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ABSTRACT 
In this paper a design methodology is proposed to provide a constructive solution to the problem of designing a 
full order observer for linear time invariant systems subjected to unknown disturbances. Necessary conditions 

for existence of unknown input observers are stated and solved using generalized matrix inverse. The effect of 

unknown disturbance present in the system is eliminated from the observer by proper selection of gain 

parameter. Simulation is carried out and results are discussed to illustrate the proposed procedure. 
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I. INTRODUCTION 
The inputs which act on control system are 

classified into two classes- the control inputs which 

can be manipulated by the designer and the disturbance 

inputs over which the designer has no control .The 
conventional observers that assume all the inputs to the 

system are accessible cannot be used for the estimation 

of states of an LTI system subjected to both accessible 

and inaccessible inputs. So a new branch of observer, 

the unknown input observer (UIO) was developed for 

the reconstruction of states of such systems. In 1969 

Basile first introduced the concept of   observability of 

system in presence of unknown inputs [1].  Fuyu yang 

and Richard W. Wilde [2] proposed a construction 

method of unknown input full order observer using the 

classical Luenberger observer structure assuming that 

no prior information is available about the unknown 
disturbances. Darouach et al [3] extended Yang and 

Wild results and reduced the design procedure of full 

order observer with unknown inputs to a standard one 

where inputs are known. Two different approaches for 

construction of unknown input full order observer 

discussed in [2],[3] had been developed using 

straightforward matrix operations in[4] and these 

procedures are simple and direct compared to previous 

approaches. Stefen Hui and Stanislaw H.Zak [5] 

constructed full order and reduced order unknown 

input observer using projection operator approach. In 
[6] it was shown that the design problem of full order 

observer for linear systems with unknown inputs can 

be reduced to a simplified form where the unknown 

input vector does not interfere in the observer 

equations. In [7] G. Das and T.K. Ghoshal proposed a 

construction method of reduced order observer using 

generalized matrix inverse. In [8] it was shown that 

generalized matrix inverse is not harder than matrix 

multiplication. The observer design method using  

 

generalized matrix inverse [7] has prominent 

advantages over Luenberger observer. A comparison 

between the reduced order Luenberger observer and 

the Das & Ghoshal observer [7] is given in [9]. In [10] 

Das & Ghoshal observer is extended and used for the 

construction of unknown input reduced order observer. 

In [11] a detailed comparative study between two 

construction methods of UIO using projection operator 
approach and generalized matrix inverse is done and is 

shown that the later method is simpler and more 

effective. In [12] Das & Ghoshal observer had been 

extended to full-order observer using the principle of 

generalized matrix inverse. But if there is any 

unknown inputs or disturbances present, then the 

estimated states of full order observer may not 

converge to the system states. In this paper, it will be 

established how the full order observer [12] can be 

modified to incorporate disturbances and can estimate 

the system states without any knowledge of the 
unknown input. 

 

Notations: R denotes the field of real numbers; 𝑚×𝑛 

will be used to represent the dimension of a matrix 

with m rows and n columns; 𝐴𝑔denotes the Moore-

Penrose generalized inverse of the matrix A; AT 

indicates the transpose of the matrix A   and I denotes 

the identity matrix of appropriate dimension. 

 

II. MATHEMATICAL PRELIMINARIES 
If 𝐴 ∈ 𝑅𝑚×𝑛   is a matrix and a matrix 

𝐴𝑔 ∈ 𝑅𝑛×𝑚   exists that satisfies the four conditions 

below, 

𝐴𝐴𝑔 = (𝐴𝐴𝑔)𝑇                                                        (1) 

𝐴𝑔𝐴 = (𝐴𝑔𝐴)𝑇                                                        (2) 

𝐴𝐴𝑔𝐴 = 𝐴                                                               (3) 

𝐴𝑔𝐴𝐴𝑔 = 𝐴𝑔                                                            (4) 
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Then the matrix 𝐴𝑔  is called the Moore-

Penrose generalized matrix inverse of 𝐴 and is unique 

for each  𝐴 . If a system of linear equation is given by, 

𝐴𝑥 = 𝑦                                                                      (5) 

Where  𝐴 ∈ 𝑅𝑚×𝑛  is a known matrix,   𝑦 ∈ 𝑅𝑚×1 is a 

known vector  and 𝑥 ∈ 𝑅𝑛×1 is an unknown vector. 

