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Abstract 
 This paper presents an evolutionary 

based algorithm for solving optimal reactive 

power dispatch problem in power system. The 

problem was designed as a Multi-Objective case 

with loss minimization and voltage stability as 

objectives. Generator terminal voltages, tap 

setting of transformers and reactive power 

generation of capacitor banks were taken as 

optimization variables. Modal analysis method 

is adopted to assess the voltage stability of 

system. The above presented problem was 

solved on basis of efficient and reliable 

technique among all evolutionary based 

algorithms, the Differential Evolution 

Technique. The proposed method has been 

tested on IEEE 30 bus system where the 

obtained results were found satisfactorily to a 

large extent that of reported earlier. 
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I. Introduction  
 Optimal power flow (OPF) is an 

optimization tool used to schedule the control 

parameters of power systems in such a manner that 

the objective function is minimized or maximized. 

Operating constraints of equipments, security 

requirement and stability limits are enforced to the 

solution. Optimal reactive power dispatch problem 

is an OPF sub-problem which has a significant 

impact on economic and secure operation of power 

systems. One of the principal tasks of a system 

operator is to guarantee that network parameters 

such as voltage and line loads are kept within 

predefined limits for high quality of services to the 

consumer load point and power system stability. 

However, changes in network topology and/or 

loading conditions often cause corresponding 

variation in voltage profiles of present day power 

systems. This problem can be addressed through 

re-distribution of reactive power sources with 

concomitant decrease in transmission losses. The 

reactive power dispatch has a twofold goal thus: to 

improve system voltage profiles and minimizes 

system losses at all times. Reactive power flow can 

be controlled by suitably adjusting the following 

facilities: tap changing under load transformers, 

generating units’ reactive power capability  

 

variation, switching of capacitors, switching of 

unloaded or unused lines and flexible AC 

transmission system (FACTS) devices. It is 

therefore clear that reactive power and voltage 

control is a constrained, nonlinear problem of 

considerable complexity.  

 Differential evolution is an improved 

version of GA for faster optimization. It was 

initially presented by Storn and Price as in as 

heuristic optimization method which can be used to 

minimize nonlinear and non-differentiable 

continuous space functions with real-valued 

parameters. This has been extended to handle 

mixed integer discrete continuous optimization 

problems. The main advantages of differential 

evolution are its simple structure, ease of use, 

robustness and its effectiveness for nonlinear 

constraint optimization problems with penalty 

functions. 

 

II. Modal Analysis for Voltage Stability 

evaluation:  
 Modal analysis is one of methods for 

voltage stability assessment in power systems. This 

method is based on eigen value analysis of jacobian 

matrix. 

 The system steady state power flow 

equations are written as 

 

 
𝜟𝑷
𝜟𝑸

 = 
𝑱𝒑𝜽 𝑱𝒑𝒗
𝑱𝑸𝜽 𝑱𝑸𝒗

  
𝜟𝜽
𝜟𝑽

          --(1) 

 

ΔP- incremental change in bus real power 

ΔQ-incremental change in bus reactive power 

Δθ-incremental change in bus voltage angle 

ΔV-incremental change in bus voltage magnitude 

JPθ, JPV, JQθ, JQV are the sub matrices of jacobian 

matrix 

If in above equation ΔP is made equal to zero, then 

ΔQ=[JQV -  JQθ  JPθ
-1 

 JPV ]ΔV=JRΔV 

and so 

ΔV=JR
-1

 ΔQ 

where  

JR=[JQV -  JQθ  JPθ
-1 

 JPV ]         --(2) 

called the reduced jacobian matrix of system 

 The system is voltage stable if the eigen 

values of Jacobian are all positive. Thus the results 

for voltage stability enhancement using modal 

analysis for the reduced jacobian matrix is when 
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 Eigen values λi > 0, the system is under 

stable condition 

 Eigen values λi < 0, the system is unstable 

condition 

 Eigen values λi = 0, the system is in 

critical condition and may collapse. 

