
A. Venkata Pradeep et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1480-1485

www.ijera.com 1480 | P a g e

Preserving Interflow Packet Order in Multipath Switching

Systems Using Flow-Based Slicing For Congestion Avoidence

A. Venkata Pradeep*, M. Kishore Kumar**
*(M.Tech Student, Department of Computer Science, Vivekananda Institute of Technology & Science, Housing

Board Colony, By-Pass Road, Karimnagar , AP, India)

** (Associate Professor, Department of Computer Science & Engineering, Vivekananda Institute of Technology

& Science, Housing Board Colony, By-Pass Road, Karimnagar , AP, India)

ABSTRACT
Congestion avoidance is an important traffic engineering task, which can be performed by making use of load-

balancing technique when a link is over loaded or failure of link occur in Multi-Path Switching Systems .

Multipath Switching Systems are capable of transferring high rate data in networks. As preserving the inter flow

packet orders while avoiding congestion is a major issue in consideration and previous packet based solutions

require packet reordering which cause delay penalties. In this paper we use a flow-based slicing scheme which

slits each flow in to slices at every inter- flow interval larger than the slicing threshold and balances the load to a

finer granularity. We depict that flow-based slicing achieves inter flow packet ordering with little network cost

while minimizing the packet out of order probability to negligible level comparatively less than 10-6.

Keywords - Congestion Avoidence, Flow-Based Slicing(FBS), Interflow Packet Ordering, Multipath Switching

Systems(MPS),

I. INTRODUCTION
Congestion avoidance is an important traffic

engineering task. Our specific aim is to minimize the

maximum load in Multipath Switching System which

play vital role in fabricating the state-of- art high

performance core routers while preserving the

interflow packet orders, that is the packets in the same

flow should depart as that of their arrival orders at

multipath switching systems along with uniform load

sharing to avoid congestion and with low complexity.

Load balancing is defined as the allocation of

the work of a single application to processors at

runtime so that the execution time of the application is
minimized. The optimal load balancing policy is

developed and extended to develop a distributed load-

balancing policy that can dynamically reallocate

incoming external loads at each node.

The two proposed approaches in considerably

improving load balancing and extending network

lifetime

 Load balancing in two-node distributed system.

 Load balancing using Regeneration Theory.

In packet-based solutions, the traffic is

dispatched packet by packet to optimally to avoid
congestion problem. However, in this packets in the

same flow may be forwarded in the separate paths and

experience various delays, thus violating the intra-

flow packet ordering requirement. Although

timestamp or sequence based re-sequencers can be

added to restore packet orders, they are often shown to

be costly and not scalable. By timestamp based re-

sequencer, each packet is slowed down statically (or

adaptively) by the system delay upper bound, which

will impose a huge delay penalty. On the other hand,

the sequence based re-sequencer will need to maintain

at least N re-sequencers at each output, leading to
O(N2) complexity. To avoid the packet out-of-order,

another choice is to use flow-based traffic-balancing

algorithms.

Here it dispatches packets in the same flow

to a fixed switching path by hashing its 5-tuple to path

ID.

However, hashing solution will lead to severe

load-imbalance. In this paper, we present a new

scheme, namely Flow-Based Slicing that perfectly

achieves the three objectives defined above. Here the

intra-flow packet intervals are often; say in 40-50
percentages, larger than the delay upper bound at MPS

which is calculated statistically. As such, if we cut off

each flow at every packet interval larger than a flow-

cut threshold equaling to this bound and balance the

load on the generated flow-based slices, the three

objectives are met triply:

1. The traffic-balancing uniformity of is only

moderately degraded from the optimal traffic-

balancing.

2. The intra-flow packet order is kept intact as their

arrivals. Exceptions only happen in a negligible level
(10-6).

3. The flow-based slices table size to implement FBS

only requires 1.8MB under 40Gbps line rate, which

can be placed on- chip to provide an ultra-fast access

speed.

RESEARCH ARTICLE OPEN ACCESS

A. Venkata Pradeep et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1480-1485

www.ijera.com 1481 | P a g e

II. LITERATURE SURVEY
The most important step in software

development process is Literature survey.

Determining the time factor, economy and company
strength is necessary prior developing the tool. Once

these things are satisfied, then next steps is to

determine which operating system and language can

be used for developing the tool. Once the

programmers start building the tool the programmers

need lot of external support. This support can be

obtained from senior programmers, from book or from

websites. Before building the system the above

consideration are taken into account for developing

the proposed system.