Then   eqn. (5) is consistent if and only if,  

𝐴𝐴𝑔𝑦 = 𝑦                                                                 (6) 

If eqn. (5) is consistent then general solution of eqn. 

(5)  is given by,  

𝑥 = 𝐴𝑔𝑦 +  𝐼 − 𝐴𝑔𝐴 𝑣                                           (7) 

([13]   Graybill  1969  p.104).  

Where 𝑣 ∈ 𝑅𝑛×1denotes an arbitrary vector having 

elements as arbitrary functions of time. 

 

III. PROBLEM FORMULATION 
Consider an LTI system described by  

𝑥  = 𝐴𝑥 + 𝐵𝑢 + 𝐸𝑑𝑤 , 𝑥0 = 𝑥(0)                             (8) 

𝑦 = 𝐶𝑥                                                                        (9) 

Where x∈Rn×1 is the unknown state vector; u∈Rn×1 is 

known input vector; w∈R1×1 is unknown input vector 

and the corresponding coefficient matrix  𝐸𝑑 ∈ 𝑅𝑛  ×1; 

y∈Rm×1 denotes the output vector. The matrixes A, B, 

C are known and have appropriate dimensions. We 

assume that the pair {A, C} is completely observable 

which implies the simultaneous solution for eqn. (8) 

and eqn. (9) for x is unique when x0 , u and y are given. 

Our objective is to design a full order unknown input 

observer for the system described by eqn. (8) and (9). 

 

Construction of full-order Unknown Input 

Observer: 
 The full order observer in presence of 

unknown input „w‟ can be derived in similar way as 

given in [7] and is governed by the following 

equations. 

The general solution of eqn. (9) can be expressed as 

discussed in Das & Ghoshal [7]   , 

𝑥 = 𝐶𝑔𝑦 +  𝐼 − 𝐶𝑔𝐶 ℎ                                           (10)                                                         

Where ℎ ∈  𝑅𝑛×1 denotes vector whose elements are 

arbitrary functions of time. 

Now from eqn. (8) & eqn. (9) the general solution of  ℎ    
is 

ℎ   =  𝐼 − 𝐶𝑔𝐶 𝐴 𝐼 − 𝐶𝑔𝐶 ℎ +  𝐼 − 𝐶𝑔𝐶 𝐵𝑢 + 
 𝐼 − 𝐶𝑔𝐶 𝐸𝑑𝑤 +  𝐼 − 𝐶𝑔𝐶 𝐴𝐶𝑔𝑦 + 𝐶𝑔𝐶𝑝            (11) 

And the consistency condition to exist such solution 

has been simplified as, 

𝑦 = 𝐶𝐴 𝐼 − 𝐶𝑔𝐶 ℎ + 𝐶𝐵𝑢 + 𝐶𝐸𝑑𝑤 + 𝐶𝐴𝐶𝑔𝑦  
                                                                                  (12)  

𝑝 ∈ 𝑅𝑛×1   is a vector whose elements are arbitrary 

functions of time. For simplicity it can be taken as null 

vector as in [12]. 

Now combining eqn. (11) & eqn. (12) we get, 

ℎ   =   𝐼 − 𝐶𝑔𝐶 𝐴 𝐼 − 𝐶𝑔𝐶 − 𝐾𝐶𝐴 𝐼 − 𝐶𝑔𝐶  ℎ  
+  𝐼 − 𝐶𝑔𝐶 𝐵 − 𝐾𝐶𝐵 𝑢 + 𝐶𝑔𝐶𝑝 + 𝐾𝑦  + 
+  𝐼 − 𝐶𝑔𝐶 𝐸𝑑 − 𝐾𝐶𝐸𝑑  w + { 𝐼 − 𝐶𝑔𝐶 𝐴𝐶𝑔 
−𝐾𝐶𝐴𝐶𝑔}𝑦                                                                       13)   

