
Vaishali P. Jadhav et al. Int. Journal of Engineering Research and Applications www.ijera.com

Vol. 3, Issue 5, Sep-Oct 2013, pp.07-12

www.ijera.com 7 | P a g e

Collision Free Intelligent Bloom Join Filters

Dr. Sunita M. Mahajan, Ms. Vaishali P. Jadhav
Principle, Mumbai Education Trust, Computer Science Dept, Bandra Reclaimation , Mumbai, India

Research Scholar, NMIMS University, Vile-Parle, Mumbai

Abstract— In operation research, there is no single method available for solving all optimization problems. Hence a

number of techniques have been developed for solving different types of optimization problems. Optimization is the act of

obtaining the best result under given circumstances. The ultimate goal of optimization is either to minimize the efforts
required or to maximize the desired benefit [5]. Query Optimization is one of the optimization problems in database
management system. It is a process of determining the most efficient way to execute a given query by considering the
possible query plans. The approach suggested in the paper is mainly focused on join operation of the query. Previous work
done was based on semi-join approach for query optimization but a semi-join needs more local processing such as projection
and higher data transmission. To improve the previous approach, the filter based approach is utilized. The evaluation of filter
is done by considering the collisions occurred, using perfect hash function and using sets of filters. Paper focuses on
importance of optimization and Intelligent Bloom Join filter approach for data reduction in query optimization.
Keywords—Optimization; Query Optimization; Bloom Join; Bloom Filter.

I. INTRODUCTION

 Different approaches are suggested for query

optimization. These approaches mainly includes

joins, semi-joins etc. Join algorithm has high

complexity and also it lead to a high data

transmission cost. Semi-join approaches are better

than joins but they may entail more local processing

cost and more calculative cost. Bloom join is the next

approach suggested for minimization of query cost.

The use of filters in bloom join greatly improves the

performance. A bloom filter was first developed in
1970 by Burton H. Bloom. It is an array of bits which

functions as a very compact representation of the

values of a join attribute. Bloom join may give the

same result as a semi-join but at a much lower cost.

The Bloom filter algorithm has lower local

processing cost and data transmission cost but it has a

problem of collision i.e. two different attributes

values may be hashed in to same bit address. As the

collision increases, the data reduction decreases. So

this collision problem is minimized by use of set of

Bloom filters. The data reduction is also achieved by

applying these filters at the same time to same
relation [1-4].

Bloom filter is a data structure for representing an

object in memory. It provides a probabilistic

approach to represent a set, in order to evaluate

membership of an element in a set. It is a simple,

space efficient, randomized data structure. To boost

the performance of query execution, the filter based

approach is utilized. Proposed algorithm uses the sets

of filters to reduce the number of rows from a table.

Filter based approach has the problem of collisions.
This problem is minimized by using a set of bloom

filters and by using a set of filters. Proposed filters

are called as Intelligent Bloom Join Filters as they

keep on changing as there is a change in a reduced

table or relation and at the same time these filters are

applied to the original relation that constructs the

filter first time for reduction. Because of intelligence

of bloom filters and set of filters working at the same

time on same relation, the relation is getting fully

processed and reduced. The main objective of this

approach is to minimize the number of rows in a table

or relation so that local processing cost, transmission

cost in distributed environment and collision is

reduced. With this approach query execution will be

fast and with less response time. The suggested
approach removes the non-contributive rows from a

table and reduce the effect of collisions occurred in

filter approach. The percentile reduction of rows is

provided in the paper.

For reducing the network cost, Bloom filters have

found wide use in distributed databases. Also peer–

to-peer applications use bloom filters to represent

peer contents, to enable query routing in unstructured

P2P networks. They are also used for optimizing

collaboration protocols, such as collaborative

cashing, content reconciliation. Bloom filters are also
used to represent confidential data, to enable join

execution without revealing information [6-16] [18].

Various types of bloom filters are available. The

counter bloom filters normally used with deletion

operation of bloom filters. Distance-sensitive bloom

filters uses locally sensitive hash functions. Space-

code and spectral bloom filters are approximate

representation of multi set. The compressed bloom

filters improves the performance in terms of

bandwidth saving when bloom filters are passed on as
messages. A bloom filter with two hash functions

applies hash functions to reduce the data [6-16] [17].

