
Mr.Shish Ahmad, Dr. Rizwan Beg, Ms. Raziqa Masood / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.995-999

995 | P a g e

Contribution of Transparent cryptography in prevention of

information leakage
(protecting digital content in transparent cryptography)

Mr.Shish Ahmad, Dr. Rizwan Beg, Ms. Raziqa Masood, Mr Shahid

Hussain
*Computer Science and engineering Integral University Lucknow, India.

**Computer Science and engineering Integral University Lucknow, India.

***Computer Science and engineering Integral University Lucknow, India.

Abstract
The aim of this paper is to analyze how

transparent cryptography protected digital content

of mobile in an effective way. In this chapter we

will look for possibilities to use transparent

cryptography for AES in a secure way. We

discuss an application of transparent cryptography

in which we split the set of white-box tables into

a dynamic part and a static part . The result is

that whenever a key needs to be updated, no
longer the whole set of tables needs to be

updated. In §6.3 different possibilities for using

external encodings are described. We discuss

what the best possibility .we discuss the problem

of the storage space and we look for possibilities

to use less tables to save storage. Finally, we look

for possibilities to use transparent cryptography for

OMA-DRM.

1. INTRODUCTION :
In this paper we looked for possibilities

to use transparent cryptography for AES in a

secure way. We recommended to split the set of

white-box tables into a static part and a dynamic

part. In this way each client has a unique set

of static tables which can only be used in

combination with a unique set of dynamic tables.

The security also increases by sending a different

ciphertext to each client.

2. We suggested different possibilities for

applying transparent cryptography for OMA-
DRM. Because of the total size of the tables and

the slowdown we recommended using white-box

cryptography only for keys which are fixed over a

longer period of time. For example, white- box

cryptography can be used to update the private

key. White-box cryptography can also be used to

store keys on the client’s device.

3. Overall, we can say that transparent

cryptography ensures that the keys are no longer

visible. Nevertheless, we are still able to publish

the decrypted content. For example we can put a
lot of effort in hiding a key which can be used to

decrypt an encrypted ringtone, but as soon as the

ringtone is decrypted on our mobile phone we

could tap it and distribute it on the internet. The

same can be said in the case of broadcasting an

encrypted movie or a soccer match via a satellite.

However, for instance in case of a soccer match,

people want to see it live. In this situation people

would be more interested in obtaining the key.

If they have the key, they could tap the

encrypted soccer match and use the key for

decryption and watch the soccer match live. In

this case it is more valuable to have the key,

which implies that it is very

4. important to protect the key securely by

for example transparent cryptography.

Breaking the tables into dynamic and static

Tables
We want to be able to update the key

which is hidden in the white-box tables. This can

be done by splitting the tables. The part of the

tables which is dependent on the key is sent to the

client and the other part of the tables which is

not dependent on the key is stored on the

client’s device. When we want to update the key,

only part of the tables needs to be sent to the

client. Therefore, less data needs to be transmitted.

The tables that are sent by the server to the client
can be updated and are called the dynamic

tables. The tables that are stored on a clients’s

device cannot be updated and are called the

static tables. If an attacker taps the ciphertext

plus part of the tables, he is not able to decrypt

the ciphertext, because he also needs the other

tables.The following needs to be considered:

• It is important that each client receives different

static tables to ensure that each client uses a

unique combination of static and dynamic tables.

If this is not ensured, then someone could tap the
dynamic tables which were sent to another

client and use these dynamic tables

incombination with his own static tables to decrypt

the content.

• It is important that the static tables cannot be

copied. Otherwise a client could publish his static

tables and his dynamic tables which together could

be used for decrypting content. This can be done

by locking the static tables on the device

(nodelocking).

However, the question remains which tables need

Mr.Shish Ahmad, Dr. Rizwan Beg, Ms. Raziqa Masood / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.995-999

996 | P a g e

to be transmitted and which tables can be stored.

There are five types of tables: type Ia, II, III, IV,

and Ib. The tables that are dependent on the key

are the type II and the type Ib tables. We want

to be able to update this key, therefore these

tables cannot be fixed on the client’s device. The

least amount of data a server needs to send are
the tables which are dependent on the keys and

those are the type II and type Ib tables.