Flow-Based Slicing

A flow-based slicing is nothing but

sequence of packets in a flow, where every intra flow

interval between two consecutive packets is greater

than or equal to a slicing threshold Ф. Flow-based

slices can be seen as mini flows created by cutting off

every intra flow interval larger than Ф. Flow-based

slicing scheme can be described as follows. The flow-

based slicing scheme is applied to all the nodes other

than the source node. When the source node receives

the data it first identifies all the possible paths to reach

the destination. Out of all the possible paths identified
it only identifies such path which does not have shared

link. Depending on the number of paths without

shared link the data at the source will be divided and

sent across those selected paths. Once each node

receives the data it slices the data. The data sliced

depends upon the bandwidth of the node and the

slicing threshold value. At each node, the sliced data

is kept within itself and the remaining data is sent to

its neighbor. The same process is repeated until the

data is reached to the destination. At the destination

only some part of the data is reached. The remaining
data which is present at each node as a result of slicing

will reach the destination through buffering concept.

The advantages of flow slice are:

Fig 2.1 General Design of Flow-Based Slice Concept

1. It is immune to packet loss, while other solutions

like the VIQ re sequencer require additional loss

detection mechanisms.

2. It maintains a hash table to record active flow-slice

context, a redirection mechanism can be added to

provide robustness to system failure. When some

switching path stops working, the load balancer can

simply redirect all the active flow slices going to this

path at their next packet arrivals, still by FS.

3. It natively supports multicast. Multicast flows are

treated in the same manner as uni-cast flows and still

preserve packet orders.
4. N-FS supports load balancing across uneven

switching paths by applying weighted round robin.

Features of Flow-Based Slicing

 Small average packet size.

Both the average packet count (FC) and the

average size (FS) of FBS are much smaller than those

of the original flow.

 Light-tailed size distribution.

FBS packet count/size distributions are light

tailed while it is well-known that original flow-size
distribution is heavy tailed.

 Fewer active flow-slices

The active FBS number is 1-2 magnitudes

smaller than that of active flow.

Objectives of Multipath Switching System

One among the major open issues in MPS is

preserving the interflow packet order as how to

distribute incoming traffic A(t) across its k internal

switching paths {Tl}(l Є [1,k]) to meet at least three

objectives simultaneously:

 Uniform load sharing.
 Intraflow packet ordering.

 Low timing and hardware complexity.

1. Uniform load sharing

Traffic dispatched to each path should be

uniform. Specifically in MPS, traffic destined for each

output should be spread evenly to avoid output

contention, minimize average packet delay, and

maximize throughput. This requirement is formalized

as

Equalize {A
l
j (t)} (l Є [1,k]) for any j

where Al
j (t) denotes the traffic rate destined for

output port j through switching path l in MPS.

2. Intraflow packet ordering

Packets in the same flow should depart MPS

as their arrival orders. This ordering is essential since

out-of- order packets will degrade the performance of

higher level protocols. For any two packets P1 and P2

in the same flow with arrival time T(P1), T(P2), and

departure time D(P1), D(P2), the formula below should

be guaranteed:

 D(P1) < D(P2) if T(P1) < T(P2)

3. Low timing and hardware complexity

The load-balancing and additional

resequencing mechanisms at MPS should work fast

enough to match the line rate, and should introduce

limited hardware complexity. MPS is most likely to

hold hundreds of external ports operating at ultrahigh

A. Venkata Pradeep et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1480-1485

www.ijera.com 1482 | P a g e

speed. To provide such scalability, the

timing/hardware complexity of O(1) is necessary.

As a rule of thumb, packet-based solutions

are advocated where traffic is dispatched packet by

packet to optimally balance the load. However,

packets in the same flow may be forwarded in
separate paths and experience different delays, thus

violating the interflow packet ordering requirement. A

straightforward solution is to use an explicit

resequencer at each output to restore packet orders.

Each packet is time shifted by the same

offset before departing, thus preserving the arrival

order. Nonetheless, the delay equalization method

suffers from a huge penalty in magnifying the average

delay. It is shown in our prototype simulations that

even the latest adaptive resequencer increases the

average delay nearly 10 times to about 10 ms. A route

passing through five such routers will lead to at least
50 ms average delay, almost violating the QoS

requirement for delay-sensitive applications. Another

kind of resequencers records each packet’s sequence

number in the flow (defined by input, output port, and

priority class), instead of absolute timestamp. By

allowing only in-order packets with expected

sequence number to depart, they preserve packet

orders without penalizing packet delays.