The rest of the paper is organized as follows:

section II gives the importance of optimization in

RESEARCH ARTICLE OPEN ACCESS

http://en.wikipedia.org/wiki/Query_plan

Vaishali P. Jadhav et al. Int. Journal of Engineering Research and Applications www.ijera.com

Vol. 3, Issue 5, Sep-Oct 2013, pp.07-12

www.ijera.com 8 | P a g e

operation research [5]. Section III gives Bloom Join

Filter approach. This section gives the flowchart and

pseudo-code of collision free intelligent bloom join

filter algorithm. Section IV gives experiments and

results and finally section V concludes the work and

outlines some future work.

II. OPTIMIZATION
 Minimization of efforts or maximization of

benefit in optimization can be expressed with the help

of decision variables. Optimization can be defined as

the process of finding the conditions that give the

maximum or minimum value of a function. The

following Fig.1 shows that if a point x* corresponds to

the minimum value of function f(x), the same point
also corresponds to the maximum value of the

negative function, -f(x). Thus without loss of

generality, optimization can be taken to mean

minimization since the maximum of a function can be

found by seeking the minimum of the negative of the

same function [5].

Fig.1 Minimum of f(x) is same as Maximum of –f(x)

 Irrespective of optimization method used,

three things always need to be specified :(i)

representation of the solution which will determine

the search space and its size. The size of search space

is depends on its representation. Representation varies

with different optimization techniques used (ii)

Objective is a mathematical statement of a task to be

achieved. It is not a function, but an expression. (iii)
Evaluation function is mainly used to compare the

quality of different solutions

In query optimization, different optimization

algorithms have different representations. For

example, in semi-join algorithm, optimization need

size of relations, number of relations, size of joining

attributes, selectivity etc. and in bloom join ,

optimization need relations, adjacency list, inverted

list, bit-arrays, filters etc. But objective is same for

both the algorithm i.e. minimization of cost, response

time and minimization of data transfer between
different sites etc. Evaluation of different algorithms

can be done by comparing the results obtained by

them and finding which algorithm gives the minimum

cost or response time.

III. BLOOM JOIN FILTER
 Bloom filters are compact data structures for

probabilistic representation of a set in order to support

membership queries. The main design tradeoffs are

the number of hash functions used, the size of the

filter and the error (collision) rate.

Consider a set },...,,{ 21 nsssS of n elements.

Bloom filters describe membership information of S

using a bit vector V of length m and with k hash

functions, khhh ,...,, 21 .

The following function builds an m bits Bloom

filter, corresponding to a set S and using

khhh ,...,, 21 hash functions [1-6][20]:

Fig. 2 Construction of a Bloom Filter

Therefore, if si is member of a set S, in the resulting

Bloom filter V all bits obtained corresponding to the

hashed values of si are set to True or 1. Testing for

membership of an element elm given in fig.3 is
equivalent to testing that all corresponding bits of V

are set [1-6] [20]:

 Fig. 3 Membership Testing of an element in a Set

A. Collision –free Bloom Filter Join Flowchart

 The basic flowchart of bloom filter design is given

below. The first flowchart Fig.4 shows the
construction of data structures used in Bloom Filters

and checking whether all relations are fully processed

or not. Second flowchart Fig.5 shows the filter

construction and reduction of original filter with

newly changed filter [2-4][7].

Function BloomFilter(set S,hash_functions, integer

m)returns Bloomfilter

Bloomfilter = set m bits of bitarray to 0

foreach si in S:

foreach hash function hj:

 Bloomfilter[hj(si)] = True

end foreach

end foreach

return Bloomfilter

Function ElementTest(elm, filter, hash_functions)

returns yes/no

foreach hash function hj:

if filter[hj(elm)] == 1 return yes

else return no

end foreach

Vaishali P. Jadhav et al. Int. Journal of Engineering Research and Applications www.ijera.com

Vol. 3, Issue 5, Sep-Oct 2013, pp.07-12

www.ijera.com 9 | P a g e

Fig. 4 Flowchart of Intelligent Bloom Join Filter Algorithm

Fig.5 Flowchart of Intelligent Bloom Join Filter Algorithm

B. Collision – free Bloom Filter Join Algorithm
Pseudo-code

Build basic data structures such as adjacency matrix, adjacency

list etc.

