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ABSTRACT 
An object shape plays a crucial role in 

many computer vision applications such as 

segmentation, object detection, inpainting and 

graphics. An object shape mainly depends upon 

local and global variables. Local variables on the 

shape such as smoothness and continuity can help 

provide correct segmentations where the object 

boundary is noisy, unclear or lost in shadow. 

Global variables on the shape such as ensuring the 

correct number of parts (legs, wheels, wings etc) 

can resolve ambiguities where background clutter 

looks similar to part of the object. In this paper, 

we present a new learning algorithm for 

Boltzmann machines that contain two layers of 

hidden units that we call a Shape Boltzmann 

Machine (ShapeBM) for the task of modeling 

foreground/background (binary) and parts-based 

(categorical) shape images. We show that the 

ShapeBM can generate more realistic and 

generalized samples and ability to do shape 

completion suggests applications in a computer 

graphic setting. 

 

Keywords – Boltzmann Machine, Generalized, 

Generative, Realistic, Sampling.  

 

I. INTRODUCTION 
 

Foreground/background classification of 

pixels is a crucial preprocessing step in many 

computer vision applications, such as those for object 

detection and segmentation, inpainting and graphics. 

The original learning algorithm for Boltzmann 

machines required randomly initialized Markov 

chains to approach their equilibrium distributions in 

order to estimate the data-dependent, data-

independent expectations that a connected pair of 

binary variables would both be on. The difference of 

these two expectations is the gradient required for 

maximum likelihood learning. Even with the help of 

simulated annealing, this learning procedure was too 

slow to be practical.  
 

There have been a wide variety of 

approaches to modeling 2D shape. The most 

commonly used models are grid-structured Markov 

Random Fields (MRFs) or Conditional Random 

Fields[8]. In such models, the pairwise potentials 

connecting neighboring pixels impose very local 

constraints like smoothness but are unable to capture  

 

more complex properties such as convexity or 

curvature, nor can they account for longer-range 

properties. Carefully designed high-order potentials 

[5] allow particular local or longer-range shape 

properties to be modeled within an MRF, but these 

potentials fall short of capturing all such properties so 

as to make realistic-looking samples. For example, a 

strong shape model of horses would know that horses 

have legs, heads and tails, that these parts appear in 

certain positions consistent with a global pose, that 

there are never more than four legs visible in any 

given image, that the legs have to support the horse's 

body, along with many more properties that are 

difficult to express in words but necessary to make 

the shape look plausible. A common approach when 

using a contour (or an image) is to use a mean shape 

in combination with some principal directions of 

variation, as captured by a Principal Components 

Analysis[9] or Factor Analysis[2]. Such models 

capture the typical global shape of an object and 

global variations on it (such as changes in the aspect 

ratio of a face). Non-parametric approaches employ 

what is effectively a large database of template 

shapes[6] or shape fragments[3]. In the former case, 

because no attempt is made to understand the 

composition of the shape, it is impossible to 

generalize to novel shapes not present in the 

database. 
 

In this paper shows how a strong model of 

binary shape can be constructed using a form of 

DBM[10] with a set of carefully chosen capacity 

variables, which we call the Shape Boltzmann 

Machine (SBM). The model is a generative model of 

object shape and can be learned directly from training 

data. Due to its generative formulation the SBM can 

be used very flexibly, not just as a shape prior in 

segmentation tasks but also, for instance, to 

synthesize novel shapes in graphics applications, or 

to complete partially occluded shapes. We learn SBM 

models from several challenging shape datasets and 

evaluate them on a range of shape synthesis and 

completion tasks. We demonstrate that, despite the 

relatively small sizes of the training datasets, the 

learned models are both able to generate realistic 

samples and to generalize to generate samples that 

differ from images in the training dataset. We finally 

present an extension of the SBM that also allows it to 

simultaneously model the shape of multiple 

dependent regions such as the parts of an object, 
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which can in turn be used, for instance, as a prior in 

parts-based segmentation tasks.  