                                                                                                                                                                                                          

If  ℎ  will converge to h then 𝑥  will converge to .x  

Observer dynamic equation can be written after 

introducing a change of variable to eliminate 𝑦   

ℎ = 𝑞 + 𝐾𝑦                                                            (14) 

𝑞  =   𝐼 − 𝐶𝑔𝐶 𝐴 𝐼 − 𝐶𝑔𝐶 − 𝐾𝐶𝐴 𝐼 − 𝐶𝑔𝐶  𝑞  
+  𝐼 − 𝐶𝑔𝐶 𝐴𝐶𝑔 − 𝐾𝐶𝐴𝐶𝑔

+  𝐼 − 𝐶𝑔𝐶 𝐴 𝐼 − 𝐶𝑔𝐶 𝐾 − 𝐾𝐶𝐴 𝐼 − 𝐶𝑔𝐶 𝐾 𝑦
+   𝐼 − 𝐶𝑔𝐶 𝐵 − 𝐾𝐶𝐵 𝑢 +   𝐼 − 𝐶𝑔𝐶 𝐸𝑑 − 𝐾𝐶𝐸𝑑  𝑤
+ 𝐶𝑔𝐶𝑝                                                                             (15) 

 

Observed state vector can be represented as, 

𝑥 =  𝐼 − 𝐶𝑔𝐶 𝑞 +  𝐶𝑔 +  𝐼 − 𝐶𝑔𝐶 𝐾 𝑦                (16) 

Where 𝐾 ∈ 𝑅𝑛×𝑚  is an arbitrary matrix, denotes the 
observer gain. 

 

Condition for Unknown Input Observer: 

The unknown input „w‟ is present in the 

observer dynamics. To obtain the state information of 

the system we must solve the dynamic equation (15) 

and the solution is possible if the input vector „w‟ is 

known. But the vector „w‟ represents the unknown 

input vector .To eliminate the effect of the unknown 

input „w‟ from the observer dynamics, observer gain K 

can be designed such that 
 𝐼 − 𝐶𝑔𝐶 𝐸𝑑 − 𝐾𝐶𝐸𝑑 = 0                                      (17) 
The eqn. (17) is consistent and can be solved for K, if 

and only if 

 𝐼 − 𝐶𝑔𝐶 𝐸𝑑 −  𝐼 − 𝐶𝑔𝐶 𝐸𝑑 𝐶𝐸𝑑 𝑔 𝐶𝐸𝑑 = 0  
                                                                                  (18) 

The eqn. (18) is the consistency condition of eqn. (17) 

and also the condition for existence of the UIO. The 

general solution for K can be expressed as 

𝐾 =  𝐼 − 𝐶𝑔𝐶 𝐸𝑑  𝐶𝐸𝑑 𝑔 + 𝐻(𝐼 −  𝐶𝐸𝑑  𝐶𝐸𝑑  𝑔) 

                                                                    (19) 
Where H is any arbitrary matrix and its dimension is 

same as dimension of K. Putting the value of K in eqn. 

(15) we get the observer matrix (𝐴1 − 𝐻𝐶1)                       

Where,  

𝐴1 =  𝐼 − 𝐶𝑔𝐶 𝐴 𝐼 − 𝐶𝑔𝐶 − 
           𝐼 − 𝐶𝑔𝐶 𝐸𝑑  𝐶𝐸𝑑 𝑔𝐶𝐴 𝐼 − 𝐶𝑔𝐶                  (20) 

𝐶1 =  𝐼 − 𝐶𝐸𝑑 𝐶𝐸𝑑 𝑔 𝐶𝐴 𝐼 − 𝐶𝑔𝐶                        (21) 

If pair {𝐴1  , 𝐶1} is observable then poles can be placed 
arbitrarily otherwise the system should be at least 

detectable. By applying this gain formulation 

technique, the observer will be able to estimate the 

system states effectively irrespective of any 

disturbance present or not. Hence the observer 

dynamic (eqn. (15))   becomes, 

  