Build AdjacencyListCount which includes the count of each

relation’s in-degree.

Sort AdjacencyListCount and find the relation with lowest in-

degree

Let RiCount is Lowest and so start with Relation Ri.

if(AdjacencyListCount != empty) // Repeat until all relations are

fully processed

{

//Designing filter for first column of Ri i.e. RiList[0]

// Filter Check of that column in filter list

if(FilterList != empty)

{

foreach Filter in FilterList

{

foreach column in Ri

{

if(Filter exists in FilterList for that column)

{

Assign Column to CommonCol between Ri and FilterList

Apply existing Filter to reduce the relation

}

else

{

Design a new filter for that column

}

}

}

}

Applying existing filter to reduce the relation:

if(CommonCol != empty)

{

if(CommonCol = “Join Attribute1”)

{

Assign BloomFilter1 to Join attribute1

foreach element in BloomFilter1

{

select * from Ri where Join Attribute1=element }

save the query result in temporary table (tempdt)

foreach column in tempdt

{

if(tempdt.column = “ Join Attribute1”)

{

 if(Ri != tempdt)

{

 // Constructing a new filter from existing filter

// Making a bloom filter intelligent

 Assign values of Join Attribute1 of temptdt to respective

BloomFilter1

If (tempdt contains any other joining attribute)

{

Assign values of those join attributes to respective filters

}

}

}

}

}

}

Designing a new Filter for column:

if(CommonCol does not exists)

{

Read RiList[0] // Reading First column of Ri

// Design Filter for RiList[0] // Use perfect hash function

Set the BloomFilter with the exact contents of that column

Add RiList[0] to FilterList

}

Vaishali P. Jadhav et al. Int. Journal of Engineering Research and Applications www.ijera.com

Vol. 3, Issue 5, Sep-Oct 2013, pp.07-12

www.ijera.com 10 | P a g e

// decreasing the in-degree of relation for which filter is designed

If(RiList[0] exists in any other relation)

{

Remove that column from respective relation adjacency List

Decrease the in-degree of respective relation once the filter for

RiList[0] is designed.

}

if(In degree of Ri = 0)

{

Display “ Relation Ri is fully processed”

}

}// Repeat from first loop until all relations are fully processed

Explanation

Algorithm checks the in-degree of each participating relation and

starts with lowest in-degree relation. The algorithm runs until all

relations are fully reduced or processed. The selected relation

designs the new filter for first column of that relation. Perfect

hash function and Bloom array is used which maps column

values exactly with index values of bloom array. After designing

a filter remove that column from adjacency list and the in-degree

of relations which includes that column is reduced by one.

Designed filter is added to filterlist. If all the joining columns of

any of the relations are fully designed, then that relation is called

fully processed relation. Algorithm designs new filters until all

relations are fully processed.

If the filter exists in the filterlist for the column in the relation,

then apply existing filter to that column. Reduce the relation and

save changes in temporary table. If temporary table is not same

as original relation and if the original filter changes after

applying to another relation, then apply new filter to the original

relation which constructs that filter. Construct the new filters for

columns from reduced relations. Remove original and apply new

filters wherever required. Update the original filterlist. After

applying filters to all joining attributes of a relation, the relation

is reduced fully. Check the filterlist until all relations are fully

processed or reduced.

IV. EXPERIMENTS AND RESULTS
 This chapter describes the experimental system

and experiments carried out using single set of

filters, two sets of filters. The evaluation of
algorithm is done by testing the bloom join filter

algorithm with various queries [2-4][7][17-19].

