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Abstract 
In this paper, a scheme for the design of a high-speed pipeline VLSI architecture for the computation of the 2-D 
discrete wavelet transform (DWT) is proposed. The main focus in the development of the architecture is on 

providing a high operating frequency and a small number of clock cycles along with efficient hardware 

utilization by maximizing the inter-stage and intra-stage computational parallelism for the pipeline. The inter-

stage parallelism is enhanced by optimally mapping the computational task of multi decomposition levels to the 

stages of the pipeline and synchronizing their operations. The intra-stage parallelism is enhanced by dividing the 

2-D filtering operation into four subtasks that can be performed independently in parallel and minimizing the 

delay of the critical path of bit-wise adder networks for performing the filtering operation. To validate the 

proposed scheme, a circuit is designed, simulated, and implemented in FPGA for the 2-D DWT computation. 

The results of the implementation show that the circuit is capable of operating with a maximum clock frequency 

of 80.749MHz and processing 1022 frames of size 512 × 512 per second with this operating frequency. It is 

shown that the performance in terms of the processing speed of the architecture designed based on the proposed 

scheme is superior to those of the architectures designed using other existing schemes, and it has similar or 
lower hardware consumption. 

Keywords - Computational parallelism, Discrete Wavelet Transform FPGA implementation, Image Processing, 

Multi-resolution filtering, Non-separable approach, Parallel architecture. 

 

I. INTRODUCTION 
The 2-D discrete wavelet transforms (DWT) 

have been widely used in many engineering 

applications because of their multi-resolution 

decomposition capability [1]. However, processing 

large volumes of data of various decomposition 

levels of the transform makes their computation 

computationally very intensive. In the past, many 
architectures have been proposed aimed at providing 

high-speed 2-D DWT computation with the 

requirement of utilizing a reasonable amount of 

hardware resources. These architectures can be 

broadly classified into separable and non-separable 

architectures. In a separable architecture, a 2-D 

filtering operation is divided into two 1-D filtering 

operations, one for processing the data row-wise and 

the other column-wise. In the previous papers it was 

proposed a low-storage short-latency separable 

architecture in which the row-wise operations are 
performed by systolic filters and the column-wise 

operations by parallel filters. This architecture 

requires complex control units to facilitate the 

interleaved operations of the output samples of 

different decomposition levels by employing a 

recursive pyramid algorithm (RPA). Architecture has 

been introduced in which each of the row- and 

column-wise filtering operations are decomposed 

using the so called lifting operations into a cascade of  

 

sub-filtering operations. The scheme leads to low-

complexity architecture with a large latency. The 

separable architectures, in which a 1-D filtering 

structure is used to perform the 2-D DWT, have an 

additional requirement of transposing the 

intermediate data between the two 1-D filtering 

processes. This increases the memory size as well as 

the latency of the architectures. The non-separable 

architectures do not have this problem, since in these 

architectures, the 2-D transforms are computed 
directly by using 2-D filters. It has been proposed 

that two non-separable architectures, one using 

parallel 2-D filters and the other an SIMD 2-D array, 

both based on a modified RPA. In the former 

architecture, a high degree of computational 

parallelism is achieved at the expense of less efficient 

hardware utilization, whereas the latter architecture 

requires a reconfigured organization of the array as 

the processing moves on to higher decomposition 

levels. But the processing speed of this architecture is 

low in view of the fact that the same architecture is 
utilized recursively to perform the tasks of successive 

decomposition levels. As the processing units 

employed in this architecture differ from one another, 

the complexity of the hardware resources is high and 

the design of the architecture is complicated. Most 

existing non-separable architectures aim at providing 

fast computation of the DWT by using pipeline 
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structures and a large number of parallel filters. 

However, these existing architectures have not 

exploited the computational parallelism inherent in 

the DWT operation to the extent possible in order to 

provide a high speed. 