 

Table 1 : Comparison of a number of different  

shape models 

Shape Models Realism Gene

raliza

tion 
 Glob

ally 

Loc

ally 

Mean [1] √ - - 

Factor Analysis[2] √ - √ 

Fragments[3] - √ √ 
Grid MRFs/CRFs[4] - √ √ 
High-order potentials[5] Limited √ √ 
Database [6] √ √ - 

ShapeBM [7] √ √ √ 

 

We show that the SBM characterizes a 

strong model of shape[7], in that samples from the 

model look realistic and it can generalize to generate 

samples that differ from training examples. The 

Realism ensures that the model captures shape 

characteristics at all spatial scales well enough to 

place probability mass only on images that belong to 

the ―true‖ shape distribution. The Generalization 

ensures that there are no gaps in the learned 

distribution, i.e. that it also covers novel unseen but 

valid shapes. 

 

II. BOLTZMANN MACHINES 
 

A Boltzmann machine is a network of 

symmetrically coupled stochastic binary units. It 

contains a set of visible units 𝑣 ∈ {0,1}𝐷 , and a set of 

hidden units h∈ {0,1}𝑝 . The energy of the state {v,h} 

is defined as 
 

𝐸 𝑣, ℎ; 𝜃 = −
1

2
𝑣𝑇𝐿𝑣 −

1

2
ℎ𝑇𝐽ℎ − 𝑣𝑇𝑊ℎ         (1) 

 

Where 𝜃 = {𝑊, 𝐿, 𝐽}are the model 

parameters: W, L, J represent visible-to-hidden, 

visible-to-visible and hidden- to-hidden symmetric 

interaction terms. 

 
Fig. 1: General Boltzmann machine.  

 

In Fig 1 the top layer represents a vector of 

stochastic binary ―hidden‖ features and the bottom 

layer represents a vector of stochastic binary 

―visible‖ variables. The diagonal elements of L and J 

are set to 0. The probability that the model assigns to 

a visible vector v is 

𝑝 𝑣; 𝜃 =
𝑝∗(𝑣;𝜃)

𝑍(𝜃)
=

1

𝑍(𝜃)
 𝑒−𝐸(𝑣,ℎ ;𝜃)
ℎ          (2) 

 

𝑍 𝜃 =    𝑒−𝐸(𝑣,ℎ ;𝜃)
ℎ𝑣           (3) 

 

Where p* denotes unnormalized probability 

and Z(θ) is the partition function. The conditional 

distributions over hidden and visible units are given 

by 
 

𝑝 ℎ𝑗 = 1/𝑣, ℎ−𝑗  =  𝜎 ( 𝑊𝑖𝑗 𝑣𝑖
𝐷
𝑖=1 +  𝐽𝑖𝑚ℎ𝑗

𝑃
𝑚=1\𝑗 )     (4)                                     

                                                                               

𝑝 𝑣𝑗 = 1/ℎ, 𝑣−𝑖 =  𝜎 ( 𝑊𝑖𝑗 ℎ𝑗
𝑃
𝑗=1 +  𝐿𝑖𝑘𝑣𝑗

𝐷
𝑘=1\𝑖 )       (5)  

                                                                             

where 𝜎 𝑥 = 1/(1 + 𝑒−𝑥) is the logistic 

function. 

 

III. PROPOSED MODEL 
 

RBMs and DBMs are powerful generative 

models, but also have many parameters. Since they 

are typically trained on large amounts of unlabeled 

data (thousands or tens of thousands of examples), 

this is usually less of a problem than in supervised 

settings. Segmented images, however, are expensive 

to obtain and datasets are typically small (hundreds 

of examples). In such a regime, RBMs and DBMs 

can be prone to over fitting. 
 

In this section we will describe how we can 

impose a set of carefully chosen connectivity and 

capacity constraints on a DBM to overcome this 

problem: the resulting SBM formulation not only 

learns a model that accurately captures the properties 

of binary shapes, but that also generalizes well, even 

when trained on small datasets. 

 

III. I. SHAPE BOLTZMANN MACHINE 
 

The SBM used below has two layers of 

latent variables: h
1
 and h

2
. The visible units v are the 

pixels of a binary image of size N X M. In the first 

layer we enforce local receptive fields by connecting 

each hidden unit in h
1
 only to a subset of the visible 

units, corresponding to one of four rectangular 

patches, as shown in Fig. 2. 

 

 
 

Fig. 2: The Shape Boltzmann Machine. 
 

(a) 1D slice of a Shape Boltzmann Machine. 

(b) The Shape Boltzmann Machine in 2D. 

