
Nagendra Sah, Gaurav Khurana / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.1796-1800

1796 | P a g e

Implementation of Serial Communication between PC and DSP

Processor Using Modbus Protocol

Nagendra Sah
1
, Gaurav Khurana

2

1
(Sr. Asstt. Professor, Electronics and Electrical Communication Department, PEC University of Technology,

Chandigarh
2
(M.E., Electronics and Electrical Communication Department, PEC University of Technology, Chandigarh

ABSTRACT
This paper described the principle,

application and implementation of serial

communication between PC and a Digital Signal

Processor (DSP). The TMS320F28031 which is a

type of DSPs made by Texas Instruments (TI) is

used in this implementation. This DSP processor

has serial communication interface (SCI) module

for serial communication. The SCI is a two−wire

asynchronous serial port, commonly known as a

UART (Universal Asynchronous

Receiver/Transmitter). The standard of Modbus

protocol is implemented for this serial

communication. The Modbus protocol provides an

industrial standard method that Modbus devices

use for parsing messages. PC (Personal

Computer) can read/write one or more registers of

DSP processor using Modbus communication. This

paper highlights the basics of Modbus protocol

and also explains the software detail of Modbus

implementation.

Keywords - DSP processor, Modbus protocol,

UART, serial communication

I. INTRODUCTION
Although all the real time signals are

analogue in nature but due to the huge advancement

in digital signal processing, all the signals are

processed in digital form. As we all know, Digital

signal processing has number of advantages over

analogue signal processing. To process the real time

signal in digital domain, first of all we have to convert

that analogue signal into digital signal using ADC

(Analog to Digital Converter) and after signal

processing; we have to convert digital output back

into analogue form by using DAC (Digital to Analog

Converter).

Due to huge advancement in the field of

VLSI (Very Large Scale Integration) in the past few

years, there are number of digital Integrated Chips

(IC’s) are available in the market for performing the

above task more efficiently and accurately. These

digital IC’s are commonly known as digital signal

processor (DSP). DSP has been used widely in auto

controller, image process, communication, network,

home electrical appliances, and so on. Currently, the

most widely used product come from Texas

instruments (TI) which takes up almost 60 % of the

market [1]. TMS320F28031 is a chip which is a

product made by TI. Unlike some other chips, it uses

an advanced Havard type architecture that maximizes

processing power by maintaining two separate

memory bus structures, one memory section for

storing program and other for storing data. This will

increase the program execution speed. This chip has

several integrated peripherals like ADC, SCI, Timer

and PWM (Pulse Width Modulator) etc. [2].

The Modbus is one of the most common

serial communication protocol used in industrial

application for process control. Using Modbus

protocol a number of controllers and intelligent

devices and communication with each other over any

network. Actually Modbus protocol defines a

messaging structure which is universally accepted and

used. In this paper, we have established a serial

communication between PC and DSP processor using

Modbus protocol. The master sends a command in

hexadecimal and slave responds with its response in

hexadecimal too. In order to display the result,

software called Modbus tester is used. Same software

is also used to configure the communication

parameters like communication mode, baud rate, start

bits, stop bits and parity bits etc.

II. HARDWARE STRUCTURE
A. SCI

TMS320F28031 DSP processor has an on

chip serial communication interface (SCI) as one of

its peripheral in its core. SCI is a two−wire

asynchronous serial port and it supports digital

communications between the CPU (Central

Processing Unit) and other asynchronous peripherals

that use the standard non-return-zero (NRZ) format.

The SCI receiver and transmitter are double-buffered

and each has a 4-level deep FIFO (First in First Out)

for reducing servicing overhead. Both have their own

separate enable and interrupt bits and both can be

operated independently for half-duplex

communication, or simultaneously for full duplex

communication. To ensure data integrity, the SCI

checks received data for break detection, parity,

overrun, and framing errors. The bit rate is

programmable to over 65000 different speeds through

a 16-bit baud select register [3].

SCI module has two external pins for serial

communication that is SCITXD (SCI transmit output

Nagendra Sah, Gaurav Khurana / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.1796-1800

1797 | P a g e

pin) and SCIRXD (SCI receive input pin). Serial

Transmission and reception operations can be

accomplished through interrupt driven or polled

algorithms. Here interrupt driven technique is used for

communication in full duplex mode.

