material are shown in Table 1 and 2 respectively. A tensile specimen of base material is also tested to check the mechanical properties of the 6063-T4 aluminum alloy. Vicker's microhardness test is also performed to check the microhardness of base material. Chemical compositions of SS316 tool and process parameters are shown in table 3 and table 4 respectively.

Table 1 Chemical compositions of work materialAA-6063-T4 aluminum alloy

Ele	Al	Т	Si	Fe	Μ	Μ	С	С	Ζ
ment		i			g	n	u	r	n
%	Remai	0.	0.	0.	0.	0.	0.	0.	0.
	nder	1	2-	35	4-	15	1	1	1
			0.		0.				
			6		95				

Table 2 Mechanical	properties	of	work	material	AA-
6063-T4 aluminum a	llov				

Properti	Ultima	Yield	%	Vicker's
es	te	strengt	Elongati	microharde
	tensile	h,	on	nss HV
	strengt	MPa		
	h,			
	MPa			
Value	124	84	11	120

Table 3 Chemical compositions of SS316 tool

 material

Eleme	Si	Р	Mn	Cr	Ni	Mo	Fe
nt							
%	2.1	0.2	8.9	16.2	0.2	0.1	72.0
	3	7	5	9	0	4	1

Table 4 Process Parameters of FSW tool

Parameters	Tool rotational speed, rpm	Welding speed, mm/min	Tool shoulder diameter (D), mm	Tool pin diameter (d), mm	Tool pin length, mm	D/d
Value	562, 647, 806	18, 23, 28	24	6	5.6	4

Dimensions of friction stir welding tool and different tool profiles (taper cylindrical tool, taper square tool and square tool) are shown in fig.1.

Fig. 1 Showing three different tool pin profiles and tool dimensions

The welded joints are sliced using band saw machine and then the configuration and size of the transverse tensile specimens were prepared with reference to American society for Testing of Materials (ASTM E8M-04) guidelines, tensile test specimen is shown in fig.2. The tensile test is carried out using a computer controlled testing machine (INSTRON 8862) at crosshead speed of 2 mm/min.

Fig.2 Tensile test specimen

III. RESULTS AND DISCUSSIONS All the joints fabricated in this investigation are analyzed at low magnification (10×) using stereo

zoom microscope (leica-S8APO) to reveal the quality

of FSP regions. The tunnel and void defects are present in almost all the FSW joints except the joints fabricated by the taper cylindrical pin profile tool at the welding condition, rotational speed of 647 rpm and welding speed of 23 mm/min and rotational speed of 806 rpm and welding speed of 18 mm/min are found to be the defect free. In the case of taper square pin profile tool the joint fabricated at the welding condition, rotational speed of 562 rpm and welding speed of 18 mm/min is found to be defect free. So it can be concluded that the shorter pin length and insufficient heat generation are the main reasons for the defects. Therefore, the reasons behind the welding defects and effect of welding parameters (rotational speed and welding speed) on weld quality is also presented in the Table 5, 6 and 7. It is also visually observed that the insufficient heat generation is due to the loss of heat in the tool and the backing plate itself.

Table 5 Effect of rotational speed, welding speed and tool pin profiles (Taper Cylindrical Pin) on weld quality of the welded joints

Rotational	Welding	FSW Tool Pin Profile(Taper Cylindrical Pin)				
speed (rpm)	speed, mm/min.	Name of the defect and location	Weld quality	Probable reasons		
562 18		void appears at the bottom portion of the weld at advancing side		Insufficient heat generation, improper material mixing		
562	23	Visible voids at the bottom portion of the weld	Visible voids at the bottom poor poor			
562	28	Tunnel in the bottom portion of the weld at the advancing side	Very poor	Insufficient heat generation, improper material flow		
647	18	Cracks appears in the bottom portion of the weld at advancing side	poor	Insufficient heat generation, improper material mixing		
647	23	Very small void in the bottom portion of the weld at the advancing side	considerable	Insufficient heat generation, improper material mixing		
647	28	Vertical Tunnel in the bottom portion of the weld at the advancing side	Very poor	Insufficient heat generation, improper material mixing		
806	18	No	good	Heat is sufficient, proper material mixing		
806	23	Tunnel in the bottom portion of the weld at the advancing side	Very poor	Insufficient heat generation, improper material mixing		
806	28	Crack appears at the middle portion of the weld at the advancing side	poor	Insufficient heat generation, improper material mixing		

Rotational	Welding	FSW Tool Pin Profile(Taper Square Pin)				
speed	speed,	Name of the defect and location	Weld quality	Probable reasons		
(rpm)	mm/min.					
				Heat input is sufficient		
562	18	No defect	good	for vertical flow of the		
				plasticized metal		
		Horizontal tunnel at the bottom		Shorter pin length,		
562	23	portion of the weld	poor	insufficient heat		
				generation		
		Horizontal tunnel at the bottom	poor	Shorter pin length,		
562	28	portion of the weld		insufficient heat		
				generation		
		Horizontal tunnel at the bottom	poor	Shorter pin length,		
647	18	portion of the weld		insufficient heat		
				generation		
		Big tunnel at the bottom portion of		Shorter pin length,		
647	23	the weld	Very poor	insufficient heat		
				generation		
		Tunnel appears at the bottom portion		Insufficient heat		
647	28	of the weld	Very poor	generation		
		Horizontal crack at the bottom	poor	Shorter pin length		
806	18	portion of the weld				
		Tunnel appears at the bottom portion		Insufficient heat		
806	23	of the weld	Very poor	generation, improper		
				material mixing		
806	28	Tunnel appears at the bottom portion		Insufficient heat		
		of the weld	poor	generation, improper		
				material mixing		

Table 6 Effect of rotational speed, welding speed and tool pin profiles (Taper Square Pin) on weld quality of the welded joint

Table 7 Effect of rotational speed	, welding speed and tool pir	n profiles (Square Pir	n) on weld quality	of the welded
joints.				