In this paper, non-separable pipeline 
architecture for fast computation of the 2-D DWT 

with a reasonable low cost for the hardware resources 

is proposed. The high-speed computation is achieved 

by efficiently distributing the task of the 

computations of multiple decomposition levels 

among the stages of the pipeline, and by optimally 

configuring the data and synchronizing the operations 

of pipeline so as to maximize the inter-stage and 

intra-stage computational parallelism. The paper is 

organized as follows. In Section II, a mathematical 

formulation of the 2-D DWT computation necessary 

for the development of the proposed architecture is 
presented. In Section III, a study is conducted to 

determine the number of stages of a pipeline 

necessary for optimally mapping the task of the DWT 

computation onto the stages of the pipeline. Based on 

this study, in Section IV, three-stage pipeline 

architecture is developed with an efficient structure 

of the 2-D input data and an optimal organization of 

the processing units in each of the stages. In Section 

V, the performance results is assessed and shown in 

the form of synthesis by an FPGA implementation. 

Section VI summarizes the work of this paper by 
highlighting the salient features of the proposed 

architecture. 

 

II. Formulations for the Computation of 

the 2-D DWT 
The 2-D DWT is an operation through 

which a 2-D signal is successively decomposed in a 
spatial multi resolution domain by low pass and high 

pass FIR filters along each of the two dimensions. 

The four FIR filters, denoted as high pass-high pass 

(HH), high pass-low pass (HL), low pass-high pass 

(LH) and low pass-low pass (LL) filters, produce, 

respectively, the HH, HL, LH and LL sub band data 

of the decomposed signal at a given resolution level. 

The samples of the four sub bands of the decomposed 

signal at each level are decimated by a factor of two 

in each of the two dimensions. For the operation at 

the first level of decomposition, the given 2-D signal 
is used as input, whereas for the operations of the 

succeeding levels of decomposition, the decimated 

LL sub band signal from the previous decomposition 

level is used as input. 

 

A. Formulation for the 2-D DWT Computation 

Let a 2-D signal be represented by an No × 

No matrix S (o), with its (m, n) th element denoted by 

S (o) (m, n) (0 ≤ m, n ≤ No-1), where No is chosen to be 

2J, J being an integer. Let the coefficients of a 2-D 

FIR filter P (P = HH, HL, LH, LL), be represented by 

an L×M matrix H (P). The (k, i) th coefficient of the 
filter P is denoted by H (P) (k, i) (0 ≤ k ≤ L-1), (0 ≤ i ≤ 

M-1). The decomposition at a given level j = 1, 2, 

….. J can be expressed as 

 

 
Each 2-D convolution can be seen as a sum 

of the products of L×M the filter coefficients and the 

elements contained in an L×M window sliding on a 

2-D data. The decimation by a factor of two in both 

the horizontal and vertical dimensions can be 

accomplished by sliding the L×M window by two 

positions horizontally and vertically for the 

computation of two successive samples. Only the LL 

sub band data of decomposition are used as input for 

the decomposition at the next level. After iterations, 
the 2-D signal S (o) is transformed into J resolution 

levels, with HH, HL and LH sub bands from each of 

the first J-1 levels and HH, HL, LH and LL sub 

bands from the last Jth level. Since Nj = N0/2
j, the 

number of samples that need to be processed at each 

level is one quarter of that at the preceding level. 

 

B. Formulation for a Four-Channel Filtering 

Operation 

 In order to facilitate parallel processing for 

the 2–D DWT computation, the L×M filtering 
operation needs to be divided into multi-channel 

operations, each channel processing one part of the 2-

D data. It is seen from (1) that the even and odd 

indexed elements are always operated on the even 

and odd indexed filter coefficients, respectively. The 

matrix S (o) representing the LL sub band at jth the 

level can, therefore, be divided into four Nj = 

(Nj/2+L/2) × (Nj/2+M/2) sub-matrices, and the 

elements are given by as shown below 

 
taking into consideration the periodic padding 

samples at the boundary [30]. It is seen from (2) that 

the data at any decomposition level are divided into 

four channels for processing by first separating the 

even and odd indexed rows of S (j), and then 

separating the even and odd indexed columns of the 

resulting two sub-matrices. The data in each channel 

can then be computed by an (L/2×M/2) - tap filtering 
operation. In order to facilitate such a 4-channel 

filtering operation, the filter coefficients, as used in 

(1), need to be decomposed appropriately. 
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Accordingly, the matrix H (P) needs to be decomposed 

into four (L/2×M/2) sub-matrices, and elements are 

given by 

  
respectively. By using (2) and (3) in (1), any of the 

four sub band signals A(j), B(j), C(j), and S(j), at the j th 

decomposition level, can be computed as a sum of 
four convolutions using (L/2×M/2) -tap filters. For 

example, the LL sub band given by (1d) can now be 

expressed as  

 
At any decomposition level, the separation 

of the sub band processing corresponding to even and 

odd indexed data as given by (4) is consistent with 

the requirement of decimation of the data in each 

dimension by a factor of two in the DWT 

computation. It is also seen from (4) that the filtering 

operations in the four channels are independent and 

identical, which can be exploited in the design of 

efficient pipeline architecture for the 2-D DWT 
computation. 

