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ABSTRACT 

Adaptive power allocation problem where it minimizes the energy-per-good bit (EPG) of a system employing a 

multiple-input multiple-output maximum ratio combining (MIMO-MRC) scheme is formulated. Closed-form 

results are obtained for the optimum transmit power and minimum EPG as a function of the number of antennas 

employed and the quality of the channel.  The cumulative distribution function (CDF) of the minimum EPG in 

closed form is obtained to assess the performance of the solution in a statistically varying channel. The energy-

efficiency trade-off between enhanced diversity and the increased circuit power consumption of multiple 

antennas is explored.  In particular, EPG CDF in a numerical example is used to find the most energy-efficient 

number of antennas for a given probability of outage. Both Rayleigh and Rician MIMO fading channels are 

considered. 

Keywords-Energy minimization, MIMO, beamforming, MIMO MRC, fading channels, adaptive power 

allocation. Introduction.

 

I. INTRODUCTION 
Adaptive power allocation or more generally 

adaptive modulation, where the transmitter adapts its 

transmit power, coding, modulation or any 

combination thereof in response to the channel fading, 

is a technique that can provide substantial gains in 

spectral efficiency  and reliability. Recently adaptive 

modulation has been used to provide substantial gains 

in energy efficiency especially in cases where the 

energy consumed by the communication circuitry is 

not negligible. It is well known that multiple antennas 

at the transmitter and receiver or multiple-input 
multiple output (MIMO) can provide dramatic 

improvements in spectral efficiency and reliability 

without requiring an increase in bandwidth or power. 

However, using multiple radio chains incurs a higher 

circuit power consumption. In this paper  the trade-off 

between the diversity advantage of multiple antennas 

and the higher circuit power consumption by focusing 

on energy efficiency of the wireless link is studied. 

Most works in the area of energy-efficient 

communications either involve solving a convex 

optimization problem or evaluate the solution by an 
exhaustive search. Some of this work has also been 

extended to the MIMO scenario, where  

Alamouti space-time block code (STBC)is 

used. In contrast to all of these works, closed form 

solutions are provided. Also unlike, perfect channel  

 

 

state information (CSI) at the transmitter and hence 

focus on beamforming is assumed . In contrast to 

which relied on simulation to analyze performance, a 

complete statistical characterization of the solution 

(closed-form CDF of minimum EPG) is made 

possible in this work by simplifications in the EPG 

model (described in section II-C). The contributions 

of this letter are: 

1) Problem formulation: the objective function, 
energy-per good bit(EPG), is extended to a 

MIMO-MRC system 

2) Closed-form solutions for energy-efficient transmit 

power, spectral efficiency and minimum EPG 

3) Statistical performance analysis: CDF of the 

minimum EPG is characterized for any fading 

distribution 

4) Numerical example: demonstrates application of 

closed form results by characterizing the best 

MIMO configuration as a function of the ratio of 

circuit power to transmit power costs. 
 

The paper is organized as follows. In section 

II, the EPG objective function for the MIMO-MRC 

system is Introduced and the energy minimization 

problem is formulated. In section III, we derive 

closed-form results for the optimum transmit power 

and minimum EPG. In section IV, we characterize the 

statistical performance of the minimum EPG by 

deriving its CDF. In section V, we present a numerical 

example where we use the results derived to evaluate 

the most energy-efficient MIMO-MRC configuration 

(in terms of the number of antennas) under both 
Rayleigh and Rician fading conditions. In this paper, 

the terms rate, bits-per-symbol and spectral efficiency 

are considered equivalent and are used 

interchangeably. 

 

A. Notation 

Vectors and matrices are denoted with boldface in 

lower andupper case, respectively. The operations ()T 

and ()† representtranspose and conjugate transpose 
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operations, respectively.The symbol ∇ represents the 

gradient operation. 