𝑞  =   𝐼 − 𝐶𝑔𝐶 𝐴 𝐼 − 𝐶𝑔𝐶 − 𝐾𝐶𝐴 𝐼 − 𝐶𝑔𝐶  𝑞  
+  𝐼 − 𝐶𝑔𝐶 𝐴𝐶𝑔 − 𝐾𝐶𝐴𝐶𝑔

+  𝐼 − 𝐶𝑔𝐶 𝐴 𝐼 − 𝐶𝑔𝐶 𝐾 − 𝐾𝐶𝐴 𝐼 − 𝐶𝑔𝐶 𝐾 𝑦
+   𝐼 − 𝐶𝑔𝐶 𝐵
− 𝐾𝐶𝐵 𝑢+𝐶𝑔𝐶𝑝                                                              (22) 
                                                                 

IV. NUMERICAL EXAMPLE 
Here we have considered the state space 

model of flight path rate demand autopilot in pitch 

plane as described in [13]. A, B, C matrixes of the state 

space model are shown below,  
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A=

    

 
 
 
 
 
 −

1

𝑇𝑎

1+𝜎2𝜔𝑏
2

𝑇𝑎
−

𝐾𝑏𝜎2𝜔𝑏
2

𝑇𝑎
−𝐾𝑏𝜎

2𝜔𝑏
2

−
1+𝜔𝑏

2𝑇𝑎
2

𝑇𝑎 (1+𝜎2𝜔𝑏
2)

1

𝑇𝑎

(𝑇𝑎
2−𝜎2)𝐾𝑏𝜔𝑏

2

𝑇𝑎 (1+𝜎2𝜔𝑏
2)

0

0 0 0 1
0 0 −𝜔𝑎

2 −2𝜁𝑎𝜔𝑎  
 
 
 
 
 

 

 

B= 

0
0
0

𝐾𝑞𝜔𝑎
2

  

                                                                                        

𝐶 =  
1 0 0 0
0 1 0 0

  

 

State variables of the above state space model are as 

follows, 

 

𝑥1 = 𝛾  (Flight path rate demand) 

𝑥2 = 𝑞 (Body rate in pitch) 

𝑥3 = η (Elevator deflection) 

𝑥4 =  𝜂  (Rate of change of elevator deflection) 

 

The following numerical data have been taken for the 

class of missile considered here. 

 

Ta=2.85 sec; 𝛔2 =0.00142 sec2  ; 𝛚b =5.6 rad/sec; 𝜁a 
=0.6; Kb = -0.1437 per sec; v = 3000 m/sec; Kp = 

28.99; Kq= -1.40; 𝛚a =180 rad/sec;  

 

V. DISCUSSION 
Original states with and without unknown 

inputs and  the corresponding estimated states of the  

missile autopilot system under consideration are 

plotted using MATLAB and shown in fig 1-4 where 
the red lines indicate the system states  with unknown 

input( ix ),while the black dotted lines indicate the 

estimated states ( ix hat).Black lines represent system 

states without unknown input (𝑥𝑖
′ ) 

 

System‟s initial condition is taken as 

             
𝑥0  

= [1; 0.25; 1.89; 50]; 
The unknown input (w) has been taken as    

w=50*(exp(-2*t))*sin(100*t) and the corresponding 

coefficient matrix is chosen as     

                𝐸𝑑  = [1; 0; 1; 0]   ; 

H is any arbitrary matrix of proper dimension.  

We have considered   

                H= [-10   2   ; 3   4; -7  8; -1  2]; 

 
Fig.1: Flight path   rate 

 

 
Fig.2: Body rate 

 
Fig.3: Elevator deflection 

 

Fig.4: Rate of Elevator deflection 
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It has been clearly found from the simulation 

results that the observed states are converging to the 

system states within very short time span .It can 

successfully estimate the states of the system in 

presence of unknown input. 

 

VI. CONCLUSION 

In this paper an unknown input full order 

observer has been directly constructed using 

generalized matrix inverse. The existence condition for 

such unknown input observer is presented. The 

construction method does not presuppose the observer 

structure. This method also has no restriction on the 

output distribution matrix and requires no coordinate 

transformation of the output matrix. Simulations 
results are presented to justify the proposed method. 
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