 The bloom join filter algorithm is implemented

in C#. We constructed 120 queries based on eight

different databases. The database includes five

AdventureWorks databases, NorthWind database,

Pubs database and our own designed query

optimization database. The queries and relations

vary in the number of relations, sizes of relations,

number of joining attributes, number of columns in
each relation etc.

 The relations are reduced by Intelligent Bloom

Join filters. Experiments find how close an

algorithm achieves the data reduction with real

queries. Perfect hash function is used for testing of

algorithm with set of filters. Each row shown in

table is average of 20 queries. Query Type specifies

number of relations with number of join attributes.

For ex. 5-#2 denotes 5 relations with 2 joining

attributes. Bloom join reduction of each relation is

shown in percentages.

TABLE I. RESULTS OF INTELLIGENT BLOOM JOIN FILTERS

 The above results shows that as the number of

filters increases, the percentage of reduction also

increases depending upon the query used. With a
single filter used, the percentage of data reduction is

very small. When number of filters used increased

to 5 or 6, data reduction of all relation increases. In

some cases, there may not be any data reduction

with relations.

Quer

y

Type

No. of

Intellige

nt

Bloom

Join

Filters

applied

Database

Used

Intelligent Bloom Join

Reduction (%)

R

1

R

2

R

3

R

4

R5

5 -#

6

6 Query

Optimizati

on

6

7

7

5

6

7

6

7

34

3 -#

2

2 Adventure

-

WorksLT2

008R2

8 5

1

0 - -

2 -

#1

1 Adventure

-WorksLT
8 0 - - -

1 -

#4

4 Query

Optimizati

on

8

3

- - - -

3 -

#3

3 Northwind 0 0 6

1

- -

3 -

#5

5 Query

Optimizati

on

5

0

- - 4

0

25

Vaishali P. Jadhav et al. Int. Journal of Engineering Research and Applications www.ijera.com

Vol. 3, Issue 5, Sep-Oct 2013, pp.07-12

www.ijera.com 11 | P a g e

 The Fig. 6 shows the bar chart of data reduction

(%) vs. query type. All the relations are not

applicable to each query type. So bar chart shows

only those relations which are participating in data

reduction. For example, in query type 5 - #6, all five

relations shows the reduction while in 3- #5, only
three relations which participated in data reduction

shows the output. In 3 - #3, even if three relations

are participated in reduction process, only one is

reduced with 61%, so it is

involved in bar chart. The reduction of a relation is

purely depends upon the query. It is not necessary

that if query involves 3 relations, all 3 should be

processed fully.

Fig.6 Data reduction in percentage with each query type

V. CONCLUSION

 For query optimization problem, to find the

optimal sequence of database operations to process

the query is a NP hard problem. So here paper

suggested the Intelligent Bloom Join filter which

minimizes the collision and increases the data

reduction rate. Bloom Filter uses the perfect hash

function and each joining attribute uses separate

Bloom filter array. A set of filters applying at the

same time on same relation avoids the non -

contributive tuples from a table.

 The experiment shows the effect of different

filters on different types of queries. As the number

of filters increases, the data reduction rate also

increases. The tuples not required for the final

answer of the query are eliminated from the relation

using multiple filters.

 For experimental evaluation, the maximum

relations considered are 5 and maximum joining

attributes considered are

6. Different types of queries are considered from
eight different databases. Reduction of each relation

used in a query is given in percentage.

 Finally among the different join algorithms

suggested earlier, Collision – free Bloom Join Filter

algorithm works better than any other algorithm. It

requires less number of data structures and number

of phases required for data reduction is also less in

collision free bloom join algorithm. It mainly saves

the overhead of data transmission in case of
distributed databases.

 Results are based on 120 queries. Each query

type result is average of 20 queries. Data reduction

is more if numbers of filters involved in relation are

more. Percentage of data reduction is depends upon

the size of relation and number of filters applied to

it for reduction.

REFERENCES
[1] B. H. Bloom, “Space/time trade-offs in hash coding with

allowable errors,” ACM Communications, vol.13, no. 7,

pp. 422–426, 1970.

[2] J.M.Morrissey and W.Osborn,“Experiments with the use

of reduction filters in distributed query optimization” , in

proceedings of the 9th International Conference on

Parallel and Distributed Computing and

Systems,(pp.327-330).