 

II. PROBLEM FORMULATION 
A. System preliminaries 

Bits from a packet of length L bits are coded 

and modulated, where coded bits are mapped to a 

constellation symbol, x, at an average power GP, 

where P is the component of transmit power that will 

be optimized and G is defined as the constant transmit 

power that is needed to overcome deleterious effects 

such as path loss, implementation loss and thermal 

noise, but also takes into account the benefits of 

coding gain (or equivalently SNR gap) and antenna 

gain. The constant transmit power G is defined as  
 

G =  ML Γ BER  
λ

4π
 
−2

dkN0NfB                         (1) 

 

Where ML is the link margin to account for 

implementation imperfections in the system, λ is the 

wavelength at the carrier frequency, d is the distance 

between the transmitter and receiver and κ is the path-

loss exponent based on a reference distance of 1 

meter. We also scale G by the variance of the additive 

thermal noise observed at the receiver. This noise is 
modeled as additive white Gaussian noise (AWGN) 

with variance  σ2 = N0NfB , where 
N0

2
 is the two-sided 

noise power spectral density (PSD), Nf is the noise 

figure of the receiver and B is the bandwidth of the 

system. Assuming a fixed operating bit error rate 

(BER), BER, we can compute the SNR gap 

approximation Γ(BER) for a given coded modulation 

scheme. As a simple example, an approximate SNR 

gap (from Shannon limit) for uncoded QAM is 

Γ BER  =  
log  BER −1 

1.5
. It is assumed a packet based 

system with ARQ in a long-term static fading channel. 

We compute packet error rate (PER) using the 

formula given by PER = 1 −(1 −BER)L, which is an 

approximation. We assume that the receiver and 

transmitter have perfect channel state information 

(CSI). 

 

B. Channel model 

In  a  MIMO  system  with  nRreceive  

antennas  and nT  transmit antennas, the received 

signal yϵℂnR , after some simplifications, is a linear 

transformation of transmit signal sϵℂnT  plus an 

additive noise wϵℂnR  

y =   PHs + w                                       (2) 

where HϵℂnR X nT  is the MIMO channel matrix and 
whas i.i.d. complex Gaussian elements with zero-

mean and unitvariance. We consider scalar 

beamforming schemes in thiswork, i.e. s is a function 

of only one information symbol. Thetransmit signal 

depends on unit-norm transmit beam forming vector v 

and scalar x ∈ A (information symbol from 

unitenergyconstellation A) as s = vx. The received 

signal y islinearly combined by receive beamforming 

vector u† to yield the scalar decision statisticy =

u†y =   Pu † Hvx + u†w. Assuming coherent 
detection at the receiver, the resulting channel model 

is given by 

y =  Pγx + w                                      (2)   

Where w  is zero-mean unit-variance AWGN  and   

γ =  u†Hv 
2
, effectively is the channel gain-to-noise 

ratio (CNR). By applying the Cauchy-Schwartz 

inequality, we have 

 u†Hv 
2
≤  u 2 Hv 2 =  Hv 2 = v†H†Hv

≤  λmax  H
†H            

Thus, the maximum CNR is achieved by 

setting v to the eigen vector corresponding to the 

maximum eigenvalue of H†H, λmax(H†H), and u = 

Hv. For a Single Input Multiple Output (SIMO) 

configuration (where nT = 1and nR >  1),this scheme 
is called Maximum Ratio Combining (MRC), fora 

Multiple Input Single Output (MISO) configuration 

(wherenT > 1and nR =  1), this scheme is called 

Maximum RatioTransmission (MRT) and for a 

general MIMO configuration,this scheme is called 

transmit-beamforming (TB) or MIMO-MRC, which is 

illustrated in Fig. 1. 

 
Fig. 1. The architechture of nR × nT MIMO-MRC 

configuration. 

 

C. Objective function: energy-per-goodbit (EPG) 

In this paper, we formulate EPG as a 
function of the variable P, which corresponds to 

transmit power without the constant scale factor G. 

Due to normalizations in G(see (1)), effectively the 

signal to noise ratio (SNR) at the receiver is γP. The 

bits-per-symbol or spectral efficiency isgiven by 

𝑏 =  log2 1 + 𝛾𝑃 . The EPG for a single carrier 

MIMO-MRC system is defined for γ >0 as 

𝐸𝑎 𝑃 =  
𝑘𝑡𝑃 + 𝑁𝐴𝑘𝑐

log2 1 + 𝛾𝑃 
                            (4) 