 

III. PIPELINE FOR THE 2-D DWT 

COMPUTATION 
In a pipeline structure for the DWT 

computation, multiple stages are used to carry out the 

computations of the various decomposition levels of 
the transform. The computation corresponding to 

each decomposition level needs to be mapped to a 

stage or stages of the pipeline. It is seen from the 

formulation in Section II that the task of computing 

the jth decomposition level in a -level DWT 

computation consists of computing samples. The 

computation of each sample actually performs an 

(L×M)-tap HH, HL, LH or LL FIR filtering operation 

that comprises the operations of (L×M) 

multiplications followed by (L×M) accumulations. 

Assuming that these operations for the computation 
of one sample are carried out by a unit of filter 

processor, the overall task of the DWT computation 

would require a certain number of such filter units. In 

order to design a pipeline structure capable of 

performing a fast computation of the DWT with low 

expense on hardware resources and low design 

complexity, an optimal mapping of the overall task of 

the DWT computation to the various stages of the 

pipeline needs to be determined. Any distribution of 

the overall task of the DWT computation to stages 

must consider the inherent nature of the sequential 

computations of the decomposition levels that limit 

the computational parallelism of the pipeline stages, 

and consequently the latency of the pipeline. The key 
factors in the distribution of the task to the stages are 

the maximization of the inter-stage and intra-stage 

computational parallelism and the synchronization of 

the stages within the constraint of the sequential 

nature of the computation of the decomposition 

levels. The feature of identical operations associated 

with the computations of all the output samples 

irrespective of the decomposition levels in a DWT 

computation can be exploited to maximize the intra-

stage parallelism of the pipeline. Further, in order to 

minimize the expense on the hardware resources of 

the pipeline, the number of filter units used by each 
stage ought to be minimum and proportional to the 

amount of the task assigned to the stage. A 

straightforward mapping of the overall task of the 

DWT computation to a pipeline is one-level to one-

stage mapping, in which the tasks of decomposition 

levels are distributed to J stages of the pipeline. In 

this mapping, the amount of hardware resources used 

by a stage should be one-quarter of that used by the 

preceding stage. Thus, the ratio of the hardware 

resource used by the last stage to that used by the first 

stage has a value of 1/4J-1. For images of typical size, 
this parameter would assume a very small value. 

Hence, for a structure of the pipeline that uses 

identical filter units, the number of these filters units 

would be very large. Further, since the number of 

such filter units employed by the stages would 

decrease exponentially from one stage to the next in 

pipeline, it will make their synchronization very 

difficult. The solution to such a difficult 

synchronization problem, in general, requires more 

control units, multiplexers and registers, which 

results in a higher complexity of the hardware 

resources. A reasonably large value of λ < 1would be 
more attractive for synchronization. In this respect, 

the parameter can be seen as a measure of difficulty 

in that a smaller value of this parameter implies a 

greater design effort and more hardware resources for 

the pipeline. The parameter can be increased from its 

value of 1/4J-1. in the one-level to one-stage pipeline 

structure by dividing the large-size stages into a 

number of smaller stages or merging the small-size 

stages into larger ones. However, dividing a stage of 

the one-level to one-stage pipeline into multiple 

stages would require a division of the task associated 
with the corresponding decomposition level into sub-

tasks, which in turn, would call for a solution of even 

a more complex problem of synchronization of the 

sub-tasks associated with divided stages. On the other 

hand, merging multiple small-size stages of the 

pipeline into one stage would not create any 

additional synchronization problem. As a matter of 

fact, such a merger could be used to reduce the 
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overall number of filter units of the pipeline. In view 

of the above discussion, the synchronization 

parameter λ can be increased by merging a number of 

stages at tail end of the pipeline. Fig. shows the 

structure of a pipeline in which the stages I to J of the 

one-level to one-stage pipeline have been merged. In 
this structure, the tasks of the decomposition level 

from j = 1to j=I - 1are mapped to stage 1 to I - 1, 

respectively, whereas those of the decomposition 

levels j = I….J, are mapped all together to the I th 

stage. Note that the total amount of computations 

performed by stage I is 

 
Fig Pipeline structure with stages for -level 

computation 

 