[3] Yu Liang,” Reduction of collisions in bloom filters

during distributed

 query optimization “,Master’s Thesis, University of

Windsor, Ontario, Canada 1999.

[4] W.Osborn “The use of reduction filters in distributed

query optimization”, Master’s thesis, The University of

Windsor,1998.

[5] Richard I.Levin, David S. Rubin,”Statistics for

Management”, Pearson Publication, seventh edition

[6] S. S. Michel, P. Triantafillou, and G. Weikum, “Klee: a

framework for distributed top-k query algorithms,” in

Proceedings of the 31st International Conference on

Very Large Data Bases (VLDB), 2005, pp. 637–648.

[7] Ramesh, O. Papapetrou, and W.Siberski, “Optimizing

distibuted joins with bloom filters” in Proceedings of

International Conference of Distributed Computing and

Internet Technology (ICDCIT), 2008.

[8] T. Neumann, M. Bender, S. Michel, R. Schenkel, P.

Triantafillou, and G. Weikum, “Distributed top-k

aggregation queries at large,” Distributed and Parallel

Databases, vol. 26, no. 1, pp. 3–27, 2009.

[9] G. Koloniari and E. Pitoura, “Content-based routing of

path queries in peer-to-peer systems,” in Proceedings of

International Conference on Extending Database

Technology (EDBT), 2004, pp. 29–47.

[10] L. Michael, W. Nejdl, O. Papapetrou, and W. Siberski,

“Improving distributed join efficiency with extended

bloom filter operations,” in Proceedings of 21
st

International Conference on Advanced Information

Networking and Applications (AINA), 2007, pp. 187–

194.

[11] M. Bender, S. Michel, P. Triantafillou, G. Weikum, and

C. Zimmer, “Improving collection selection with overlap

awareness in p2p search engines.” in proceedings of the

28th Annual International ACM Conference on Research

and Development in Information Retrieval (SIGIR),

2005, pp. 67–74.

[12] L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder,

“Summary cache: a scalable wide-area web cache

sharing protocol,” IEEE/ACM Transactions on

Networking, vol. 8, no. 3, pp. 281–293, 2000.

[13] J. W. Byers, J. Considine, M. Mitzenmacher, and S.

Rost, “Informed content delivery across adaptive overlay

networks,” IEEE/ACM Transactions on Networking, vol.

12, no. 5, pp. 767–780, 2004.

Vaishali P. Jadhav et al. Int. Journal of Engineering Research and Applications www.ijera.com

Vol. 3, Issue 5, Sep-Oct 2013, pp.07-12

www.ijera.com 12 | P a g e

[14] N. Anciaux, M. Benzine, L. Bouganim, P. Pucheral, and

D. Shasha, “Revelation on demand,” Distributed and

Parallel Databases, vol. 25, no. 1-2, pp. 5–28, 2009.

[15] D. Guo, J. Wu, H. Chen, and X. Luo, “Theory and

network applications of dynamic bloom filters,” in

Proceedings of the 25th Annual Joint Conference of the

IEEE Computer and Communications Societies

(INFOCOM), 2006.

[16] M. Mitzenmacher, “Compressed bloom filters.”

IEEE/ACM Transactions on Networking, vol. 10, no.

5,pp. 604–612, 2002.

[17] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The

bloomier filter: an efficient data structure for static

support lookup tables,” in Proceedings of the fifteenth

annual ACM-SIAM symposium on Discrete algorithms

(SODA), 2004, pp. 30–39.

[18] S. Cohen and Y. Matias, “Spectral bloom filters,” in

Proceedings of the 2003 ACM SIGMOD International

Conference on Management of Data, 2003, pp. 241–252.

[19] C. D. Peter and M. Panagiotis. Bloom filters in

probabilistic verification. In Proc. the 5th International

Conference on Formal Methods inComputer-Aided

Design, pages 367–381, USA, 2004

[20] http://en.wikipedia.org/wiki/Bloom_filter

http://en.wikipedia.org/wiki/Bloom_filter