Where 𝑘𝑡  and 𝑘𝑐  are non-negative constants which are 
interpreted as transmit and circuit EPG respectively 

for unit transmit power and unit spectral efficiency, 

and are given by𝑘𝑡 =
𝛼𝐺

 1−𝑃𝐸𝑅 𝐵
and 𝑘𝑐 =

𝑃𝑐

 1−𝑃𝐸𝑅 𝐵
, 

respectively. Parametersin the model include, 

𝛼 =  
𝑂𝐵𝑂   

𝜂𝑚𝑎𝑥
, where OBO is the outputbackoff from 

saturation power level of the power amplifier(PA) and 

𝜂𝑚𝑎𝑥 is the maximum PA efficiency (or 

drainefficiency), 𝑃𝑐  is the average power consumption 

in a singletransmit or receiver chain (the rest of the 
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transmit and receiveelectronics excluding the PA). For 

a MIMO system, 𝑃𝑐  is computed as 

𝑃𝑐 =  
𝑛𝑇𝑃𝑐 ,𝑡𝑥 + 𝑛𝑅𝑃𝑐,𝑟𝑥 + 𝑃𝑐𝑜

𝑁𝐴
 

Where 𝑃𝑐 ,𝑡𝑥   and 𝑃𝑐,𝑟𝑥  are the power consumed in a 

singletransmit chain and receive chain, Pco is the 
(common) power consumed independent of the 

number of antennas and the total number of antennas 

in the system, 𝑁𝐴 =  𝑛𝑇 + 𝑛𝑅 .In contrast to the EPG 

model , the above model assumes a constant PA back-

off. This assumption can be a practical one where the 

back-off is a function of the maximum supported 

constellation. Orthogonal frequency division 

multiplexing (OFDM) is another example where a 

constant back-off may be employed in practice. It is to 

be noted that the results presented in this paper are 

directly applicable for OFDM systems under a 
frequency-flat fading channel model. A constant back-

off also may be prescribed for coded modulation 

systems, where the code rate is adapted and the 

constellation size is fixed. The constant PA back-off 

assumption facilitates the derivation of a closed-form 

solution for the distribution function of the optimum 

EPG. 

 

D. Optimization problem 

For a given MIMO configuration and 

channel realization, H, the MIMO-MRC scheme 
results in a CNR γ. The goal is then to find the power 

allocation, 𝑃 =  𝑃∗, that results in the minimum EPG, 

𝐸𝑎(𝑃∗), subject to certain quality of service (QoS) 

constraints, that is, 

𝐸𝑎 𝑃
∗ = 𝑚𝑖𝑛  𝐸𝑎 𝑃   𝑃 ∈ X  =

𝑘𝑡𝑃
∗ + 𝑁𝐴𝑘𝑐

log2 1 + 𝛾𝑃∗ 
(5) 

where 𝑃∗ is the optimum feasible solution over the 

convex set X defining the set of feasible power 
allocations. 

 

III. ENERGY–EFFICIENCT POWER 

ALLOCATION 
A. Pseudoconvexity of objective function 

A definition is provided for a pseudo-convex 

function and then present some theorems which will 
be useful for our purposes.  

Definition 1: Let X be a nonempty open convex 

set in Rn and let h : X → R be differentiable on X. 

Then h is pseudoconvex if for each 𝑥1 ,𝑥2 ∈ X we 

have  𝑥1− 𝑥2  
𝑇∇ 𝑥2   ≥ 0 ⟹  𝑥1  ≥  𝑥2  . 

Theorem 1: Let h be a differentiable pseudo 

convex function over X ⊂ Rn which is an open 

convex set and suppose that ∇h(x∗) = 0 for some   

x∗∈  X. Then x∗ is a global minimum of h over X.  

Proof: From the definition it is clear that      

 𝑥 ≥   𝑥∗  for all 𝑥 ∈  X. Although 

pseudoconvex functions do not have to be convex, 

they possess an important attribute of convex 

functions, 

Theorem 2: If f(x) is a real-valued, non-negative, 

differentiable, convex function and, g(x) is a real-

valued, positive, differentiable, concave function both 

defined on an open convex set 𝑋 ⊂ 𝑅𝑛 , then  𝑥 =
𝑓(𝑥)

𝑔(𝑥)
 on X is pseudoconvex. 

Proposition1: 𝐸𝑎 𝑃  is pseudo convex on  𝑋 =
  𝑃 ∈ R  𝑃 > 0 . 

Proof: 𝐸𝑎 𝑃  is of the form f(P)g(P), where  

𝑓 𝑃 =  𝑘𝑡𝑃 +  𝑁𝐴 𝑘𝑐  is affine and non-negative since 

𝑘𝑡  and 𝑘𝑐  are non-negative, and 𝑔 𝑃 = 𝑙𝑜𝑔2 1 +
𝛾𝑃  is concave in P and  𝑔 𝑃 > 0 over X. Note that 

𝐸𝑎 𝑃  is only defined for γ > 0. By theorem 2, 𝐸𝑎 𝑃  
is pseudoconvex on X.  