 

III. Problem Formulation:  
 The objective of the ORPD problem is to 

minimize one or more objective functions while 

satisfying a number of constraints such as load 

flow, generator bus voltages, load bus voltages, 

switchable reactive power compensations, reactive 

power generation, transformer tap setting and 

transmission line flow. In this paper two objective 

functions are minimized separately as single 

objective. Objective functions minimized in this 

paper and constraints are formulated as shown as 

follows. 

 

A. Minimization of Real Power Loss 

 Ploss  = ∑ Gi,j(Vi  + Vj  -2 Vi Vj cos(θij )) 

    i,k Є 1,2 ---Nl                                    --(3) 

 

B. Maximizing the voltage stability margin 

 The stability stating factors which is 

almost used in all application to assess the 

proximity of voltage collapse. This is based on 

eigen value analysis of power flow jacobian matrix. 

This state’s how a particular bus can sustain for 

given loading which is can be above than the base 

case. 

 

C. Equality Constraints 

 This are normal power flow equations, 

such that every possible solution must satisfy this 

constraints.  

PGi – PDi = ∑ViVj  (Gi,j cos(θij) + Bi,j sin(θij)) 

QGi – QDi = Vi∑ VJ  (Gi,j sin(θij) - Bi,j cos(θij)) 

i = 1,2,------- N B   --(4) 

where  

NB Number of buses in the power system 

NG Number of generators 

Pi and Qi are real and reactive power injected at bus 

i 

Gij and Bij are conductance and susceptance 

between bus i and j, can be self or mutual values 

 

D. Inequality Constraints 

 These include the system operating 

constraints that are included here. The particular 

quantity of interest must be operated with in this 

possible range only, then the system is said to 

operate in secure and stable state. 

These are handled by considering penalty for each 

of constraint that are included in the objective 

function to construct a fitness function for 

searching the optimal solution in search space. 

QGi min ≤  QGi  ≤ QGi max          i Є N PV 

VGi min ≤  VGi  ≤ QGi max          i Є N PV 

N PV = Number of voltage buses 

VLi min ≤  VLi  ≤ VLi max          i Є N PQ 

N PQ = Number of load buses 

QCi min ≤  QCi  ≤ QCi max          i Є Nc 

Nc= Number of Switchable Capacitors 

t k min ≤  t k  ≤ t k max        i Є NT 

NT= Number of Tap changing Transformers 

 

IV. Differential Evolution 
 One extremely powerful algorithm from 

Evolutionary Computation due to convergence 

characteristics and few control parameters is 

differential evolution. Differential Evolution is an 

optimization algorithm that solves real-valued 

problems based on the principles of natural 

evolution using a population P of Np floating point 

encoded individuals that evolve over G generations 

to reach an optimal solution. Each individual, or 

candidate solution, is a vector that contains as 

many parameters as the problem decision variables 

D. In Differential Evolution, the population size 

(Np) remains constant throughout the optimization 

process. 

P
(G)

 = [X1
(G) 

, - - - - XNp
(G)

]        - - - (5) 

Xi
(G)

 = [X1,i
(G) 

, - - - - XD,i
(G)

]
T   

   - - - (6) 

i= 1, - - - - NP 

 Differential Evolution creates new 

offspring by generating a noisy replica of each 

individual of the population. The individual that 

performs better from the parent vector (target 

vector) and the replica (trial vector) advances to the 

next generation. This optimization process is 

carried out with three basic operations: Mutation, 

Crossover and Selection. 

 The first step in the DE optimization 

process is to create an initial population of 

candidate solutions by assigning random values to 

each decision parameter of each individual of the 

population. Such values must lie inside the feasible 

bounds of the decision variable, and can be 

generated by equation, 

Xj,i
(0)

 = Xj
min

 + ηj (Xj
max  

- Xj
min

),      - - - (7) 

i= 1, - - - - NP ; j= 1, - - - - D 
Where Xj

min
 and Xj

max
 are respectively, the lower 

and upper bound of the j
th

 decision parameter and 

ηj is the uniformly distributed random number 

within [0, 1] generated a new for each value of j. 