There are several possibilities for partitioning the

set of tables into a set of dynamic tables and a set

of static tables:

1. Dynamic tables: II, Ib (208 KB) Static tables: Ia,

III, IV(544 KB)

2. Dynamic tables: Ia, II, Ib (272 KB) Static tables:

III, IV (480 KB)

3. Dynamic tables: II, III, Ib (352 KB) Static

tables: Ia, IV (400 KB)

4. Dynamic tables: II, IV, Ib (544 KB) Static
tables: Ia, III (208 KB)

5. Dynamic tables: Ia, II, III, Ib (416 KB) Static

tables: IV (336 KB)

6. Dynamic tables: II, III, IV, Ib (688 KB) Static

tables: Ia (64 KB)

7. Dynamic tables: Ia, II, IV, Ib (608 KB) Static

tables: III (144 KB)

8. Dynamic tables: Ia, II, III, IV, Ib (752 KB)

Static tables: -

Partition 8 is the original situation in which all

the tables are sent to the client. If an attacker has
access to all the tables, the attack can be

executed. Therefore, it is not recommended to

transmit all the tables over the line.

 The server wants to send the least amount of

data. Therefore, the server only wants to send

tables which it wants to update, like the tables

which are dependent on the key or the tables

which represent the external encodings. Two

partitions remain:

Dynamic tables: II, Ib (208 KB) Static tables: Ia,

,III, IV (544 KB)
(see Figure 15)

Figure 15 one of the four mapping for a single

AES round
Dynamic tables: Ia, II, Ib (272 KB) Static tables:

III, IV (480 KB)(see Figure 16)

Figure

16 one of the four mappings for a single AES

round

The static keys can be seen as

personalization keys, which are unique for each
client. The choice between the two possible

partitions depends on the choice for the external

encodings.

 Bijection Encodings :

Mr.Shish Ahmad, Dr. Rizwan Beg, Ms. Raziqa Masood / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.995-999

997 | P a g e

 First case

• In the first case the server sends the
ciphertext

 C = F · AESe · G-1(P) plus the white-box

tables G · AESd · F−1 to the client. The client

can use the dynamic tables to decrypt the

ciphertext to obtain the plaintext P.

 Let F and G is the bijection of 128 bit

data so this cipher text will give the data that

will vary as make the changes in F & G ,which

make the cipher text complicated,time taking and
strongly secure.

 Let us take an example of this cipher text

:

 F is the bijection of plain text i.e of 128 bit and

G is the bijection of key data i.e also of 128 bit

data here,

 P=ffeeddccbbaa99887766554433221100

 Key:

000102030405060708090a0b0c0d0e0f

 G-

1(P)=00112233445566778899aabbccddeeff

 After performing 10 rounds of AES :
 R0 (Key =

000102030405060708090a0b0c0d0e0f)

 P= 00102030405060708090a0b0c0d0e0f0

 R1 (Key =

d6aa74fdd2af72fadaa678f1d6ab76fe)

 P = 89d810e8855ace682d1843d8cb128fe4

R10(Key =

13111d7fe3944a17f307a78b4d2b30c5)

 P =

69c4e0d86a7b0430d8cdb78070b4c55a)

C=Ciphertext:
69c4e0d86a7b0430d8cdb78070b4c55a

C= F.AESe.G-1 (P)+ G.AESd.F-1 (look up tables)

 Similarly , we can get different cipher

text by varying the value of F and G.

 After doing XOR with this data with f ,

it’ll give the huge amount of data and that data

can vary,which will make the cipher text

complicated.

 So this case gets the maximum

complexity as compare to other cases.

 Second case

 In the second case the server sends the

ciphertext C = F ·AESe(P) plus the white-box

tables G · AESd · F−1 to the client. The client can

use the white-box tables to decrypt the ciphertext .

 The advantage of this method is that F can

be varied. The disadvantage is the assumption that

the renderer is completely secure.

Third case
 In the third method the server sends the

ciphertext

 C = AESe · G−1(P) plus the white-box tables

G·AESd. F−1 to the client. The client can use the

white-box tables to decrypt the ciphertext to obtain

the plaintext P.

