
S K. Rubeena et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.682-686

www.ijera.com 682 | P a g e

Avoidance of Ranking Capabilities in Retrieval of Queries on

Hidden-Web Text Databases

S K.Rubeena
1
, T. Srinivasa Rao

2

Pursuing M.Tech(cse), Department of Computer Science ,VVIT Nambur (V), Guntur (Dt.).

Associate. Professor, Department of Computer Science, VVIT Nambur (V), Guntur (Dt.).

ABSTRACT
Many online or local data sources provide powerful querying mechanisms but limited ranking capabilities. For

instance, Pub Med allows users to submit highly expressive Boolean keyword queries, but ranks the query
results by date only. However, a user would typically prefer a ranking by relevance, measured by an information

retrieval (IR) ranking function. A naive approach would be to submit a disjunctive query with all query

keywords, retrieve all the returned matching documents, and then re-rank them. Unfortunately, such an

operation would be very expensive due to the large number of results returned by disjunctive queries. In this

paper, we present algorithms that return the top results for a query, ranked according to an IR-style ranking

function, while operating on top of a source with a Boolean query interface with no ranking capabilities (or a

ranking capability of no interest to the end user). The algorithms generate a series of conjunctive queries that

return only documents that are candidates for being highly ranked according to relevance metric. Our approach

can also be applied to other settings where the ranking is monotonic on a set of factors (query keywords in IR)

and the source query interface is a Boolean expression of these factors. Our comprehensive experimental

evaluation on the Pub Med database and a TREC data set show that we achieve order of magnitude

improvement compared to the current baseline approaches.

Index Terms: Hidden-web databases, keyword search, top-k ranking

I. INTRODUCTION
MANY online or local data sources provide

powerful querying mechanisms but limited ranking

capabilities. For instance, PubMed1 allows users to

submit Boolean keyword queries on the biomedical

publications database, but ranks the query results by

publication date only.

Similarly, the US Patent and Trademark

Office (USPTO)2 allows Boolean keyword queries or

searching patents but only ranks by patent date.
Furthermore, job search databases, such as the job

search of LinkedIn,3 allow users to sort job listings

by date or title (alphabetically), but not by IR

relevance of the job posting to the submitted query.

As a more recent example, the micro-blogging

service Twitter4 offers a highly expressive Boolean

search interface but ranks the results by date only. In

most cases, these sources do not allow downloading

and indexing of data or the size of the underlying

database makes any comprehensive download an

expensive operation. Often, the user prefers a ranking
other than the default sorting (e.g., by date) provided

by the source. For instance, a user of the PubMed or

USPTO Websites may prefer a ranking by relevance,

measured by an Information Retrieval (IR) ranking

function, as opposed to a date-based retrieval. Given

that traditional IR ranking functions like Ok ap and

BM25 implicitly assume disjunctive (OR) semantics,

the naive approach would be to submit to the

database a disjunctive query with all query keywords,

retrieve all the returned documents, and then rank
them according to the relevance metric of choice.

However, this would be very expensive due to the

large number of results returned by disjunctive

queries. For example, consider the query

“immunodeficiency virus structure,” an example

query used to teach information specialists how to

search the PubMed database. Executing the

corresponding disjunctive query “immunodeficiency

OR virus OR structure” on PubMed returns

1,451,446 publication results. Downloading and

ranking them is infeasible for an interactive query
system, even if the source is on the local network.

The problem becomes even more critical if we use

the public web services provided by PubMed for

programmatic (API) access over the web. Given the

large overhead incurred when retrieving publications,

PubMed imposes quotas on the amount of data an

application can retrieve per minute, rendering

infeasible any attempt to download large number of

documents. To overcome such problems, in this

paper, we present algorithms to compute the top

results for an IR ranked query, over a source with a
Boolean query interface but without any ranking

capabilities (or with a ranking function that is

generally uncorrelated to the user’s ranking: e.g., by

date). A key idea behind our technique is to use a

probabilistic modeling approach, and estimate the

distribution of document scores that are expected to

be returned by the database.

RESEARCH ARTICLE OPEN ACCESS

S K. Rubeena et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.682-686

www.ijera.com 683 | P a g e

 Problem Definition
We want to devise a scheme for retrieving

from D the top-k documents, ranked according to.

The trivial solution is to send an extremely broad

disjunctive query, returning all documents that have a

nonzero score. Then, we can retrieve the documents,
examine their contents, and re-rank them locally

before presenting the results to the user.

Unfortunately, this is a very time-consuming

solution. Therefore, our objective is to construct a

query sequence q1; q2; . . . ; qv of Boolean queries,

that can be submitted to the database, retrieve as few

documents as possible, and still contain all the

documents that would be in the top-k results.