 

B. Optimum power allocation and minimum EPG 

Using proposition 1 and theorem 1, the optimum 

power allocation, 𝑃∗ is the solution to 
𝜕𝐸𝑎  𝑃 

𝜕𝑥
= 0. 

Assuming that γ > 0 (since 𝐸𝑎 𝑃  is not defined 
otherwise) and after performing some simple 

manipulations 𝑃∗ is the solution to  

(1 + γ𝑃∗) log 1 + γ𝑃∗ − 1 =  𝑁𝐴𝜇𝑑𝛾 −  1 

where𝜇𝑑  is defined as the ratio of circuit to 

transmit EPG for unit rate and power, i.e.  

𝜇𝑑 =  
𝑘𝑐

𝑘𝑡
. Using the Lambert W function and (11) 

from the appendix, the optimum power thatminimizes 

the EPG as a function of γ is 

𝑃∗ γ =

𝑒𝑥𝑝  1 + 𝑊  
𝑁𝐴𝜇𝑑𝛾− 1

exp (1)
  

γ
              (6) 

  In practical systems, the spectral efficiency 
may be restricted to a finite set of values as dictated 

by allowed constellation sizes and code rates. In these 

cases, a nearest neighbor rounding of the solution can 

be employed. The expression for the minimum EPG is 

obtained by plugging the solutions in (4) and applying 

(12) from the appendix 

𝐸𝑎
∗ γ 

=  𝑘𝑡 𝑙𝑜𝑔 2 

𝑒𝑥𝑝  1 + 𝑊 
𝑁𝐴𝜇𝑑𝛾− 1

exp (1)
  

γ
   (7)    

From the expression above, we can 
immediately conclude that the minimum EPG is 

positive for all γ > 0. Also for any power allocation P, 

it is clear that the EPG in (4) is strictly decreasing in 

γ. Thus, intuitively, we expect the MIMO-MRC 

scheme (which maximizes γ over all possible beam-

forming schemes) to be the EPG optimal beam-

forming scheme. In fact, it can be shown that the 

minimum EPG 𝐸𝑎
∗ γ  is a decreasing function of γ. 

IV. PERFORMANCE ESTIMATION 
In the previous section it was shown that the 

optimum power allocation and consequently the 

minimum EPG that results, is a function of the 

channel fade power γ. If we treat γ as a random 

variable with CDF 𝐹γ x = Pr  γ ≤ x  , then E∗ a(γ) is 

a function of this random variable γ and as a result is a 

random variable itself.  

 

A. CDF of minimum EPG 
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In order to derive the CDF of the minimum 

EPG, 𝐹𝐸𝑎 ∗ 𝑞0 = Pr  𝐸𝑎
∗ ≤  𝑞0  , we make a 

change of variable in (7) by introducing 

 𝑡 =  𝑊 
𝑁𝐴𝜇𝑑𝛾− 1

exp (1)
 , then the inequality 𝐸𝑎

∗ ≤  𝑞0 is 

equivalent to 
exp 𝑡 + 1 

𝑡 exp 𝑡 + 1 + 1
 ≤  

𝑞0

𝑁𝐴𝑘𝑐 𝑙𝑜𝑔 2 
 

where we have used (9) in the appendix to express γ 

as a function of t. Due to the positivity of EPG (for 

nonzero γ), we can assume 𝐹𝐸𝑎 ∗ 0 = 0 ( γ =  0 ) is 

an event of zero probability) and restrict our attention 

to 𝑞0 > 0. The equivalent inequality 
 

𝑡 =  𝑊 
𝑁𝐴𝜇𝑑𝛾 −  1

exp(1)
 ≥ W  −exp(−1−  

1

𝑐0
 +  

1

𝑐0
  ≜  𝑐1 

 

By applying the inverse of the Lambert W 

function on bothsides yields, 

 𝐸𝑎
∗ γ ≤  𝑞0 =   γ ≥

1 + 𝑐1exp(𝑐1 + 1) 

𝑁𝐴𝜇𝑑
  

Thus the CDF of the minimum EPG can be expressed 

as afunction of the fading distribution. 

