
Jitendra Jain et al. Int. Journal of Engineering Research and Applications www.ijera.com

Vol. 3, Issue 5, Sep-Oct 2013, pp.225-228

www.ijera.com 225 | P a g e

Performing DCT8x8 Computation on GPU Using NVIDIA CUDA

Technology

Jagdamb Behari Srivastava, R. B. Singh, Jitendra Jain
Jawaharlal Nehru Krrishi Vishwavidyalaya Jabalpur

Abstract— In this paper, we have proposed sequential and parallel Discrete Cosine Transform (DCT) in

compute unified device architecture (CUDA) libraries. The introduction of programmable pipeline in the

graphics processing units (GPU) has enabled configurability. GPU which is available in every computer has a

tremendous feat of highly parallel SIMD processing, but its capability is often under-utilized. The two-

dimensional variation of the transform that operates on 8x8 blocks (DCT8x8) is widely used in image and video

coding because it exhibits high signal de-correlation rates and can be easily implemented on the majority of

contemporary computing architectures. Performing DCT8x8 computation on GPU using NVIDIA CUDA

technology gives significant performance boost even compared to a modern CPU.
Keywords: - Discrete Cosine Transform, Graphics Processor unit (GPU), Computed unified device architecture

(CUDA).

I. INTRODUCTION
The Discrete Cosine Transform (DCT) is a

Fourier-like transform, which was first proposed by

Ahmed et al. (1974). While the Fourier Transform

represents a signal as the mixture of sines and

cosines, the Cosine Transform performs only the

cosine-series expansion. The purpose of DCT is to

perform de-correlation of the input signal and to

present the output in the frequency domain.
There are several types of DCT [2]. The

most popular is two-dimensional symmetric variation

of the transform that operates on 8x8 blocks

(DCT8x8) and its inverse. The DCT8x8 is utilized in

JPEG compression routines and has become a de-

facto standard in image and video coding algorithms

and other DSP-related areas. Most of the CPU

implementations of DCT8x8 are well-optimized,

which includes the transform reparability utilization

on high-level and fixed point arithmetic, cache-

targeted optimizations on low-level.

GPU acceleration of DCT8x8 computation
has been possible since appearance of shader

languages. Nevertheless, this required a specific setup

to utilize common graphics API such as OpenGL or

Direct3D. CUDA, on the other hand, provides a

natural extension of C language that allows a

transparent implementation of GPU accelerated

algorithms. Also, DCT8x8 greatly benefits from

CUDA-specific features, such as shared memory and

explicit synchronization points.

The rest of the paper is organized as follows.

In section 2, block diagram of graphic processing unit
(GPU) is given. In section 3, explain the 1-D and 2-D

discrete cosine transform (DCT). In section 4,

Computation of discrete cosine transform on GPU

using NVIDIA CUDA technology is introduced.

Section 5 & 6 provides the simulation result and

conclusion.

II. GRAPHIC PROCESSING UNIT (GPU)
The block-diagram of a modern

programmable GPU is shown in Figure 1 [3]. The

architecture of GPU offers a large degree of

parallelism at a relatively low cost though the well-
known vector processing model known as Single

Instruction Multiple Data (SIMD). There are two type

of process used in GPU system i.e. vertex and pixel

processors. The vertex processor performs

mathematical operations that transform a vertex into a

screen position and the pixel processor performs the

texturing operations.

In this sense, GPUs are stream processors. A

stream is a set of records that require similar

computation and provide data parallelism. The
vertices and fragments are the elements in a stream.

For each element one can only read from the input,

perform operations on it, and write to the output.

However, recent improvements in graphics cards

have permitted to have multiple inputs, multiple

Input Data

Vertex

Buffer

Vertex

Processor

Rasterization

Processor

Fragment

Processor

Frame

Buffer

Texture

Buffer

Output Data

Figure 1: The Programmable Graphics Pipeline

RESEARCH ARTICLE OPEN ACCESS

Jitendra Jain et al. Int. Journal of Engineering Research and Applications www.ijera.com

Vol. 3, Issue 5, Sep-Oct 2013, pp.225-228

www.ijera.com 226 | P a g e

outputs, but never a piece of memory that is both

readable and writable. It is important for general-

purpose applications to have high arithmetic

intensity; otherwise the memory access latency will

limit computation speed. Recent developments in

data transfer rate through PCI Express interface to an

extent addressed this issue [1], [4]. Programming the

GPU in a high level language can be done using Cg

from NVidia, OpenGL, etc. [6].

III. DISCRETE COSINE TRANSFORM
Formally, the discrete cosine transform is an

invertible function F: RR
NN or equivalently an

invertible square NN matrix [1]. The formal

definition for the DCT of one-dimensional sequence

of length N is given by the following formula:

1

0

)1]......(
2

)12(
cos[)()()(

N

x N

ux
xfuuC

The inverse transform is defined as:

1

0

)2]......(
2

)12(
cos[)()()(

N

u N

ux
uCuxf

The coefficients at the beginnings of

formulae make the transform matrix orthogonal. For

both equations (1) and (2) the coefficients are given

by the following notation:

)3......(..........