Literature Survey

The user prefers a ranking other than the

default sorting (e.g., by date) provided by the source.
For instance, a user of the Pub Med or USPTO

Websites may prefer a ranking by relevance,

measured by an Information Retrieval (IR) ranking

function, as opposed to a date-based retrieval. Given

that traditional IR ranking functions like Okapi and

BM25 implicitly assume disjunctive (OR) semantics,

the naive approach would be to submit to the

database a disjunctive query with all query keywords,

retrieve all the returned documents, and then rank

them according to the relevance metric of choice.

However, this would be very expensive due to the
large number of results returned by disjunctive

queries. For example, consider the query

“immunodeficiency virus structure,” an example

query used to teach information specialists how to

search the Pub Med database. Executing the

corresponding disjunctive query “immunodeficiency

OR virus OR structure” on Pub Med returns

1,451,446 publication results. Downloading and

ranking them is infeasible for an interactive query

system, even if the source is on the local network.

The problem becomes even more critical if we use

the public web services provided by Pub Med for
programmatic (API) access over the web. Given the

large overhead incurred when retrieving publications,

Pub Med imposes quotas on the amount of data an

application can retrieve per minute, rendering

infeasible any attempt to download large number of

documents.

Disadvantages:

The problem becomes even more critical if

we use the public web services provided by Pub Med

for programmatic (API) access over the web. Given
the large overhead incurred when retrieving

publications, Pub Med imposes quotas on the amount

of data an application can retrieve per minute,

rendering infeasible any attempt to download large

number of documents.

Proposed System
To overcome such problems, in this paper,

we present algorithms to compute the top results for

an IR ranked query, over a source with a Boolean

query interface but without any ranking capabilities

(or with a ranking function that is generally
uncorrelated to the user’s ranking: e.g., by date). A

key idea behind our technique is to use a probabilistic

modeling approach, and estimate the distribution of

document scores that are expected to be returned by

the database. Hence, we can estimate what are the

minimum cutoff scores for including a document in

the list of highly ranked documents. To achieve this

result over a database that allows only query-based

access of documents, we generate a querying strategy

that submits a minimal sequence of conjunctive

queries to the source. (Note that conjunctive queries

are cheaper since they return significantly fewer
results than disjunctive ones.) After every submitted

conjunctive query we update the estimated

probability distributions of the query keywords in the

database and decide whether the algorithm should

terminate given the user’s results confidence

requirement or whether further querying is necessary;

in the latter case, our algorithm also decides which is

the best query to submit next. For instance, for the

above query “immunodeficiency virus structure,” the

algorithm may first execute “immunodeficiency

AND virus AND structure,” then “immunodeficiency
AND structure” and then terminate, after estimating

that the returned documents contain all the

documents that would be highly ranked under an IR-

style ranking mechanism. As we will see, our work

fits into the “exploration versus exploitation”

paradigm, since we iteratively explore the source by

submitting conjunctive queries to learn the

probability distributions of the keywords, and at the

same time we exploit the returned “document

samples” to retrieve results for the user query.

Advantages:
1. We define the novel problem of applying ranking

on top of sources with no ranking capabilities by

exploiting their query interface.

2. We describe sampling strategies for estimating

the relevance of the documents retrieved by

different keyword queries. We present a static

sampling approach and a dynamic sampling

approach that simultaneously executes the query,

estimates the parameters required for efficient

query execution, and compensates for the biases

in the sampling process.
3. We present algorithms that, given a user

confidence input, retrieve a minimal number of

results from the source through submitting high-

selectivity (conjunctive) queries, so that the

user’s confidence requirement is satisfied.

4. We experimentally evaluate our algorithms using

the Pub Med database and examine two settings:

1) the remote setting, where we use web services

S K. Rubeena et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.682-686

www.ijera.com 684 | P a g e

to query the database, and 2) the local setting

where we query a locally installed subset of Pub

Med. Our results show an order of magnitude

improvement compared to the naive query

evaluation approach.

II. SYSTEM ANALYSIS
A feasibility study is a high-level capsule

version of the entire System analysis and Design

Process. The study begins by classifying the problem

definition. Feasibility is to determine if it’s worth

doing. Once an acceptance problem definition has

been generated, the analyst develops a logical model

of the system. A search for alternatives is analyzed

carefully. There are 3 parts in feasibility study.