Rotational	Welding	FSW Tool Pin Profile(Square Pin)					
speed speed		Name of the defect and location	Weld quality	Probable reasons			
(rpm)	speed,	Name of the defect and location	weld quality	FIODADIe Teasons			
(ipii)	11111/11111.	Tunnal at the bottom portion of the		Insufficient heat			
560	19	runner at the odvorging side	2007				
502	10	were at the advancing side	poor	material mixing			
		Horizontal tunnal at the bottom		Shorton nin langth			
5(2)	22	nonzontal tunnel at the bottom		Shorter pin length,			
562	23	portion of the weld	poor	insufficient neat			
				generation			
		Visible void at the bottom portion		Shorter pin length,			
562	28	of the weld at advancing side	Very poor	insufficient heat			
				generation			
		Visible void at the bottom portion					
647	18	of the weld at advancing side	considerable				
		Horizontal crack appears at the		Shorter pin length			
647	23	bottom portion of the weld	Very poor	biloiter più lengui,			
017	23	bottom portion of the word	very poor				
		Vertical tunnel appear at the		Insufficient heat			
647	28	advancing side of the weld	Very poor	generation			
		, j	•				
		Horizontal crack appears at the		Shorter pin length			
806	18	bottom portion of the weld	poor				
		Visible crack at the bottom portion		Insufficient heat			
806	23	of the weld	poor	generation, improper			
				material mixing			

Deepak Chouhan et al Int. Journal of Engineering Research and Applications ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1972-1978

www.ijera.com

Fig.5 Effect of tool pin profiles and rotational speeds of friction stir welding tool on % of elongation of welded joints at (a) 18 mm/min., (b) 23 mm/min., and (c) 28 mm/min. welding speed.

IV. CONCLUSIONS

In this investigation, an attempt has been made to study the effect of tool pin profiles, rotational speed and welding speed on the formation of friction stir processing zone in AA6063 aluminum alloy. From this investigation, the following important conclusions are derived:

(i) Tool pin profiles greatly influenced the tensile properties of joints.

(ii) The tensile specimen with the tunnel defect shows the low load bearing capacity.

(v) The maximum joint efficiency is 129.16% is observed at a rotational speed of 562 rpm and welding speed of 23 mm/min in the case of tapered cylindrical tool profile.

(vi) Out of the 27 joints, the joint fabricated using tapered cylindrical pin profiled tool at a welding speed of 18 mm/min shows no defects.

(vii) The joint efficiency is found about 85.10-129.16% in all the cases.

(viii) Higher temperature is to be found on advancing side than on retreating side in all the cases.

(ix) Temperature would be around 400° C for a successful FSW process.

(x) Surface roughness (Ra) increases with the increasing welding speed.

V. SCOPE FOR FUTURE WORK

Tool geometry is very important factor for producing sound welds. Furthermore, selection of tool material is another very important issue in the FSW joints. Material transport around rotating tool is the crucial factor for the optimization of FSW parameters and tool geometry. The optimization of FSW parameters and tool geometry will be beneficial to increase the productivity and weld quality. New experimental techniques are needed to understand the material flow.

VI. ACKNOWLEDGEMENT

Authors would like to thank Steel Technology Centre and department of mechanical engineering of IIT Kharagpur for providing resources and infrastructure for carrying out experiments and various tests.

REFERENCES

- W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, C.J. Dawes, G.B. (1991) Patent Application No.91259788.
- [2] R.S. Mishra, Z.Y. Ma (2005) Friction stir welding and processing. Material Science and Engineering 50:1-78.
- [3] S. Mandal, J. Rice, A.A. Elmustafa, Experimental and numerical investigation of the plunge stage friction stir welding. Material Processing Technology, 203(2008): 411-419.
- [4] Yong-Jai Kwon, Seong-Beom Shim, Dong-Hwan Park, Friction stir welding of 5052 aluminium alloy plates. Transactions of nonferrous metal society of China, 19: 23-27
- [5] K. Elangovana, V. Balasubramanianb, Influence of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium ally. Processing technology, 20(2008): 163-175.
- [6] H. Fujii, L. Cui, M. Maeda, K. Nogi, Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminium alloy. Material science and engineering, 419(2006): 25-31.
- [7] A. Arora, A. De and T. DeyRoy, Towards optimum friction stir welding tool shoulder diameter. Scripta materialia, 64(2011): 9-12.
- [8] A. Scialpi, L.A.C. De Filippis, P. Cavaliere, Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy. Material & design, 28(2007): 1124-1129.

- [9] I. Galvao, R.M. Leal, D.M. Rodrigues, A. Loureiro, Influence of tool shoulder geometry on properties of friction stir welds in thin copper sheets, Material processing technology, 213(2013): 129-135.
- [10] P. Cavalierea, A. Squillaceb, F. Panellaa, Effect of welding parameters on mechanical and microstructural properties of AA6068 joints produced by friction stir welding, Material Processing Technology, 200(2008): 364-372.