Major elements of SCI module is shown in figure 1

and it includes:

 TXD pin

 RXD pin

Fig. 1 Internal Device Structure

A transmitter (TX) and its major registers

(upper half of Figure 1) are:

SCITXBUF register (SCI transmitter data

buffer register) - it Contains data (loaded by the

processor) to be transmitted to the remote PC.

TXSHF register (SCI transmitter shift register) - It

accepts data from register SCITXBUF and shifts data

onto the SCITXD pin, one bit at a time.

A receiver (RX) and its major registers

(lower half of Figure 1) include:

RXSHF register (SCI receiver shift register) - It

shifts in the data from SCIRXD pin, one bit at a time.

SCIRXBUF register (SCI receiver data buffer

register) - It contains data to be read by the DSP

processor. Data from a remote PC is loaded into

register RXSHF and then into registers SCIRXBUF.

III. MODBUS PROTOCOL
The Modbus is a serial communications

protocol published by Modicon in 1979. Modbus

protocol defines a standard message structure with

universal recognition and usage regardless of the type

of networks over which any two devices

communicate. It is a master slave communication

protocol. It describes the process a master uses to

request an access to slave, and how the slave will

respond to these requests, and how errors will be

detected and reported. Master can initiate transactions

(called ‘queries’) and slave respond by supplying the

requested data to the master, or by taking the action

requested in the query. The master can address

individual slaves, or can initiate a broadcast message

to all slaves. Slaves return a message (called a

‘response’) to queries that are addressed to them

individually. Responses are not returned to broadcast

queries from the master. Figure 2 shows the query

response cycle of Modbus communication.

Fig. 2 Modbus master-slave query-response cycle

As shown in figure 2, master’s query consists

of slave device (or broadcast) address, a function code

defining the requested action, any data to be sent, and

an error checking field. The slave’s response contains

fields confirming the action taken, any data to be

returned, and an error–checking field. Slave confirms

the action taken by sending the echo of function code

sent by the master.

Table I shows the Application Data Unit

(ADU) and Protocol Data Unit (PDU) of Modbus

protocol. PDU is consisting of function field (1 byte)

and data field (variable bytes) and ADU is consisting

of address field (1 byte), PDU and error checking

field (2 bytes) [4].

Table I Modbus data format

 Protocol data unit

(PDU)

Application Data unit(ADU)

1 byte 1 byte Variable 2 bytes

Address

field

Function

field

Data field Error

checking

field

If the slave makes a normal response, the

function code in the response is an echo of the

function code in the query. If an error occurred in

receipt of the message, or if the slave is unable to

perform the requested action, the slave will construct

an error message by modifying the function code (set

the MSB (Most significant Bit) of function code) to

indicate that the response is an error response, and the

data bytes contain a code that describes the error [5].

Some of the commonly used function codes are

shown in table II.

SCITXBUF
Transmitter

section

SCIRXBUF Receiver

section

Nagendra Sah, Gaurav Khurana / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.1796-1800

1798 | P a g e

Table II List of commonly used function

codes in Modbus protocol

Code Name

01 Read single coil status

02 Read input status

03 Read multiple holding registers

04 Read multiple input registers

05 Write single coil

07 Read Exception Status

15 Write multiple coils

16 Write multiple registers

23 Read/Write multiple registers

Modbus protocol can be established in two kinds of

transmission mode: ASCII (American Standard Code

for Information Interchange) mode or RTU (Remote

Terminal Unit) mode. In ASCII mode, each 8–bit byte

in a message is sent as two ASCII characters. In RTU

mode, each 8–bit byte in a message contains two 4–bit

hexadecimal characters. The main advantage of RTU

mode is that its greater character density allows better

data throughput than ASCII for the same baud rate.

Modbus protocol has the parity check, besides, the

ASCII mode uses the LRC (Longitudinal Redundancy

Check) and the RTU mode uses 16 CRC (Cyclical

Redundancy Check).

Table III is a comparison between ASCII mode and

RTU mode.

Table III Comparison of ASCII and RTU

mode

According to Table III, the data transmission rate

of ASCII mode is a little lower than RTU mode. So,

when need to send large data, user always uses RTU

mode. The standard Modbus protocol is to use a RS-

232C compatible serial interface, which defines the

port pin, cable, digital signal transmission baud rate,

parity.