Technical Feasibility

Evaluating the technical feasibility is the

trickiest part of a feasibility study. This is because, at

this point in time, not too many detailed design of the

system, making it difficult to access issues like

performance, costs on (on account of the kind of

technology to be deployed) etc. A number of issues

have to be considered while doing a technical

analysis .Understand the different technologies

involved in the proposed system before commencing

the project that have to be very clear about what are
the technologies that are to be required for the

development of the new system. Find out whether the

organization currently possesses the required

technologies. Proposed project is beneficial only if it

can be turned into information systems that will meet

the organizations operating requirements. Simply

stated, this test of feasibility asks if the system will

work when it is developed and installed. Are there

major barriers to Implementation? Here are questions

that will help test the operational feasibility of a

project:
Is there sufficient support for the project

from management from users? If the current system

is well liked and used to the extent that persons will

not be able to see reasons for change, there may be

resistance. Are the current business methods

acceptable to the user? If they are not, Users may

welcome a change that will bring about a more

operational and useful systems .Have the user been

involved in the planning and development of the

project? Early involvement reduces the chances of

resistance to the system and in general and increases

the likelihood of successful project.
Since the proposed system was to help

reduce the hardships encountered. In the existing

manual system, the new system was considered to be

operational feasible. Economic feasibility attempts to

weigh the costs of developing and implementing a

new system. This feasibility study gives the top

management the economic justification for the new

system. A simple economic analysis which gives the

actual comparison of costs and benefits are much

more meaningful in this case. In addition, this proves

to be a useful point of reference to compare actual

costs as the project progresses. There could be

various types of intangible benefits on account of

automation. .

System Architecture

Fig1.BioNav System Architecture

 Modules

There are 2 modules 1. Query Model,2. Data

Source Model.

Query Model

Consider a text database D with documents

d; . . . ; dm. The user submits a keyword query Q ¼

ft1 . . . tng containing the terms t1 . . . tn. The answer

to the query is a list of the top k documents; the

documents are ranked according to a relevance score,

which estimates the relevance of a document d to the
query Q. The score of a document can be computed

using any of the well studied tf.idf scoring functions

like BM25 and Okapi . The key arguments of a tf.idf

function are the term frequency (tf), the document

frequency (df) and the document length (dl). The

term frequency; is the number of times that the word

t appears in document d. The document frequency;

DÞ is the number of documents in D that contain t.

the tf.idf ranking function is score the size of the

database D. In our experiments, we use the Okapi

scoring function, although any other tf.idf function
could be used. For simplicity though we use the basic

tf.idf scoring function as the running example.

Data Source Model

We assume that database D is only

accessible through a Boolean query interface and we

do not have direct access to the underlying

documents. The query interface evaluates the

Boolean query Q and returns the documents ranked

using a non desirable ranking function, e.g., by date

(as is the case for Pub Med and USPTO). For

instance, if the user query is Q ¼ [anemia, diabetes,
sclerosis], then we can submit to the data source

S K. Rubeena et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.682-686

www.ijera.com 685 | P a g e

queries [anemia AND diabetes AND sclerosis], q2 ¼

[anemia AND diabetes AND NOT sclerosis diabetes

OR sclerosis], and so on. The returned results are

guaranteed to match the Boolean conditions but the

documents are not expected to be ranked in any

useful manner.

III. SYSTEM DESIGN
Design is a meaningful engineering

representation of something that is to be built.

Software design is a process through which the

requirements are translated into a representation of

the software. Design is the place where quality is

fostered in software engineering. Design is the

perfect way to accurately translate a customer’s
requirement in to a finished software product. Design

creates a representation or model, provides detail

about software data structure, architecture, interfaces

and components that are necessary to implement a

system.Design is multi-step process that focuses on

data structure software architecture, procedural

details and interface between modules. The design

process also translates the requirements into the

presentation of software that can be accessed for

quality before coding begins. Computer software

design changes continuously as new methods; better

analysis and broader understanding evolved.
Software Design is at relatively early stage in its

revolution.

Therefore, Software Design methodology

lacks the depth, flexibility and quantitative nature

that are normally associated with more classical

engineering disciplines. However techniques for

software designs do exist, criteria for design qualities

are available and design notation can be applied.

UML Diagrams

The Unified Modeling Language allows the
software engineer to express an analysis model using

the modeling notation that is governed by a set of

syntactic semantic and pragmatic rules. The Unified

Modeling Language (UML) is a standard visual

modeling language intended to be used for modeling

business and similar processes, analysis, design, and

implementation of software-based systems.UML is a

common language for business analysts, software

architects and developers used to describe, specify,

design, and document existing or new business

processes, structure and behavior of artifacts of

software systems.