IV. DESIGN OF THE ARCHITECTURE 
 In the previous section, we advocated a 

three-stage pipeline structure for the computation of 

the 2-D DWT to realize an optimal combination of 

the parameters for the hardware utilization and 

pipeline synchronization. In this three-stage structure, 

like in any pipeline architecture, the operations in a 

given stage depend on the data produced by the 

preceding stage. However, because of the way that 

the computational load of the various decomposition 

levels of the 2-D DWT computation has been 
distributed among the three stages, the operations in 

the first and second stages of the pipeline do not 

depend on the data produced by them, whereas that in 

stage 3 does depend on the data produced by itself. 

The operations of the three stages need to be 

synchronized in a manner so that the three stages 

perform the computation of multiple decomposition 

levels within a minimum possible time period while 

using the available hardware resources maximally. In 

this section, we present the design of the proposed 3-

stage pipeline architecture, starting with the 

synchronization of the operations of the stages, and 
then focusing on the details of the intra-stage design 

so as to provide an optimal performance. 

 

A. Synchronization of Stages 

The distribution of the computational load 

among the three stages, and the hardware resources 

made available to them are in the ratio 8:2:1. 

Accordingly, the synchronization of the operations 

between the stages needs to be carried out under this 

constraint of the distribution of the computational 

load and hardware resources. According to the nature 
of the DWT, the computation of a decomposition 

level j depends on the data computed at its previous 

level j - 1, in which the number of computations is 

four times of that at the decomposition level. 

Therefore, the stages of pipeline need to be 

synchronized in such a way that each stage starts the 

operation at an earliest possible time when the 

required data become available for its operation. 

Once the operation of a stage is started, it must 

continue until the task assigned to it is fully 

completed. Consider the timing diagram given in Fig. 

below for the operations of the three stages, where t1, 

t2 and t3 are the times taken individually by stages 1, 
2 and 3, respectively, to complete their assigned 

tasks, ta and tb are the times elapsed between the 

starting points of the tasks by stages 1 and 2, and that 

by stages 2 and 3, respectively. 

 
Fig Timing diagram for the operations of three stages 

  

Note that the lengths of the times t1, t2 and t3 

to complete the tasks by individual stages are 

approximately the same, since the ratios of the tasks 

assigned and the resources made available to the 

three stages are the same. The average times to 
compute one output sample by stages 1, 2 and 3 are 

in the ratio 1:4:8. In Fig. above relative widths of the 

slots in the three stages are shown to reflect this ratio. 

Our objective is to minimize the total computation 

time ta+ tb+ t3 by minimizing ta, tb and t3, and 

individually. Assume that 2-D output samples for a 

decomposition level are computed row-by-row 

starting from the upper-left corner sample. Since the 

operations in stage 1 are independent of those in the 

other two stages, it can operate continuously to 

compute all the samples of level 1. The value of t1 is 

equal to T8 N
2
1, where T8 is the average time taken by 

stage 1 to compute one output sample. Since the 

operations of stages 2 and 3 require the output data 

computed by stages 1 and 2, respectively, their 

operations must be delayed by certain amount of 

times so that they can operate continuously with the 

data required by them becoming available. We now 

give the lowest bound on ta and tb so that once stages 

2 and 3 start their operations they could continue 

their operations uninterruptedly. Assume that stage 3 

computes all the output samples of all remaining 

levels (i.e., level 3 to level) in a sequential manner. 
We only need to consider the requirement of the data 

availability for the computation of level-3, which 

uses the level-2 samples computed by stage 2. Then, 

in a way similar to that obtaining ta min, by imposing 

the condition that at the time instant of starting the 

calculation of a level-3 output sample by stage 3, all 

the samples in the window of the level-2 output 

samples are available, it can be shown that the 

minimum value of is given by ta min = T8 [N1 (L-1) 

+M] 

 