III. SYSTEM ARCHITECTURE

Fig 3.1 Architecture of Multipath Switching System

Existing System

Our major improvement over the existing

works is to tailor the approach in the scenario by

introducing the offline delay bound calculation, while

the previous solutions either use an empirical slicing

threshold or maintain flow context to facilitate the

slicing. The traces here are collected at backbone links

of one of the largest commercial backbones

worldwide.

Disadvantage

Our major improvement over the existing

works is to tailor the FS approach in the MPS scenario

by introducing the offline delay bound.

Problem Definition

Packets in the same flow are order by using

flow-based load-balancing algorithms. MPS is most

likely to hold hundreds of external ports operating at

ultrahigh speed. To provide such scalability, the

timing/hardware complexity of O(1) is necessary.

packets in the same flow may be forwarded in

separate paths and experience different delays, thus

violating the intraflow packet ordering requirement .

Disadvantages

 Low timing and hardware complexity.

 Intraflow packet ordering

 packet-based solutions either suffer from delay

penalties.

Proposed System:

Flow-Based Slicing is based on the fact that

the interflow packet interval is often, larger than the

slicing threshold. Due to three positive properties of
flow-based slicing, our scheme achieves good load-

balancing uniformity with little hardware overhead

and timing complexity. By calculating delay bounds at

three popular MPS, we show that when the slicing

threshold is set to the smallest admissible value at, the

FBS scheme can achieve optimal performance while

keeping the interflow packet out-of-order probability

negligible given an internal speedup up to two. Our

results are also validated through trace-driven

prototype simulations under traffic patterns.

Advantage
It is immune to packet loss, while other

solutions like the resequencer require additional loss

detection Mechanisms.

IV. MODULES
1) Load-Balancing Scheme

Interflow packet order is natively preserved

besetting slicing threshold to the delay upper bound at

MPs .Any two packets in the same flow-based slice
cannot be disordered as they are dispatched to the

same switching path where processing is guaranteed;

and two packets in the same flow but different flow -

based slices will be in order at departure, as the earlier

packet will have depart from before the latter packet

arrives. Due to the fewer number of active flow slices,

the only additional overhead in, the hash table, can be

kept rather small, and placed on-chip to provide

ultrafast access speed. This table size depends only on

system line rate and will stay unchanged even if scales

to more than thousand external ports, thus guarantees
system scalability.

2) Multipath Switching System

Through lay-aside Buffer Management

module, all packets are virtually queued at the output

according to the flow group and the priority class in a

hierarchical manner. The output scheduler fetches

packets to the output line using information provided .

Packets in the same flow will be virtually buffered in

the same queue and scheduled in discipline. Hence,

intraflow packet departure orders hold as their arriving

A. Venkata Pradeep et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1480-1485

www.ijera.com 1483 | P a g e

orders at the multiplexer. Central-stage parallel

switches adopt an output-queued model. By Theorem,

we derive packet delay bound at first stage. We then

study delay at second-stage switches. Define native

packet delay at stage m of an be delay experienced at

stage m on the condition that all the preceding stages
immediately send all arrival packets out without

delay.

3) Multistage Multi plane Clos Switches

We consider the Multistage Multi plane Clos

network based switch by Chao et a . It is constructed

of five stages of switch modules with top-level

architecture similar to a external input/output ports.

 The first and last stages clos are composed of

input de multiplexers and output multiplexers,

respectively, having similar internal structures as

those in PPS. Stages 2-4 of M2Clos are constructed by
parallel switching planes; however, each plane is no

longer formed by a basic switch, but by a three-stage

Clos Network to support large port count. Inside each

Clos Network, the first stage is composed by k

identical Input Modules.

 Each IM is a packet switch, with each output

link connected to a Central Module. Thus, there is a

total of m identical in second stage of the Clos

networks.

V. SOFTWARE ENVIRONMENT
Features OF. Net

Microsoft .NET is a set of Microsoft

software technologies for rapidly building and

integrating XML Web services, Microsoft Windows-

based applications, and Web solutions. The .NET

Framework is a language-neutral platform for writing

programs that can easily and securely interoperate.

There’s no language barrier with .NET: there

are numerous languages available to the developer
including Managed C++, C#, Visual Basic and Java

Script. The .NET framework provides the foundation

for components to interact seamlessly, whether locally

or remotely on different platforms. It standardizes

common data types and communications protocols so

that components created in different languages can

easily interoperate.