Use Case Diagram

A use case diagram is a graph of actors, a set

of use cases enclosed by a system boundary,

communication (participation) associations between

the actors and users and generalization among use

cases. The use case model defines the outside (actors)

and inside (use case) of the system’s behavior.

A use-case diagram can contain:

 Actors ("things" outside the system)

 Use cases (system boundaries identifying what

the system should do)

 Interactions or relationships between actors and

use cases in the system including the

associations, dependencies, and generalizations.

Use-case diagrams can be used during analysis to
capture the system requirements and to

understand how the system should work. During

the design phase, you can use use-case diagrams

to specify the behavior of the system as

implemented.

Graphical Depiction:

An actor is a stereotype of a class and is

depicted as a "stickman" on a use-case diagram.

User

IV. IMPLEMENTATION
 A programming tool or software tool is a

program or application that software developers use

to create, debug, maintain, or otherwise support other

programs and applications. The term usually refers to

relatively simple programs that can be combined

together to accomplish a task. The Chapter describes

about the software tool that is used in our project..

V. TESTING
The purpose of testing is to discover errors.

Testing is the process of trying to discover every

conceivable fault or weakness in a work product. It

provides a way to check the functionality of

components, sub assemblies, assemblies and/or a

finished product. It is the process of exercising

software with the intent of ensuring that the software
system meets the requirements and user expectations

and does not fail in an unacceptable manner. There

are various types of testing. Each test type addresses

a specific testing requirement.

TEST CASES:

Test Case 1:

Input: Without giving any URL.

Output: It will display an exception.

+VE TEST CASES

S

.N

o

Test case

Descripti

on

Actual

value

Expecte

d value

Resul

t

1 Create the

new user

registratio

n process

New user

created

successfull

y

To

update

the

database

in oracle

True

S K. Rubeena et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.682-686

www.ijera.com 686 | P a g e

2 Enter the

login

informati

on

Enter the

username

and

password

Gets the

home

page

True

3 Enter the

Disjuncti

ve query

It can

extract the

results

based on
Logical

OR

operation

Huge

documen

ts are

displaye
d here

True

4 Enter the

Conjuncti

ve query

Perform

the query

operation

that is

called

Logical

It can

extracts

minimize

d results

True

Test Case 2:

Input: Templates are not selected.

Output: Web template training complete with 0 files.

-VE TEST CASES

S

.N

o

Test case

Descriptio

n

Actual

value

Expected

value

Resul

t

1 Create the

new user

registration

process

New user

is not

created

successfull

y

Data

Values is

not

update in

oracle.

False

2 Enter the

login

informatio

n

Enter the

username

and

password

Error

page is

displayed

here.

False

3 Enter the

Disjunctive

query

It cannot

extract the

results
based on

Logical

OR

operation

Huge

document

s are not
displayed

here

False

4 Enter the

Conjunctiv

e query

Perform

the query

operation

that is

called

Logical

AND

It is not

extracts

minimize

d results

False

VI. CONCLUSION
We presented a framework and efficient

algorithms to build a ranking wrapper on top of a

documents data source that only serves Boolean

keyword queries. Our algorithm submits a minimal

sequence of conjunctive queries instead of a very

expensive disjunctive one. Our comprehensive

experimental evaluation on the Pub Med database

shows that we achieve order of magnitude

improvement compared to the baseline approach.In
our work, we are trying to maximize the

payoff/exploitation of each query (which is the

number of new, relevant top-k documents that the

query retrieves) while minimizing the

expense/exploration (number of queries sent, and

documents retrieved).

REFERENCES
[1] RamezElmasri, ShamkantB. Navathe,

”Fundamental of Database Systems”,

Pearson Education.

[2] A. Ntoulas, P. Zerfos, and J. Cho,

“Downloading Textual Hidden Web Content

by Keyword Queries,” Proc. Fifth ACM and

IEEE Joint Conf. Digital Libraries (JCDL

’05), 2005.
[3] Database Management Systems,Peter Rob,

Carlos Coronel,Cengage Learning.

[4] Z. Lu, W. Kim, and W.J. Wilbur,

“Evaluating Relevance Ranking Strategies

for Medline Retrieval,” J. Am. Medical

Informatics Assoc., vol. 16, no. 1, pp. 32-36,

2009.

[5] Silber Schatz.Korth,Database System

Concepts, Tata Mc Graw Hill.

[6] A. Singhal, “Modern Information Retrieval:

A Brief Overview,” Bull. IEEE CS

Technical Committee on Data Eng., vol. 24,
no. 4, pp. 35-42,

http://singhal.info/ieee2001.pdf, 2001.

[7] Principles of Database Systems

J.D.Ullman,Galotia Pub.1994.