 The advantage of this method is that the

 Plain

text

Ciph

er

text

Ava

lanc

he

effe

ct

Ro

un

d 1

1111000

0111112

3431111

2311111

1113

79 2c

44 24

01 82

dd 7f

2d f9

87

e7 78

b7 ee

30

.437

5

(44)

Ro

un
d 2

79 f8 cc
24 01 82

dd 7f 2d

f9 87 e7

78 b7 ee

30

4a a9

16 11
e2 8a

9f 67

35 30

1f 80

16 c5

b7 cd

.515

3
(51)

Ro

un

d 3

4a a9 16

11 e2 8a

9f 67 35

30 1f 80

16 c5 b7

cd

C6

a1 3c

37 65

8b 29

20 45

4a 3c

36
472c

2b b7

.445

3(44

)

Ro

un

d

10

21 a1 3c

37 65 8b

29 20 45

4a 3c 36

472c 2b

b7

0d 38

274c

2a 1b

34 27

87 68

3c 2b

1d 4a

34 23

.421

5(42

)

Ap

ply

ing

C=

F.
AE

Se.

G-1

(P)

0d 38

274c 2a

1b 34 27

87 68 3c

2b 1d 4a
34 23

27 b1

3c 37

65 8b

29 20

45 4a
3c 36

472c

2c b8

.456

7(46

)

Mr.Shish Ahmad, Dr. Rizwan Beg, Ms. Raziqa Masood / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.995-999

998 | P a g e

server has to send less data. However, it is not a

good idea to use the local encryption because it

weakens the security.

 Thus, if local encryption is used, then it is

not safe to assume that F can be kept secret. If the

client knows F, then also the mixing bijections of

the type Ia tables and the type II tables can be
determined. This will probably make it easier to

extract the keys from the tables. More research is

needed to determine if knowledge of the bijections

will make it easier to extract the keys from the

tables.

 Fourth case
 In the fourth method the server sends the

ciphertext C = AESe(P) plus the white-box tables

G · AESd · F−1 to the client. The client encrypts

the ciphertext with a stored F. The new ciphertext

serves as input to the white-box tables.
 The advantage of this method is that the

server has to send less data. However, it is not a

good idea to use the local encryption because it

weakens the security (see method three). Another

advantage is that the server sends the same

ciphertext C = AESe(P) to each client. This is also

a disadvantage because once an attacker has found

the AES key, he could publish it and everybody

could use that key to decrypt the ciphertext. In the

other methods the ciphertext is personalized for

each user which prevents this from happening.

 Comparison of all cases

So on the basis of avalanche effect we can see over

here the avalanche effect of case 1 and 2 is much

better then othe cases.

 Method one and two are the best methods

and three and four are weaker variants which

should not be used. The choice between the first

and the second method depends on the assumption

of security. If a secure renderer can exist the

second method is better because P is never

available to the client. However, the idea of a
secure renderer contradicts the idea of a white- box

attack model which we use throughout this

document. Thus, using the first method is

recommended.

 Conclusion : We discussed two drawbacks of

transparent cryptography. The first drawback is

that whenever the key needs to be updated, the

whole set of white-box tables needs to be
updated too. We solved this problem by splitting

the set of tables into a dynamic part and a static

part. Each client has a unique set of static tables

which can only be used in combination with a

unique set of dynamic tables which are sent to

him. Because only the dynamic tables are

dependent on the key, the server only has to

update the dynamic tables when it wants to update

the key. This is also a way to obtain

software diversity, because each client needs

a unique combination of static and dynamic tables

for decryption. A second drawback is that the

whole white-box implementation can be used as a

key. If an attacker knows to the complete white-
box implementation, he can use the white-box

tables to decrypt the content. Therefore, it is

important that the static tables cannot be copied.

This can be done by locking the static tables on

the hardware (nodelocking). More research is

needed on the possibility of locking the static

tables on hardware.

Reference:
[1] D. Aucsmith, Tamper Resistant Software

and Implementation, Proc. 1st

International Information Hiding

Workshop (IHW), Cambridge, U.K. 1996,

Springer LNCS 1174, pp. 317-333

(1997).