 After the population is initialized, this 

evolves through the operators of mutation, 

crossover and selection. The mutation operator is in 

charge of introducing new parameters in to the 

population. To achieve this, the mutation operator 

creates mutant vectors by perturbing a randomly 

selected vector (Xa) with the difference of two 

other randomly selected vectors (Xb and Xc)) 

according to. All of these vectors must be different 

from each other, requiring the population to be of 

at least four individuals to satisfy this condition. To 
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control the perturbation and improve convergence, 

the difference vector is scaled by a user defined 

constant in the range [0, 1.2]. This constant is 

commonly known as the scaling constant (F). This 

is illustrated in Fig 1. 

Xi
’(G)

 = Xa
(G)

 + F (Xb
(G)  

- Xc
(G) 

)    - - - (8) 

i= 1, - - - - NP ; 

 

 

 

Where Xa , Xb,  Xc are randomly chosen vectors €{1, 

- - - - Np} and a ≠b≠c≠ i. Xa , Xb,  and Xc are 

generated anew for each parent vector. F is the 

scaling constant. 

 The crossover operator creates the trial 

vectors which are used in the selection process. A 

trial vector is a combination of a mutant vector and 

a parent (target) vector performed based on 

probability distributions. For each parameter, a 

random value based on binomial distribution 

(preferred approach) is generated in the range [0, 1] 

and compared against a user defined constant 

referred to as the crossover constant. If the value of 

the random number is less or equal than the value 

of  the crossover constant the parameter will come  

 

from the mutant vector, otherwise the parameter 

comes from the parent vector. The figure2 shows 

how the crossover operation is performed. 

The cross operation maintains diversity in the 

population, preventing local minima convergence. 

The crossover constant (CR) must be in the range of 

[0, 1]. A crossover constant of one means the trial 

vector will be composed entirely of mutant vector 

parameters. A crossover constant near zero results 

in more probability of having parameters from the 

target vector in the trial vector. A randomly chosen 

parameter from the mutant vector is always 

selected to ensure that the trial vector gets at least 

one parameter from the mutant vector even if the 

crossover constant is set to zero. 

 

Xj,i
’’(G)

   = Xj,i
’(G)

 if ηj
’
 ≤ CR  or j=q      

                 Xj,i
(G)

 otherwise            - - - (9) 

                  i= 1, - - - - NP ; j= 1, - - - - D 
Where q is a randomly chosen index € {1, - - - - D} 

that guarantees that the trial vector gets at least one 

parameter from the mutant vector; ηj
’ 
is a uniformly 

distributed random number with [0, 1) generated 

anew for each value of j. Xj,i
(G)

 is the parent (target) 

vector, Xj,i
’(G)

 the mutant vector and Xj,i
’’(G)

  the 

trial vector. 

The selection operator chooses the vectors that are 

going to compose the population in the next 

generation. This operator compares the fitness of 

the trial vector and the fitness of the corresponding 

target vector, and selects the one that performs 

better. The selection process is repeated for each 

pair of target/trial vector until the population for 

the next generation is complete. 

Xi
(G+1)

   =  Xj,i
’’(G) 

 if   f(Xj,i
’’(G)

)  ≤  f(Xj,i
(G)

)    

   Xi
(G)

   otherwise 

                  i= 1, - - - - NP ;                    - - - (10)  
 

V. DE approach to ORPD Problem 
 The present ORPD problem is 

implemented in DE to make the objective function 

of interest as minimum as possible without making 

the solution variables going out of the limits. 

The decision variables such as generator bus 

voltages, reactive power generated by capacitors 

and transformer tap settings are represented as 

candidate solution vector, such that they are 

initialized according to their nature of variation in 

its practical situation. 

 The function of each individual in the 

population is evaluated according to its fitness 

which is the non-negative number that is to be 

minimized as made by objective function. 