IV. IMPLEMENTATION OF COMMUNICATION
A. Configuration Setting

In order to implement the Modbus protocol

communication between PC and DSP processor, first

of all we should configure both PC and DSP

processor for the same communication mode and

same baud rate that is 9600 bps (bits per second) [6].

As explained earlier, there are two modes of serial

communication in Modbus protocol that is ASCII

mode and RTU mode. In this implementation we have

used the later one. Configuration used in this

implementation is shown in table IV.

Table IV PC and DSP processor communication

Configuration

Communication

Mode

Remote Terminal Unit

(RTU)

Baud Rate 9600 bps

Data bit 8 bits

Stop bit 1 bit

Parity bit None

Baud rate is nothing but data transfer rate which must

be same at both the terminals (PC and DSP

Processor). PC baud rate is configured by using

Modbus communication interface software named

Modbus tester and DSP processor’s baud rate is

configured by using its control registers. Following

formulas are in this process:

Baud rate = Sysclk / (BRR+1) × 8 (1)

BRR = Sysclk (aud rate) 1

(2)

In “Eq. (1)”, the Sysclk stands for system clock

frequency and the RR in “Eq. (2)” is the value of

SCIHBAUD and SCILBAUD registers that you

should configure.

After setting the proper baud rate, the serial

communication is established by using two wire

communication method. Modbus protocol is

master/slave protocol and communication can be

initiated by master only and here PC is working as

master and DSP Processor is working as slave. So PC

will initiate this communication and sends a command

to read DSP Processor’s 7 input registers. Each

register is of 2 bytes. But data field in Modbus

protocol is of 8 bits so each register is represented by

two data bytes. First byte represents higher byte and

second byte represents lower byte. Hence 7 register is

equal to 14 bytes. Slave address is 8 bit long and it is

settable. In this project, we have used only one slave

and its address is 01.

B. Software Flow

This communication is implemented in TI

tool code compose studio. Code Composer Studio™

(CCStudio) is an integrated development environment

(IDE) for Texas Instruments (TI) embedded processor

families. CCStudio comprises a suite of tools used to

develop and debug embedded applications. Timer 0

interrupt service routine of TMS320F28031 is used in

this implementation. Timer 0 is configured to generate

an interrupt after every 20 microsecond. In timer 0

ISR (interrupt service routine), we check the flag bit

showing the reception of data byte. If this flag bit is

Mode Begi

nnin

g

mar

ks

Endi

ng

mar

ks

Check Trans

missio

n

efficien

cy

Progra

m

Process

ing

ASCI

I

:

(col

on)

CR,

LF

LRC

low

Direct,

easy to

debuggi

ng

RTU

Non

Non

CRC

High

Indirect,

slightly

comple

x

Nagendra Sah, Gaurav Khurana / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.1796-1800

1799 | P a g e

set, it shows that byte has been received. Then we

process the received the data to extract the useful

information form this data [7].

First byte is slave ID (slave address). So first

of all, we compare the received byte with the address

of that slave. It received byte matches with the slave

ID. It means that next whole data frame is addressed

to this slave and we will process the whole data frame

otherwise we will ignore the whole data frame. Then

we go for CRC check. It will tell about the frame

validity. If frame is invalid, program will generate a

response showing error in received frame using

exception code. Next step is extracting the

information from function code. List of commonly

used function code is shown in table II. Then create

the slave response according the function code.

C. Read Input Registers of DSP Processor

Here PC is master and will initiate the

communication so it is working as transmitter and

DSP Processor’s response is received by the PC [8].

The communication traffic is shown in figure 3.

Fig. 3 Modbus communication traffic

As shown in figure 3, TX (Transmitter)

represents the command sent by PC to DSP processor

and RX (Receiver) is the response sent by DSP

processor to PC. Analysis of TX data is given in table

V.

Table V Data sent from PC to DSP

Processor

Code (Hex) Meaning

01 Slave Address.

04 Function code(read multiple

input register)

00 Starting address of input

registers(higher)

00 Starting address of input register

(lower)

00 Number of registers (higher)

07 Number of registers (lower)

B1 CRC (higher)

C8 CRC (lower)

From table V it is clear that, PC wants to

read multiple input registers of slave whose address is

01. Starting address (16 bits) of these registers is

0000h is also given by the master in its command and

number register is 0007h. Last two bytes are CRC

check bits for detecting the error in the transmitted

code.