(a) 

(b) 
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(6) 

  (7) 

(8) 

In order to encourage boundary consistency 

each patch overlaps its neighbor by b pixels and so 

has side lengths of N/2 + b/2 and M/2 + b/2. We 

furthermore share weights between the four sets of 

hidden units and patches. In the SBM the receptive 

field overlap of adjacent groups of hidden units is 

particularly small compared to their sizes.  
 

Overall, these modifications reduce the 

number of first layer parameters by a factor of about 

16 which reduces the amount of data needed for 

training by a similar factor. At the same time these 

modifications take into account two important 

properties of shapes: first, the restricted receptive 

field size reflects the fact that the strongest 

dependencies between pixels are typically local, 

while distant parts of an object often vary more 

independently (the small overlap allows boundary 

continuity to be learned primarily at the lowest 

layer); second, weight sharing takes account of the 

fact that many generic properties of shapes (e.g. 

smoothness) are independent of the image position. 

For the second layer we choose full connectivity 

between h
1
 and h

2
, but restrict the relative capacity of 

h
2
: we use around 4 X 500 hidden units for h

1
 vs. 

around 50 for h
2
 in our single class experiments. 

While the first layer is primarily concerned with 

generic, local properties, the role of the second layer 

is to impose global variables, e.g. with respect to the 

class of an object shape or its overall pose. The 

second layer mediates dependencies between pixels 

that are far apart (not in the same local receptive 

field), but these dependencies will be weaker than 

between nearby pixels that share first level hidden 

units. Limiting the capacity of the second layer 

encourages this separation of concerns and helps to 

prevent the model from over fitting to small training 

sets. Note that this is in contrast to who use a top-

most layer that is at least as large as all of the 

preceding layers.  

 

 
 

Fig.3: Flow Chart for the Shape Boltzmann Machine 

 

Our MATLAB implementation completed 

training around 4 hours, running on a dual–core 

3GHz PC with 4GB memory. We use advanced 

versions of MATLAB 2009b. In the below flow chart 

training samples collected after processing the 

learning procedure. SBM parameters are discussed in 

section III.II. Graphical user interface(GUI) is the 

one of the major tool in the MATLAB platform. 

Based on SBM parameters more realistic and 

generalized samples generated through the GUI form 

trained binary samples. 
 

1) Realism - samples from the model look 

realistic; 

2) Generalization - the model can generate 

samples that differ from training examples. 

 

III. II. A MULTI REGION SBM 
 

The SBM model described in the previous 

section represents Shapes as binary images and can 

be used, for example, as a prior when segmenting a 

foreground object from its background. While it is 

often sufficient to consider the foreground object as a 

single region without internal structure, there are 

situations where it is desirable to explicitly model 

multiple, dependent regions, e.g. in order to 

decompose the foreground object into parts. In the 

SBM this can be achieved by using categorical 

visible units instead of binary ones: Visible units with 

L + 1 different states (i.e. 𝑣𝑖𝜖{0,… . 𝐿}) allow the 

modeling of shapes with L parts. The visible unit 

representing the i
th

 pixel then indicates which of the L 

parts or the background the pixel belongs to (here we 

treat the background as part 0).  
 

We use a ―one-of-L + 1‖ encoding for vi , 

i.e. we choose vi to be L + 1 dimensional binary 

vectors, for 𝑣𝑖 = 𝑙 we set 𝑣𝑖𝑙 = 1, 𝑣𝑖𝑙 ′ = 0,∀𝑙′  ≠ 𝑙. 
The energy function of this model given by 
 

𝐸  𝑣,ℎ1 ,
ℎ2

𝜃𝑠
 =   𝑏𝑙𝑖

𝑖 ,𝑙

𝑣𝑙𝑖 +  𝑤𝑙𝑖𝑗
1 𝑣𝑙𝑖ℎ𝑗

1

𝑖 ,𝑗 ,𝑙

+  𝑐𝑗
1ℎ𝑗

1

𝑗

 

+  𝑤𝑗𝑘
2 ℎ𝑗

1ℎ𝑘
2

𝑗 ,𝑘

+  𝑐𝑘
2ℎ𝑘

2

𝑘

   

Where we use V to denote the the matrix 

with the L+1 dimensional vectors vi in its rows. 
 

This change in the nature of the visible units 

preserves all of the appealing properties of the SBM. 

In particular the conditional distributions over the 

three sets of variables V, h1, and h2 remain factorial. 