“.NET” is also the collective name given to

various software components built upon the .NET

platform. These will be both products (Visual

Studio.NET and Windows.NET Server, for instance)

and services (like Passport, .NET My Services, and so
on).

The .Net Framework

The .NET Framework has two main parts:

1. The Common Language Runtime (CLR).

2. A hierarchical set of class libraries.

The CLR is described as the “execution engine” of

.NET. It provides the environment within which

programs run. The most important features are

• Conversion from a low-level assembler-style

language, called Intermediate Language (IL), into

code native to the platform being executed on.

• Memory management, notably including garbage

collection.

• Checking and enforcing security restrictions on
the running code.

• Loading and executing programs, with version

control and other such features.

• The following features of the .NET framework

are also worth description:

Managed Code

The code that targets .NET, and which

contains certain extra Information - “metadata” - to

describe itself. Whilst both managed and unmanaged

code can run in the runtime, only managed code

contains the information that allows the CLR to
guarantee, for instance, safe execution and

interoperability.

Managed Data

With Managed Code comes Managed Data.

CLR provides memory allocation and Deal location

facilities, and garbage collection. Some .NET

languages use Managed Data by default, such as C#,

Visual Basic.NET and JScript.NET, whereas others,

namely C++, do not. Targeting CLR can, depending

on the language you’re using, impose certain
constraints on the features available.

 As with managed and unmanaged code, one

can have both managed and unmanaged data in .NET

applications - data that doesn’t get garbage collected

but instead is looked after by unmanaged code.

Common Type System

The CLR uses something called the Common

Type System (CTS) to strictly enforce type-safety.

This ensures that all classes are compatible with each

other, by describing types in a common way.

 CTS define how types work within the
runtime, which enables types in one language to

interoperate with types in another language, including

cross-language exception handling. As well as

ensuring that types are only used in appropriate ways,

the runtime also ensures that code doesn’t attempt to

access memory that hasn’t been allocated to it.

Common Language Specification

The CLR provides built-in support for

language interoperability. To ensure that you can

develop managed code that can be fully used by
developers using any programming language, a set of

language features and rules for using them called the

Common Language Specification (CLS) has been

defined. Components that follow these rules and

expose only CLS features are considered CLS-

compliant.

A. Venkata Pradeep et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1480-1485

www.ijera.com 1484 | P a g e

The Class Library

.NET provides a single-rooted hierarchy of

classes, containing over 7000 types. The root of the

namespace is called System; this contains basic types

like Byte, Double, Boolean, and String, as well as

Object. All objects derive from System. Object. As
well as objects, there are value types. Value types can

be allocated on the stack, which can provide

useful flexibility. There are also efficient means of

converting value types to object types if and when

necessary. The set of classes is pretty comprehensive,

providing collections, file, screen, and network I/O,

threading, and so on, as well as XML and database

connectivity.

The class library is subdivided into a number

of sets (or namespaces), each providing distinct areas

of functionality, with dependencies between the

namespaces kept to a minimum.

VI. EXPERIMENTAL RESULTS

Fig 6.1 Sever Initiation

Here three clients along with their file size are

displayed and respective progress bar shows the file

transmission status.

Whenever Server window is loaded updates the

file receiving path at right side corner of window. Click

on the picture box 'Start' label below it displays 'Server

Running' i.e., Server is ready to do load balancing by

accepting inputs and is in running state.

Fig 6.2 Client1 Initiation

It consists of a text box labled 'Enter

IpAddress', by selecting a file from the bowser widow

which appear by clicking 'Select File' button, client1

will add file to transmit it to destination.

We will select a file from browser window

and add file by clicking 'Add File' button. Click on
button 'File Transmit' for transmission of file.

Similarly Client2, Client 3 are initiated.

Fig 6.3 Server in Running State

Click on the picture box 'Start' label below it

displays 'Server Running' i.e., Server is ready to do

load balancing by accepting inputs and is in running

state.

Whenever we obtain 'Server Running..' at
label below the 'Start' button it means that a Back

Ground Worker is running behind which sets the timer

control ON and the timer control interval is given

as1500ms for the progress bar.

Fig 6.4 File uploading at Client1for File Transmitt

In general, we enter the default Ip Address

127.0.0.1 otherwise we can also give the Ip Address

of the system in which the code is executing. Here Ip

Address is nothing but Destination Address i.e.,
Server Ip Address. We will select a file from browser

window and add file by clicking 'Add File' button.

Click on button 'File Transmit' for transmission of file.

Similarly we will upload and transmit file at Client2,

Client3 respectively.