0
2

0
1

)(

u
N

u
N

u

To perform the DCT of length N effectively

the cosine values are usually pre-computed offline. A

1D DCT of size N will require N vectors of N

elements to store cosine values (matrix A). 1D cosine

transform can be then represented as a sequence of

dot products between the signal sample (vector x) and

cosine coefficient (A
T

), resulting in transformed

vector (xA
T

).

A 2D approach performs DCT on input

sample X by subsequently applying DCT to rows and

columns of the input signal, utilizing the separability

property of the transform. In matrix notation this can

be expressed using the following formula:

)4....(..........),(XAAvuC
T

IV. COMPUTATION OF DISCRETE

COSINE TRANSFORMATION (DCT)
With advent of CUDA technology it has

become possible to perform SIMD (single instruction,

multiple data) high-level program parallelization.

Generally, DCT8x8 is a high-level parallelizable

algorithm and thus can be easily computation by the

CUDA.

In applications, such as JPEG and MPEG,

DCT is a resource intensive task. In this section two

different approaches to implementing DCT 8×8 block

using CUDA. In the 1st approaches, demonstrate

CUDA programming model benefits, a number of

source textures, the associated vertex streams, the

render target, the vertex shader and the pixel shader

are specified. The source textures hold the input data.
The vertex streams consist of vertices that contain the

target position and the associated texture address

information. The render target is a texture that holds

the resulting DCT coefficients. The vertex shader

calculates the target position. The 2nd approaches,

which is triggered issuing the Draw Primitives call

and creating really fast highly optimized kernels.

Then the target texture is rasterized and the pixel

shader is subsequently executed to perform pixel-

wise calculations.

We used a gray scale image data (image size

64 × 64) to compute the DCT using OpenGL API
(Application Programming Interface).

 Discrete Cosine Transform for 8x8 Blocks

with CUDA in three projects are made

o Project name 1.cpp (C++ code)

o Project name2.cu (CUDA code)

o Project name3.cpp (C++ code)

In the first project name1.cpp include the

CImg.h header file; CImg.h defines the classes and

methods to manage images in your own C++ code.

CImg.h is self-contained and thus highly portable. It

fully works on different operating system and is
compatible with various C++ compilers. In this

project, firstly save the image in .bmp format in

project name1.cpp file. After than write the code

(C++ code) and calculated the pixel value of the

image.

In second project name 2, Copy the image pixel value

in project name1.cpp and paste project name2.cu file.

There are four kernels are used in this project.

In Equation (4) XAAvuC
T

),(used two kernel,

the first kernel used in multiplier the transform of

cosine coefficient and image pixel value 1kXA
T .

The second kernel used in multiplier the k1 and
cosine coefficient.

XAAvuC
T

),(

Show the pixel value of the input image in Equation

(5) and cosine coefficient of discrete cosine transform

in Equation (6).

In the same process applied to the inverse discrete

cosine transform.

Kernel 1

Kernel 2

Jitendra Jain et al. Int. Journal of Engineering Research and Applications www.ijera.com

Vol. 3, Issue 5, Sep-Oct 2013, pp.225-228

www.ijera.com 227 | P a g e

One block of the input image pixel value is

X =

29 38 52 53 33 29 33 33

24 21 38 49 35 31 36 33

18 16 20 25 31 27 27 32

21 30 30 24 40 34 25 26

15 22 27 22 32 33 33 27

25 29 30 26 31 30 31 33

10 19 22 29 37 34 30 35
16 16 23 33 27 28 26 19

 ……… (5)
Cosine coefficient of the discrete cosine coefficient is

A=

.35 .35 .35 .35 .35 .35 .35 .35

.49 .41 .27 .09 .09 -.27 .41 -.49

.46 .19 -.19 -.46 -.46 -.19 .19 .46

.41 -.09 -.49 -.27 .27 .49 .09 -.41

.35 -.35 -.35 .35 .35 -.35 .35 .35

.27 -.49 .09 .41 -.41 -.09 .49 -.27

.19 -.46 .46 -.19 .19 .46 -.46 .19

.09 -.27 .41 -.49 .49 -.41 .27 -.09

 ..(6)

A kernel is the unit of work that the main

program running on the host computer offloads to the

GPU for computation on that device. In CUDA,

launching a kernel requires specifying three things:

 The dimensions of the grid

 The dimensions of the blocks

 The kernel functions to run on the device.

The implementation of DCT8x8 by

definition is performed using (7). To convert input

8x8 samples into the transform domain, two matrix

multiplications need to be performed.

This solution is never used in practice when

calculating DCT8x8 on CPU because it exhibits high

computational complexity relatively to some

separable methods. Things are different with CUDA;

the described approach maps nicely to CUDA

programming model and architecture specificity.