RX is the response sent by DSP Processor to

PC and analysis of Rx is given in table VI:

Table VI Data sent from DSP Processor to PC

Code (Hex) Meaning

01 Slave Address.

04 Function code (echo of function

code sent by master, as no error is

detected by slave in Tx code. If

slave detect some error in Tx code

then it exception code which is

also echo of original function code

with its MSB is equal to logic 1)

0E 14 bytes(2*7 registers) in data

field

00 Content of first register (higher)

00 Content of first register (lower)

00 Content of second register (higher)

96 Content of second register (lower)

00 Content of third register (higher)

B9 Content of third register (lower)

00 Content of fourth register (higher)

5A Content of fourth register (lower)

00 Content of fifth register (higher)

D2 Content of fifth register (lower)

00 Content of sixth register (higher)

91 Content of sixth register (lower)

00 Content of seventh register

(higher)

71 Content of seventh register (lower)

C2 CRC (higher)

E4 CRC (lower)

It is clear from table VI that, each 16 bit register is

represented by two data fields each of 8 bit long.

Hence content each register is shown in hexadecimal

and decimal in table VII.

Table VII 16 bit register content in hexadecimal

and decimal format

Register

number

Content in

Hex

Content in

Decimal

01 0000h 00

02 0096h 150

03 00B9h 185

04 005Ah 90

05 00D2h 210

06 0091h 145

07 0071h 113

Nagendra Sah, Gaurav Khurana / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 4, Jul-Aug 2013, pp.1796-1800

1800 | P a g e

V. RESULTS AND DISCUSSION
Results are shown in figure 4. It is clear from

figure 4 that master (PC) send a command to read 7

input registers (14 bytes) of DSP processor and then

DSP processor create a response message consist of

19 bytes (1 byte slave ID, 1 byte function code, 1 byte

to show number of bytes in data unit (that is 14 in this

example), 14 bytes of data and 2 bytes of CRC).

Modbus tester software check integrity of slave

response if response is found to be valid then it extract

14 byte data unit from 19 byte slave response and

display the result in decimal as shown in figure 4.

Fig. 4 results display in Modbus tester

VI. CONCLUSION
Modbus protocol is implemented and serial

communication between PC and DSP Processor is

established and results are displayed using Modbus

tester software. Thus, we can easily interface a

number of digital IC’s like DSP processors with our

PC using Modbus protocol. So this communication

technique can be one of well choice in industrial

control applications.

REFERENCES
[1] Zhang Zhi-Qiang, and Zhang Yu-lin,

“Realization of Communication Between

DSP and PC Based on Modbus Protocol,”

IEEE International Conference on

Multimedia Information Networking and

Security, 2009, pp. 258-261.

[2] Peng D.G, Zhang H., Yang Li and Li H.

“Design and Realization of Modbus Protocol

 ased on Embedded Linux System,” The

2008 International Conference on Embedded

Software and Systems Symposia. July 29-31,

2008, Chengdu, Sichuan, China pp. 275-

280.

[3] TI, TMS 320F/28031 DSP Controllers

Peripheral Library and Specific Devices,

Dallas: Texas Instrument, 2007, pp.56-72.

[4] Zhi-Hua Chen, Min Shi, Qing-Ming Yi,”A

Method for DSP asynchronous Serial port

Expansion ased on TL16C752 ,” IEEE,

2011, pp. 844-847

[5] Yue Y., Zhang C.G., Yuang A.J., “Design

and implementation of Embedded Man-

Machine Interface ased on Modbus”.

Industrial Control Computer, 2006, 19(1) pp.

8-10.

[6] TI, TMS 320F/28031 DSP Controllers

Peripheral Library and Specific Devices,

Dallas: Texas Instrument, 2007, pp.96-102.

[7] Song J, QU J P, “Realization of

Communication Between PCC and Touch

Screen ased on Modbus Protocol,” Electric

Machine Integration, vol. II, Nov. 2007, pp.

28-73.

[8] TI, TMS 320F/28031 DSP Controllers

Peripheral Library and Specific Devices.

Dallas: Texas Instrument, 2007, pp 176-185.