 The fitness function for the present 

problem looks to be, 

 

Min F=Ploss + w*(Emax)+PenV+PenQ 

--(11) 

Where 

Ploss is the total power loss in system 

Emax is max eigen value of reduced Jacobian 

w is penalty for eigen value of matrix 

PenV is penalty for load bus variation 

PenQ is penalty for generator reactive power limit 

violation. 

 

 

 

Fig 1 Method of creating Mutant Vector 

Fig 2 Method of Crossover operation 
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VI. Simulation and Results 
 To test the effectiveness of the proposed 

approach IEEE 30 bus system was chosen as the 

standard model that has 6 generators, 24 load bus 

and 41 transmission lines with 4 tap changing 

transformers. The initial range for solutions were 

taken as, 

 

Sl.No. Variable Min max 

1 
Generator bus 

voltage 
0.95 1.05 

2 Tap setting 0.9 1.1 

3 

Reactive power 

generation by 

Capacitor 

0 5 

a. Only Loss minimization as objective: 

Here the objective is to minimize the power loss in 

the system without considering the voltage stability 

of system. It was run with different control 

parameter settings and minimal solution was 

obtained for some fixed values by repeated 

program runs. 

 The optimal values for the solution vector 

was obtained for optimum condition of function 

and it was found to be lie with in the range of its 

minimum and maximum values as given in table 1. 

 The optimal control variables obtained in 

this case are as follows 

Variable Value obtained 

V1 1.029 

V2 1.054 

V5 1.035 

V8 0.998 

V11 1.024 

V13 1.032 

T11 0.998 

T12 1.066 

T15 1.003 

T36 0.958 

QC10 3.984 

QC12 1.012 

QC15 0.002 

QC17 3.956 

QC20 3.836 

QC21 3.945 

QC23 3.992 

QC24 3.012 

QC29 2.948 

Ploss 4.456 

Emin 0.344 

 

b. Multi-Objective case of Loss 

minimization with Voltage stability 

 Now the case where both the objectives of 

loss minimization and voltage stability 

enhancement has been considered with the fitness 

function as given in previous section to obtain the 

candidate solution by DE mechanism. Since both 

the objectives are considered it is difficult to obtain 

the minimum of both objectives so we get the 

solution in the search space was both are acceptable 

in narrow difference as compared to the previous 

case. 

Variable Value obtained 

V1 1.035 

V2 0.995 

V5 1.011 

V8 1.024 

V11 0.985 

V13 1.041 

T11 0.978 

T12 1.052 

T15 1.030 

T36 0.988 

QC10 3.998 

QC12 1.112 

QC15 0.010 

QC17 3.854 

QC20 3.548 

QC21 3.654 

QC23 3.988 

QC24 3.015 

QC29 3.002 

Ploss 4.987 

Emin 0.354 

 

The obtained values of power loss and minimum 

eigen values are the utmost minimum values as far 

reported in the literature. On comparison with the 

previously solved algorithms the following 

comparison table can be framed. 

Method Ploss 

EP[2] 5.015 

GA[4] 4.665 

Real Coded GA[6] 4.501 

DE[Proposed] 4.456 

 

VII. Conclusion 
 This paper presented a dynamic multi 

modal evolutionary algorithm approach for ORPD 

problem with voltage stability enhancement as 

main constraint. The decision variables chosen to 

achieve the above objective were the generator bus 

voltages, reactive power generation by capacitor 

banks and transformer tap settings, more over this 

algorithm provides a new dimension in solving 

such kind of multi variable problem such that the 

obtained decision variables are within their 

boundaries. The modal analysis provides the better 

information about voltage stability assessment than 

any other index referred in literature, so that the 

problem becomes more complex, where this 

proposed DE can able to solve with minimum 

iterations and time as possible. 

 So, from the proposed work it can be 

concluded that this mode of solving multi modal 



J.Jithendranath and K.Hemachandra Reddy/ International Journal of Engineering Research 

and Applications (IJERA)             ISSN: 2248-9622            www.ijera.com 

Vol. 3, Issue 4, Jul-Aug 2013, pp. 66-70 

70 | P a g e  

real valued optimization problems can be 

effectively applied with variants in other power 

system problems as well. 
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