B. Design of Stages 
The three-stage architecture, stages 1 and 2 

perform the computations of levels 1 and 2, 
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respectively, and stage 3 that of all the remaining 

levels. Since the basic operation of computing each 

output sample, regardless of the decomposition level 

or the sub band, is the same, the computation blocks 

in the three stages can differ only in the number of 

identical processing units employed by them 
depending on the amount of the computations 

assigned to the stages. As seen, an (L×M)-tap 

filtering operation is decomposed into four 

independent (L/2×M/2)-tap filtering operations, each 

operating on the 2-D L/2×M/2data resulting from the 

even or odd numbered rows and even or odd 

numbered columns of an L×M window of an LL-sub 

band data. A unit consisting of L/2×M/2MAC cells 

can now be regarded as the basic processing unit to 

carry out an (L/2×M/2)-tap filtering operation. An 

L×M window of the raw 2-D input data or that of an 

LL-sub band data must be decomposed into four 
distinct L/2×M/2sub-windows in accordance with the 

four decomposed terms given by the right side of (4). 

This decomposition of the data in an L×M window 

can be accomplished by designing for each stage an 

appropriate data scanning unit (DSU) based on the 

way the raw input or the LL-sub band data is 

scanned. The stages would also require memory 

space (buffer) to store the raw input data or the LL-

sub band data prior to scanning. Since stages 1 and 2 

need to store only part of a few rows of raw input or 

LL-sub band data at a time, they require a buffer of 
size of O (N), whereas since stage 3 needs to store 

the entire LL-sub band data of a single 

decomposition level, it has a buffer of size of O (N) 2. 

Fig. gives the block diagram of the pipeline showing 

all the components required by the three stages. Note 

that the data flow shown in this figure comprises only 

the LL-sub band data necessary for the operations of 

the stages. The HH, HL and LH sub band data are 

outputted directly to an external memory. Now, we 

give details on the structure of the data scanning unit 

to scan the 2-D data and establish four distinct 

L/2×M/2 sub-windows, as well as on the distribution 
of the filtering operations to the processing units in 

each stage. 

 
Fig Block diagram of the three-stage architecture 

 

Structure of the Data Scanning Unit: In accordance 

with (4), an L×M window of the raw 2-D input data 

stored in or an LL-sub band data stored in or must be 

partitioned into four L/2×M/2sub-windows, and 

stored into the DSU of the corresponding stage. 

Further, this same equation also dictates that a 2-D 

input data must be scanned in a sequential manner. 

According to this sequence of scanning, the samples 

in a set of data comprising L rows of a 2-D input data 

are scanned starting from the top-left corner. Once 

the scanning of all the samples of L rows is 

completed, the process is repeated for another L rows 
after shifting down by two row positions. The 

objective is then to design a structure for a DSU so 

that samples scanned with this sequential mode get 

partitioned into the four sub-windows. In order to 

partition an L×M window into four L/2×M/2 sub-

windows, the structure of the DSU must first partition 

the samples of the window into two parts depending 

on whether a sample belongs to an even-indexed or 

odd-indexed row; then the samples in each part must 

be partitioned further into two parts depending on 

whether a sample belongs to an even-indexed or odd-

indexed column. The first partition can be achieved 
by directing scanned samples alternatively to two sets 

of L/2shift registers. The second partition can be 

achieved by reorganizing the samples stored in the 

shift registers of the two sets depending on whether a 

sample belongs to even-indexed or odd-indexed 

column by employing de-multiplexers. Finally, the 

samples of the four sub-windows can be stored, 

respectively, into four units of L/2×M/2 parallel 

registers. Fig. shows a structure of the DSU to 

accomplish this task. This data scanning scheme 

automatically incorporates the down sampling 
operations by two in the vertical and horizontal 

directions (as required by the transform), and thus no 

additional peripheral circuits and registers are 

required for the down sampling operations by the 

architecture. As a result, the data scanning scheme, in 

comparison to the other schemes [32], requires less 

hardware resources for the control units and fewer 

registers for the stages 

 
Fig Structure of the data scanning unit (DSU) 

 

C. Design of the Processing Unit 

In each stage, a processing unit carries out 
an (L/2×M/2)-tap filtering operation using the 

samples of an L/2×M/2sub-window at a time to 

produce the corresponding output.  Since the sub-

windows cannot be fed into a processing unit at a rate 

faster than the rate at which these sub-windows are 

processed by the processing unit, the processing time 

to process a sub-window (one time unit) is critical in 

determining the maximum clock frequency at which 
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the processing units can operate. Each physical link 

from a given bit of the input to an output bit of the 

processing unit gives rise to a data path having a 

delay that depends on the number and the types of 

operations being carried out along that path. 