[2] B. Barak, Can We Obfusacate Programs?,

http://www.math.ias.edu/ boaz/Papers/obf

informal.html.

[3] B. Barak, O. Goldreich, R. Impagliazzo,

S. Rudich, A. Sahai, S. Vadhan and K.

Yang, On the (Im)possibility of
Obfuscating Programs,pp 1-18, Advances

in Cryptology - Crypto 2001, Springer

LNCS 2139 (2001)

[4] O. Billet, H. Gilbert, C. Ech-Chatbi,

Cryptanalysis of a White-box AES

Implementation, SAC 2004.

[5] H. Chang, M. Atallah, Protecting

Software Code by Guards, Proc. 1st ACM

Workshop on Digital Management (DRM

2001), Springer LNCS 2320, pp.160-175

(2002).
[6] Y. Chen, R. Venkatesan, M. Cary, R.

Pang, S. Sinha, M. Jacubowski, Oblivious

Hashing: A stealthy Software Integrity

Verification Primitive, Proc. 5st

Information Hiding Workshop (IHW),

Netherlands (October 2002), Springer

LNCS 2578, pp.400-414.

[7] S. Chow, P. Eisen, H. Johnson, P.C. van

Oorschot, AWhite-Box DES

implementation for DRM Applications,

pp. 1-15, Proceedings of DRM 2002 - 2nd

ACM Workshop on Digital Rights
Management (DRM 2002), Springer

LNCS 2696 (2003).

[8] S. Chow, P. Eisen, H. Johnson, P.C. van

Oorschot, White-Box Cryptography and

an AES implementation, pp. 250-270,

Proceedings of the NinthWorkshop on

Selected Areas in Cryptography (SAC

2002), Springer LNCS 2595 (2003).

http://www.math.ias.edu/

Mr.Shish Ahmad, Dr. Rizwan Beg, Ms. Raziqa Masood / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 3, May-Jun 2013, pp.995-999

999 | P a g e

[9] F. Cohen, Operating System Protection

Through Program Evolution, Computers

and Security 12(6), 1 Oct. 1993, pp. 565-

584.

[10] C. Collberg, C. Thomborson, and D. Low.

A Taxonomy of Obfusacting

Transformations. Technical Report 148,
Department of Computer Science,

University of Auckland, July 1997. [11] J.

Daemen, V. Rijmen, AES Proposal:

Rijndael,

http://csrc.nist.gov/encryption/aes/rijndael

/ Rijndael.pdf, 1999.

[12] S. Forest, A. Somayaji, D. H. Ackley,

Building Diverse Computer Systems,

pp.67-72, Proc. 6th Workshop on Hot

Topics in Operating Systems, IEEE

Computer Society Press, 1997.

[13] P. Gorissen, J. Trescher, Key Distribution
in Unsafe Evironments, Philips Research

Laboratories Eindhoven, to be published.

[14] B. Horne, L. Matheson, C. Sheehan, R.

Tarjan, Dynamic Self-Chacking

Techniques for Improved Tamper

Resistance, Proc, 1st ACM Workshop on

Digital Rights Management (DRM2001),

Springer LNCS 2320, pp.141-159 (2002).

[15] National Institute of Standards and

Technology (NIST). AES Key Wrap

Specification, November 2001. Available

at csrc.nist.gov/encryption/kms/key-
wrap.pdf

[16] P.C. van Oorschot, Revisiting Software

Protection, In Proc. of 6th International

Information Security Conference (ISC

2003), pages 1-13. Springer-Verlag LNCS

2851, 2003. Bristol, UK, October 2003.

[17] Open Mobile Alliance, DRM

Specification V2.0, Open Mobile Alliance

Ltd, 2004, La Jolla (CA), USA.

[18] C. Wang, A security Architecture for

Sirvivability Mechanisms, Ph. D. thesis,

University of Virginia (Oct. 2000).

http://csrc.nist.gov/encryption/aes/rijndael/
http://csrc.nist.gov/encryption/aes/rijndael/
http://csrc.nist.gov/encryption/aes/rijndael/
http://csrc.nist.gov/encryption/aes/rijndael/