𝐹𝐸𝑎 ∗ 𝑞0 = 1 −  𝐹γ  
1 + 𝑐1 exp 𝑐1 + 1 

𝑁𝐴𝜇𝑑
  

 

B. Outage EPG as a performance measure 

When the fading power follows a probability 

distribution, there may be a range of channels that are 

very poor in quality or cost too much EPG. In these 

cases, it may make sense to turn off the radio 

completely (outage event) until the channel is of a 

better quality. Service requirements specify the 

maximum tolerated outage probability po. A percentile 

is the value of a variable below which a certain 

percent of observations fall. Thus a (1 − po) ×100% 

percentile EPG or equivalently po × 100% outage 
EPG is the highest cost (in EPG) that a user will incur 

in order to communicate a bit. In a similar manner, 

outage spectral efficiency gives the slowest rate at 

which a user will communicate. Outage transmit 

power gives the maximum power that will be used. In 

the next section, various antenna configurations will 

be compared in terms of the outage EPG achieved. 

The most energy-efficient configuration is defined as 

that configuration which yields the least outage EPG, 

given a certain specified po. 

 

 

V. NUMERICAL EXAMPLE 
The parameters (unless specified otherwise) 

used in the numerical example are given in table I. 

EPG is measured in dBmJ which is the energy in dB 

relative to 1 mJ. We assume that wavelength is 

calculated as λ = 3×108fc. A realization of the channel 

gain γ is generated by finding the maximum 

eigenvalue of the Wishart matrix H†H. Each (i, j)-th 

element in a MIMO channel matrix realization is an 
i.i.d. random variable with the following distribution 

[𝐻]𝑖,𝑗   ∼  
𝐾

𝐾 + 1
+  

1

𝐾 + 1
𝒞𝒩(0,1) 

where K is called the Rician K-factor and is the 

power (strength) of the constant line-of-sight (LOS) 

component relative to the random non-LOS 

component 

 
A. CDF of EPG for various configurations 

In order to validate the theoretical expression 

for the CDF of the minimum EPG, we calculated the 

CDF using simulation by generating 80, 000 channel 

realizations for each configuration.  

Figure 2 shows a zoomed-in view of the 
EPG CDF corresponding to a distance of 25 meters. 

In Fig. 2, we consider MIMO configurations of 1 × 1, 

1 × 2 and 2 × 2 and both Rayleigh fading and Rician 

fading with K = 10. It can be seen that the theoretical 

CDF values (solid and dashed lines) match the 

simulation values (symbols) for all configurations and 

channel fading conditions considered. In order to 

evaluate the EPG CDF, we have utilized recent results 

on the distribution of maximum eigenvalue for non 

central Wishart matrices. For the Rayleigh fading 

case, it can  be observed that the 99th percentile EPG 
for the 2×2 case is around −28.2 dBmJ, where as it is 

around −23.7 dBmJ for the 1×1 configuration. Thus 

for the Rayleigh fading case, the enhanced reliability 

(diversity) provided by multiple antennas is vital to 

providing energy-efficient communication. For the 

Rician case, we observe that the CDFs, in general,  

 

 

show less spread due to the constant line-of-sight 

component and thus lower values of EPG than the 

Rayleigh fading case. For the Rician case, we also 

observe that the smaller configurations possess a 
lower lower 99th percentile EPG than the 2 × 2 

configuration. This is because the larger configuration 

has a higher circuit power consumption. 

 

B. Most energy-efficient MIMO configuration 

The most energy-efficient MIMO 

configuration    or   optimum   MIMO  configuration, 
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 nT,EE × nR,EE ∈ NMIMO, is defined to be the MIMO 

configuration that yields the smallest outage EPG (at a 

specific po). The optimum configuration is chosen 

from a discrete and  (in practice) finite set of allowed 

MIMO configurations NMIMO. Since we use a 
closed-form formula to evaluate the outage EPG, 

evaluating the optimum MIMO configuration does not 

require time consuming simulations. We consider 

balanced MIMO configurations limited to a maximum 

of four antennas at either  

 
Fig. 2. Cumulative Distribution Function of Energy 

PerGoodbit at a distance of 40 m. Solid lines 

correspond to Rayleigh fading. Dashed lines 

correspond to Rician fading (K = 10). 

 

end. For a given total number of antennas, balanced 
MIMO configurations provide superior diversity 

performance.We consider balanced MIMO 

configurations limited to a maximum of four antennas 

at either end. For a given total number of antennas, 

balanced MIMO configurations provide superior 

diversity performance. Since we have assumed 

symmetric circuit energy costs at both transmitter and 

receiver, an X × Y configuration is equivalent to a  

Y × X configuration. It should be noted that the 

equivalence will generally not hold when there is 

spatial correlation. In our case, the search space can 
be reduced by removing equivalent configurations. 