The only change is in the specific forms of the two 

conditional distributions p(v/h
1
) and p(h

1
/v; h

2
) : 

 

𝑝 𝑣𝑖 = 𝑙 ℎ1 =
𝑒𝑥𝑝   𝑤𝑙𝑖𝑗

1 ℎ𝑗
1+𝑏𝑙𝑖𝑗  

 exp ( 𝑤
𝑙′𝑖𝑗
1 ℎ𝑗

1+𝑏
𝑙′𝑖𝑗 )𝐿

𝑙′=0

  

 

 𝑝 ℎ𝑗
1 = 1/𝑉, ℎ2 = 𝜎( 𝑤𝑙𝑖𝑗

1 𝑣𝑙𝑖 +  𝑤𝑗𝑘
2 ℎ𝑘

2 + 𝑐𝑗
1

𝑘𝑖 ,𝑙 ) 
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(9) 

where in the left-hand-side of eq. (7) we use 

𝑣𝑖 = 𝑙  to denote the fact that 𝑣𝑖𝑙 = 1, 𝑣𝑖𝑙 ′ = 0,∀𝑙′ ≠ 𝑙 
as explained above. 

 

The conditional distribution given in eq. (7) 

implements the constraint that for each pixel only one 

of these L + 1 binary units can be active, i.e. only one 

of the parts can be present. Due to the particular form 

of the conditional distribution (7) categorical visible 

units are often referred to as ―softmax‖ units. It 

should be noted that the above formulation of the 

multi-part SBM is especially suited to model the 

shapes of several dependent regions such as non-

occluding (or lightly occluding) object parts. For 

modeling the shapes of multiple independent regions, 

as arise in the case of multiple occluding objects, it 

might be more suitable to model occlusion explicitly.  
 

IV. LEARNING 
 

Learning of the model involves maximizing 

log p(v;Θ) of the observed data v with respect to its 

parameters Θ = {b;W
1
;W

2
; c

1
; c

2
}. The gradient of 

the log-likelihood of a single training image with 

respect to the parameters is given by  

 
∇Θ log p v; Θ =   ∇ΘE v, h1 , h2; Θ  pΘ(h1 ,h2/v)

−   ∇ΘE v′, h1 , h2; Θ  pΘ(v ′,h1 ,h2) 
 

and the total gradient is obtained by summing the 

gradients of the individual training images.  
 

The first term on the right hand side is the 

expectation of the gradient of the energy where the 

expectation is taken with respect to the posterior 

distribution over h
1
, h

2
 given the observed image v. 

The second term is also an expectation of the gradient 

of the energy, but this time taken with respect to the 

joint distribution over v, h
1
, h

2
 defined by the model. 

Although the gradient is readily written out, 

maximization of the log-likelihood is difficult in 

practice. Firstly, except for very simple cases it is 

intractable to compute as both expectations involve a 

sum over a number of terms that is exponential in the 

number of variables (visible and hidden units). 

Secondly, gradient ascent in the likelihood is prone to 

getting stuck in local optima. In this work we 

minimizes these difficulties in three ways: (a) it 

approximates the first expectation in eq. (9) using a 

mean-field approximation to the posterior; (b) it 

approximates the second expectation with samples 

drawn from the model distribution via MCMC; and 

(c) it employs a pre-training strategy that provides a 

good initialization to the weights W
1
, W

2
 before 

attempting learning in the full model. Learning 

proceeds in two phases. In the pre-traning phase we 

greedily train the model bottom-up, one layer at a 

time. The purpose of this phase is to find good initial 

values for all parameters of the model. In the second 

phase we then perform approximate stochastic 

gradient ascent in the likelihood of the full model to 

fine-tune the parameters in an expectation-

maximization-like scheme. This involves the same 

sample-based approximation to the gradient of the 

normalization constant. 

 
 

 
Fig.4: Block-Gibbs MCMC sampling Scheme 

 

In Fig. 9 which v, h
1
 and h

2
 variables are 

sampled in turn. Note that each sample of h
1
 is 

obtained conditioned on the current state of v and h
2
. 

For sufficiently large values of n, sample n will be 

uncorrelated with the original image. 
 

V. RESULTS 
 

In this section we demonstrate that the SBM 

can be trained to be a strong model of object shape. 

For this purpose we consider a challenging dataset: 

Weizmann horses. Weizmann horse dataset The 

Weizmann horse dataset contains 327 images, all of 

horses facing to the left, but in a variety of poses. The 

dataset is challenging because in addition to their 

overall pose variation, the positions of the horses' 

heads, tails and legs change considerably from image 

to image. 