Therefore, it is crucial to aim at achieving the 
shortest possible delay for the critical path when 

designing a processing unit for our architecture [33]–

[36].  

 
Fig Block diagram of a processing unit 

 

The filtering operation carried out by a 

processing unit, as described above, can be seen as 

L/2×M/2parallel multiplications followed by an 

accumulation of the L/2×M/2 products. If the input 

samples and the filter coefficients have the word 

lengths of A and B bits, respectively, then the 

processing unit produces an array of (B*L*M/4) ×A 

bits simultaneously in one clock cycle. In order to 
obtain the output sample corresponding to a given 

sub-window, the bits of the partial products must be 

accumulated vertically downward and from right to 

left by taking the propagation of the carry bits into 

consideration. The task of this accumulation can be 

divided into a sequence of layers. The shortest critical 

data path can be achieved by minimizing the number 

of layers and the delay of the layers. In each layer, a 

number of bits consisting of the partial product bits 

and/or the carry bits from different rows need to be 

added. This can be done by employing in parallel as 
many bit-wise adders as needed in each layer. The 

idea behind using bit-wise adder is to produce to the 

extent possible the number of output bits from a layer 

is smaller than the number of input bits to that layer. 

This can be done by using full adders and specifically 

designed double adders, in which the full adder 

consumes 3 bits and produces 2 bits (one sum and 

one carry bits) whereas the double adder consumes 

two pairs of bits (2×2) from neighboring columns and 

produces 3 bits (one sum and two carry bits/two sum 

and one carry bits). The two types of adders have 

equal delay, and are efficient in generating carry bits 
and compressing the number of partial products [36]. 

With this structure of the layers, the number of layers 

becomes minimum possible and the delay of a layer 

is equal to that of a full adder or equivalently to that 

of a double adder, thereby providing the shortest 

critical path for the accumulation network. Since the 

two rows of bits produced by the accumulation 

network still remain un accumulated, they finally 

need to be added to produce one row of output bits in 

the final phase of the task of a processing unit by 

using a carry propagation adder. Note that tasks of 

the accumulation network and the carry propagation 
adder can be made to have some partial overlap, 

since the latter can start its processing as soon as the 

rightmost pairs of bits becomes available from the 

former. Fig. 9 depicts a block diagram of a 

processing unit based on the above discussion. 

 

V. PERFORMANCE RESULTS 
In order to evaluate the performance of a 

computational architecture, one needs to make use of 
certain metrics that characterize the architecture in 

terms of the hardware resources used and the 

computation time. In this paper, the hardware 

resources used for the filtering operation are 

measured by the number of multipliers (NMUL) and 

the number of adders (NADD), and that used for the 

storage of data and filter coefficients are measured by 

the number of registers (NREG). The computation 

time, in general, is technology dependent. However, a 

metric that is technology independent and can be 

used to determine the computation time T is the 

number of clock cycles (NCLK) elapsed between the 
first and the last samples inputted to the architecture. 

Assuming that one clock period is Tc, the total 

computation time can then be obtained as T=NCLK Tc. 

 
and the synthesis report is below 
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VI. CONCLUSION 
In this paper, 3-stage pipeline architecture 

for a real-time computation of the 2-D DWT has been 

implemented.  The objective has been to achieve a 

short computation time by maximizing the 

operational clock frequency (1/ Tc)and minimizing 

the number of clock cycles (NCLK) required for the 

DWT computation by developing a scheme for 

enhanced inter-stage and intra-stage computational 

parallelism for the pipeline architecture. The results 

of the FPGA implementation have shown that the 

circuit can process a 512×512 image in 13.840ns, 
which is at least two times faster than that of the 

other FPGA implementations, and in some instances, 

even with less hardware utilization. Finally, it is 

worth noting that the architecture designed in this 

paper is scalable in that its processing speed can be 

adjusted upward or downward by changing the 

number of MAC cells in each of the processing units 

by a factor equal to that of the reduction required in 

the processing speed. 
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