Image is split into a set of blocks as shown on Figure
2, Each CUDA-block runs 64 threads that perform

DCT for a single block. Every thread in a CUDA-

block computes a single DCT coefficient. All

waveforms are pre-computed beforehand and stored

in the array located in constant memory.

 Two-dimensional DCT is performed in four

steps (considering thread-level):

In first step, a thread with coordinates (ThreadIdx.x,

ThreadIdx.y) loads one pixel from a texture to shared
memory. In order to make sure the whole block is

loaded to the moment, all threads pass

synchronization point. In second step, the thread

computes a dot product between two vectors:

ThreadIdx.y column of cosine coefficients (which is

actually the row of XAA
T with the same number)

and ThreadIdx.x column of the input block. To ensure

all coefficients of XAA
T are calculated, the

synchronization must be passed. In third step, the

thread computes XAA
T in the same manner as in

step second. In four steps, the whole block is copied

from shared memory to the output in global memory.

Each thread works with the single pixel.

V. SIMULATION RESULT
There were two versions of algorithm

sequential and parallel. Both of them was coded in C

with using CUDA libraries and run on NVIDIA

GeForce GT 630M with 2 GB dedicated VRAM

(Video Random Access Memory) graphics card

installed on Acer V3-571G, Intel Core i5-3210M

2.5GHz with Turbo Boost up to 3.1 GHz.

The computation of discrete cosine

transform (DCT) GeForce GT 630M graphics card
solved the day to day increasing demand for the

massive parallel general purpose computing. The

accelerated version on GPU was astonishingly fast,

because it took less time compare to sequential

implementation. However, this value is strictly

limited to the execution of computation kernel itself

and doesn't include any overhead cost.

VI. CONCLUSION
In this paper, we implemented and studied

the performance of computing the discrete cosine

transform for8×8 blocks with NVIDIA CUDA

technology. Discrete cosine transform approaches

were implemented for CPU and GPU. We have

shown that GPU is an excellent candidate for

performing data intensive discrete cosine transform.

A direct application of this work is to perform

discrete cosine transform in real time digital signal

processing and image processing. The performance

testing was held for both approaches and they
exhibited good speedup rates while keeping objective

result quality constant.

Figure 2: Input image (64 × 64). The input image

divided into horizontal and vertical eight equal parts,

each part have the dimension of 8 × 8.

Jitendra Jain et al. Int. Journal of Engineering Research and Applications www.ijera.com

Vol. 3, Issue 5, Sep-Oct 2013, pp.225-228

www.ijera.com 228 | P a g e

REFERENCES
[1] Syed Ali Khayam. “The Discrete Cosine

Transform (DCT): Theory and Application”.

ECE 802 – 602: Information Theory and

Coding, March 10th 2003.

[2] R. Kresch and N. Merhav, “Fast DCT

domain filtering using the DCT and the

DST”. HPL Technical Report #HPL-95-140,
December 1995.

[3] Tze-Yun Sung, Yaw-Shih Shieh, Chun-Wang

Yu, Hsi-Chin Hsin,“High-Efficiency and

Low-Power Architectures for 2-D DCT and

IDCT Based on CORDIC Rotation”,

Proceedings of the 7th ICPDC, pp. 191-196,

2006.

[4] Simon Green. Discrete Cosine Transform

GPU

implementation.http://developer.download.n

vidia.com/SDK/9.5/Samples/vidimaging_sa
mples.html#gpgpu_dct.

[5] K. Fatahalian and M. Houston, “GPUs: A

Closer Look”, ACM Queue, Vol. 6, No. 2,

March/April 2008, pp. 18–28.

[6] S. P. Mohanty, N. Pati, and E. Kougianos,

“A Watermarking Co-Processor for New

Generation Graphics Processing Units”, in

Proc. 25th IEEE International Conference

on Consumer Electronics, pp. 303-304, 2007.

[7] V. Galiano, O.Lopez and H. Migallon,

“parallel Strategies for 2D Discrete Wavelet

Transform in Shared Memory Systems and
GPUs,” Published Springer Science+

Business Media, LLC 2012.

[8] R. Qu and Chunhong Zhang ,” High

Performance Finite Impulse Response Filter

on Graphics Processors,” 3nd Int. Conf. on

Intelligent Control and information

Processing 2012.

[9] Wladimir J. van der Laan, Andrei C. Jalba,

and Jos B.T.M. Roerdink ,“Accelerating

Wavelet Lifting on Graphics Hardware

Using CUDA,” IEEE Transactions on
Parallel and Distributed Systems, Vol. 22,

No. 1, January 2011.

[10] Saraju P. mohanty, “GPU-CPU MULTI-

Core for Real time Signal processing,” 978-

1-4244-2559-4/09 2009 IEEE.

[11] Ing. Vaclav Simek , “GPU Acceleration of

2-D DWT Image Compression in MATLAB

with CUDA ,” second UKSIM European

Symposium on Computer Modeling and

Simulation 2008.