 

V. I. REALISM 
 

The realism ensures that the model captures shape 

characteristics at all spatial scales well enough to 

place probability mass only on images that belong to 

the ―true‖ shape distribution. The SBM aims to 

overcome these problems through a combination of 

connectivity constraints, weight sharing and model 

hierarchy. The combination of these ingredients is 

necessary to obtain a strong model of shape. Samples 

from the SBM for horses and motorbikes are shown 

in Fig. 5.  

 

 
Fig. 5 Realism Criterion  

 

First, we note that the model generates 

natural shapes from a variety of poses. Second, we 

observe that details such as legs (in the case of 

horses) or handle bars, side mirrors, and forks (in the 
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case of motorbikes) are preserved and remain sharply 

defined in the samples. Third, we note that the horses 

have the correct number of legs while motorbikes 

have, for instance, the correct number of handle bars 

and wheels. Finally, we note that the patch overlap 

ensures seamless connections between the four 

quadrants of the image. Indeed, horse and motorbike 

samples generated by the model look suficiently 

realistic that we consider the model to have fulfilled 

the Realism requirement. 

 

V. II. GENERALIZATION 
 

The generalization ensures that there are no 

gaps in the learned distribution, i.e. that it also covers 

novel unseen but valid shapes. We next investigated 

to what extent the SBM meets the Generalization 

requirement, to ensure that the model has not simply 

memorized the training data. In Fig. 6 we show for 

horses the difference between the sampled shapes 

from Fig. 5 and their closest images in the training 

set. We use the Hamming distance between training 

images and a thresholded version of the conditional 

probability (> 0.3), as the similarity measure. This 

measure was found to retrieve the visually most 

similar images. Red indicates pixels that are in the 

sample but not in the closest training image, and 

yellow indicates pixels in the training image but not 

in the sample. Both models generalize from the 

training data-points in non-trivial ways whilst 

maintaining validity of the overall object shape. 

These results suggest that the SBM generalizes to 

realistic shapes that it has not encountered in the 

training set. 

 

 
Fig. 6 Generalization Criterion  

 

V. III. MULTIPLE OBJECT CATEGORIES 
 

Class-specific shape models are appropriate 

if the class is known, but for segmentation / detection 

applications this may not be the case. A similar 

situation arises if the view point is not fixed (e.g. 

objects can appear right or left facing). In both cases 

there is large overall variability in the data but the 

data also form relatively distinct clusters of similar 

shapes (e.g. all objects from a particular category, or 

all right-facing objects). 
 

To investigate whether the SBM is able to 

successfully deal with such additional variability and 

structure in the data we applied it to a dataset 

consisting of shapes from multiple object classes and 

tested whether it would be able to learn a strong 

model of the shapes of all classes simultaneously.We 

trained an SBM on a combination of the Weizmann 

data and 3 other animal categories from Caltech-101. 

In addition to 327 horse images, the dataset contains 

images of 798 motorbikes, 68 dragonflies, 78 llamas 

and 59 rhinos (for a total of 1329 images). 

 

 
Fig. 7 Multiple objects 

 

VI. SHAPE COMPLETION 
 

We further assessed both the realism and 

generalization capabilities of the SBM by using it to 

perform shape completion, where the goal is to 

generate likely configurations of pixels for a missing 

region of the shape, given the rest of the shape. To 

perform completion we obtain samples of the missing 

- or unobserved – pixels vU conditioned on the 

remaining (observed) pixels vO (U and O denote the 

set indices of unobserved and observed pixels 

respectively). This is achieved using a Gibbs 

sampling procedure that samples from the conditional 

distribution.  

 

 
Fig. 8 Shape completion variability 

 

In this procedure, samples are obtained by 

running a Markov chain as before, sampling v, h
1
, 

and h
2
 from their respective conditional distributions, 

but every time v is sampled we ―clamp‖ the observed 

pixels vO of the image to their given values, updating 

only the state of the unobserved pixels vU. Since the 
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model specifies a distribution over the missing region 

p(vU/vO), multiple such samples capture the 

variability of possible solutions that exist for any 

given completion task. In Fig. 8 we show how the 

samples become more constrained as the missing 

region shrinks. Blue in the first column indicates the 

missing regions. The samples highlight the variability 

in possible completions captured by the model. As 

the missing region shrinks, the samples become more 

constrained. 