Thus the set of allowed MIMO configurations are  

NMIMO = {1 × 1, 1 × 2, 2 × 2, 2 × 3, 3 × 3, 3 × 4, 4 × 

4}. Notice that the number of antennas,   NA = nT + nR 

uniquely determines the configuration. If 𝑁𝐴
∗ denotes 

the optimum or most energy-efficient number of 

antennas,then   𝑛𝑇,𝐸𝐸  𝑥 𝑛𝑅,𝐸𝐸 =  
𝑁𝐴

∗

2
  𝑥  

𝑁𝐴
∗

2
 . 

Figure 3 shows the optimum MIMO 

configuration at a 1% outage level (po = 0.01) over a 

range of μd, over Rayleigh (K = 0) and Rician (K = 

10) fading. The largest MIMO configuration is 

preferred (for both fading scenarios) when transmit 

power cost dominates circuit power cost, i.e., when 

μd<< 1. In order to meet the outage requirement, 

diversity helps to reduce the probability that bad 

channels need to be used for transmission. As μ𝑑  gets 

smaller than the range shown, we have observed that 

largerMIMO configurations can provide 
improvements under suitable conditions. On the other 

hand, when circuit power cost is very large (μ𝑑  

around 105 for this example), SISO (1×1) is the 

preferred configuration. For Rician fading, SISO is 

optimal for a larger range of μd which indicates that 

the LOS component provides some amount of 

reliability. In general, there is an optimum MIMO 

configuration depending on the value of μd.   

 
Fig. 3.Energy-efficient MIMO configuration N∗

A= 

nT,EE +nR,EEfor both Rayleigh (K = 0, solid) and Rician 

(K = 10, dashed) fading. 

 

Figure 4 shows the corresponding 1%-outage 

EPG (equivalently 99th percentile EPG) for the 

optimum MIMO configuration, the largest MIMO 
configuration (4 × 4) and the SISO configuration 

under Rayleigh fading. The Rician fading curves are 

similar but exhibit lower values of outage EPG and is 

not shown here. It can be seen that the outage EPGfor 

the SISO configuration rapidly increases as the 

transmit power cost increases. Although not as 

dramatic, the largest MIMO configuration is seen to 

be suboptimal when circuit power costs dominate.  

Figure 5 shows the 1%-outage spectral 

efficiency achievedby the the optimum MIMO 

configuration, the largest MIMO configuration (4×4) 
and the SISO configuration (1×1) under Rayleigh 

fading. Also shown is the average spectral efficiency 

for the optimum MIMO configuration.We can 

observe that larger MIMO 
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Fig. 4. Outage EPG (Rayleigh fading) for the 

Optimum, 4 × 4 and 1 × 1 configurations as a 

function of the ratio of circuit and transmit EPG 
for a unit total power and rate, μd= kc/kt. 

 

configurations provide larger outage spectral 

efficiencies, even though these larger configurations 

are not utilizing multiplexing gain. The jagged nature 

of the spectral efficiency for the optimum MIMO 

configuration is due to the optimum number of 

antennas changing as a function of μd. Ignoring the 

jaggedness, we can observe that the spectral 

efficiency increases as the circuit power cost 

proportion increases and this makes sense because 
circuit energy isminimized by minimizing 

transmission time or maximizing spectral efficiency. 

 

 
Fig.5.Optimum, 4×4 and 1×1 configurations,Outage 

spectral efficiency (Rayleigh fading) 

 

VI. CONCLUSION 
An energy minimization problem was formulated by 

considering an objective function that corresponded to 

the energyper-goodbit (EPG) of a wireless system 

employing a MIMO-MRC scheme.A closed-form 

solution of the energy-efficient power allocation was 

derived. A closed-form expression for theminimum 

EPG was also obtained and was used to derivethe 

CDF of the minimum EPG as a function of the CDF 
of the fading distribution. A numerical example 

applied recent statistical results on the maximum 

eigenvalue of Wishart matrices to evaluate the most 

energy-efficient MIMO-MRC configuration. 

Depending on the ratio of transmit energy to circuit 

energy, it was observed that there is an optimum 

number of antennas (or diversity order) that provides 
the most energy-efficient operation. Although the 

presence of a LOS component lessens the need for 

diversity (more antennas) compared to NLOS 

operation, it was observed that as transmit energy 

becomes more dominant compared to circuit energy, 

larger MIMO configurations provided better energy-

efficient operation in both Rician and Rayleigh fading 

scenarios. Larger MIMO configurations also provided 

higher and steadier spectral efficiencies compared to 

SISO configuration.  
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