A. Venkata Pradeep et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1480-1485

www.ijera.com 1485 | P a g e

Fig .6.7 Completion of file transmission using Flow-

Based Slicing while preserving the inter flow packet

order and avoiding congestion.

When Server is in running state and when

file is uploaded successfully size of the file is read

first and a label below Flow Slice shows the size of

the file, then progress bar shows the flow-based

slicing process status for respective nodes which is

active and the respective input multiplexer and output

demultiplexers of M2Clos switch are set to condition
'SWITCH ON'. In timer control interval for the

progress bar is given as 1500ms. After Completion of

File Transmit we can see the complete file at

destination mean while we can observe that Slices are

obtained at respective destination folders.

When the progress bar is complete file is transmitted

to destination path which is shown at right corner of

the server window. Here Client 1,2,3 files are received

at destination folders MS Client 1, MS Client 2, MS

Client 3 on Desktop.

VII. CONCLUSION
We proposed a flow-based slicing scheme for

preserving interflow packet order by setting slicing

threshold to the delay upper bound at MPS .Any two

packets in the same flow-based slice cannot be

disordered as they are dispatched to the same

switching path where processing is guaranteed; and

two packets in the same flow but different flow -based

slices will be in order at departure, as the earlier
packet will have depart from before the latter packet

arrives. It is shown that flow-based slicing achieves

inter flow packet ordering with little network cost

while minimizing the packet out of order probability

to negligible level comparatively less than 10-6.

REFERENCES
[1] GAGANA. K AND ASHA "TOPOLOGY

CONTROL ACROSS MPS USING FLOW SLICE IN

WIRELESS NETWORKS", INTERNATIONAL

JOURNAL OF ENGINEERING AND SCIENCE

VOL.3, ISSUE 3 (JUNE 2013), PP 37-41

ISSN(E): 2278-4721, ISSN (P):2319-6483.

[2] Srikanth Kandula, Dina Katabi, Shantanu

Sinha and Arthur Berger "Dynamic Load

Balancing Without Packet Reordering",

ACM SIGCOMM Computer Communication

Review, Volume 37, Number 2, April 2007

[3] Lei Shi, Bin Liu, Changhua Sun, Zhengyu

Yin, Laxmi N. Bhuyan, H. Jonathan Chao,

"Load-Balancing Multipath Switching
System with Flow Slice", IEEE

Transactions on Computers, Vol. 61, No. 3,

March 2012.

[4] Nikolaos, I. Chrysos "Congestion

Management for Non-Blocking Clos

Networks" Institute of Computer Science,

ICS, Forth Hellas http://archvlsi.ics.forth.gr.

[5] Weiguang Shi, M. H. MacGregor, "Load

Balancing for Parallel Forwarding",

IEE/ACM Transactions On Networking, Vol.

13, No. 4, August 2005.

[6] J. S. Turner, “Resequencing Cells in an ATM
Switch”, Tech. Rep., WUCS-91-21, Feb.

1991.

[7] D. A. Khotimsky and S. Krishnan,

“Evaluation of Open-loop Sequence Control

Schemes for Multi-path Switches,” in Proc.

IEEE ICC, pp. 2116-2120, 2002.

[8] L. Shi, W. Li, B. Liu, and X. Wang, “Flow

Mapping in the Load Balancing Parallel

Packet Switches”, in Proc. IEEE HPSR, pp.

254-258, 2005.

[9] Cisco CRS-1, http://www.cisco.com/go/crs/,
2011.

A. Venkata Pradeep, received Bachelor of

Technology degree in Computer Science

and Engineering from Vivekananda

Institute of Technology & Science (n9),

Jawaharlal Technological University,

Hyderabad, India in 2010, Currently pursuing Master

of technology degree in Computer Science from

Vivekananda Institute of Technology & Science(n9),

Jawaharlal Technological University, Karimnagar,

AP, India. His intense zeal in networks included the
research interests in Networking, Ant Net and Traffic

Engineering Tasks.

M.Kishore Kumar received his B.Tech

degree from Jawaharlal Nehru Technology

University, Hyderabad, in 2006 and his

Master degree in Software Engineering

from Jawaharlal Nehru Technology University,

Hyderabad, in 2010. He was an assistant professor in

the Department of Computer Science and Engineering

at Dr.V.R.K college of Engineering from July 2006 to
May 2008. He then joined the Department of

Computer Science and Engineering at Vivekananda

Institute of Technology and Science in May 2008 as

an assistant professor. His research interests include

spatial data mining, mobile computing, and network

security.