 

 

 

 
Fig. 9: Sampled image completion. 

 

Fig. 9 shows sampled completions of 

regions of horse, motorbike, llama, dragonfly and 

rhino images that the model had not seen during 

training. Despite the large sizes of the missing 

portions, and the varying poses of the horses, 

motorbikes, llamas, dragonflies and rhinos 

completions look realistic. The SBM's ability to do 

shape completion suggests applications in a computer 

graphics setting. Sampled completions can be 

constrained in real-time by simply clamping certain 

pixels of the image.  

 

 
             (a)    (b) 

Fig. 11: Constrained shape completion. 

 

In Fig. 11a we show snapshots of a 

graphical user interface in which the user modifies a 

horse silhouette with a digital brush. The model's 

ability to generalize enables it to generate samples 

that satisfy the user's constraints. The model's 

accurate knowledge about horse shapes ensures that 

the samples remain realistic. As a direct comparison 

we also consider a simple data-base driven (―non-

parametric‖) approach where we try to find suitable 

completions via a nearest-neighbor search in our 

database of training shapes. Missing regions (blue 

pixels, top row) are completed using the SBM and by 

finding the closest match (middle row) to the 

prescribed pixels in the training data. Fig. 11a The 

horse's back is pulled up by the SBM (bottom row) 

using an appropriate \on" brush. Notice how the 

stomach moves up and the head angle changes to 

maintain a valid shape. The horse's back is then 

pushed down with an ―on‖ brush. Fig. 11b given only 

minimal user input, the model completes the images 

to generate realistic horse shapes. As shown in Fig. 

11 such a database-driven approach can fail to find 

shapes that match the constraints. 

 

A natural way to directly evaluate a generative model 

quantitatively is by computing the likelihood of some 

held-out data under the model. As an alternative we 

therefore introduce what we will refer to as an 

―imputation score" for the shape completion task as a 

measure of the strength of a model. We collect 

additional horse and motorbike silhouettes from the 

web (25 horses and 25 motorbikes), and divide each 

into 9 segments. We then perform multiple 

imputation tests for each image. In each test, we 

remove one of the segments and estimate the 

conditional probability of that segment under the 

model, given the remaining 8 segments. The log 

probabilities are then averaged across the different 

segments and images to give the score. Except for the 

mean model (where they are trivial) the conditional 

distributions over the subsets of unobserved pixels 

given the rest of the image are infeasible to compute 

in practice due to the dependencies introduced by the 

latent variables. We therefore approximate the 

required conditional log-probabilities via MCMC: for 

a particular image and segment we draw 

configurations of the latent variables from the 

posterior given the observed part of the image and 

then evaluate the conditional probability of the true 

configuration of the unobserved segment given the 

latent variables, i.e. we compute 
 

𝑝 𝑉𝑈 𝑉𝑂  ≈  
1

𝑆
  𝑝 𝑉𝑈  ℎ 

𝑠 𝑠                                  (10) 

 

Provided that our MCMC scheme allows us 

to sample from the true posterior the right hand side 

of eq. 10 provides us with an unbiased estimate of 

p(vU|vO).A high score in this test indicates both the 

realism of samples and the generalization capability 

of a model, since models that do not allocate 

probability mass on good shapes (from the ―true" 

generating distribution of horses) and models that 

waste probability mass on bad shapes are both 

penalized. The ShapeBM significantly outperforms 

our baseline models at this task. 
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VII. CONCLUSION 
 

In this paper we have presented the Shape 

Boltzmann Machine, a strong generative model of 

object shape. The SBM is based on the general DBM 

architecture, a form of undirected graphical model 

that makes heavy use of latent variables to model 

high-order dependencies between the observed 

variables. We believe that the combination of (a) 

carefully chosen connectivity and capacity 

constraints, along with (b) a hierarchical architecture, 

and (c) a training procedure that allows for the joint 

optimization of the full model, is key to the success 

of the SBM. 
 

These ingredients allow the SBM to learn 

high quality probability distributions over object 

shapes from small datasets, consisting of just a few 

hundred training images. The learned models are 

convincing in terms of both realism of samples from 

the distribution and generalization to new examples 

of the same shape class. Without making use of 

specialist knowledge about the particular shapes the 

model develops a natural representation with some 

separation of concerns across layers. 
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