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ABSTRACT 
Low-density parity-check (LDPC) code, 

a very promising near-optimal error correction 

code (ECC), is being widely considered in next 

generation industry standards. In this paper, two 

simple iterative low complexity algorithms for 

decoding LDPC codes have been explained. 

These algorithms are implemented using real 

additions only and also not dependent on power 

spectral density. Comparison of these algorithms 

with standard BP algorithm are explained. How 

these algorithms are useful for standards DVB-

S2, T2 and WiMAX are explained. In VLSI 

implementation these algorithms using shift-

LDPC codes these algorithms reduces hardware 

complexity. 
 

Keywords - decoding, Belief Propagation, iterative 
decoding, shift LDPC, Tanner graph. 

 

1. INTRODUCTION 
Gallager proposed low-density parity-

check (LDPC) codes in his thesis (1962) [1],[9], 

along with several message-passing decoding 

algorithms which are iterative algorithms, among 

which belief propagation (BP) algorithm is known 

to have the best performance. The remarkable 
performance of LDPC codes with message-passing 

decoding has positioned them as strong candidates 

for error-correction in many digital communication 

systems. As a linear block code, an LDPC code can 

be represented by a Tanner graph (TG)[3],[4]. A TG 

is a bipartite graph in which one set of nodes, the 

variable nodes, corresponds to code symbols and the 

other set of nodes, the check nodes, corresponds to 

the set of parity-check constraints which define the 

code. Each TG node works in isolation, only having 

access to the information contained in the messages 
on the edges connected to it. An edge exists between 

a variable node ‗v‘ and a check node ‗c‘ if and only 

if ‗v‘ appears in the parity-check equation 

corresponding to ‗c‘. 

Given a TG for an LDPC code, iterative 

implementation of BP, which proceeds as if no 

cycles were present in the graph, has been shown to 

deliver impressive results. In fact, LDPC codes, 

which are famous for their capacity-approaching 

performance on many communication channels, 

owe their popularity to the good performance of the 

iterative message-passing algorithms that can 
decode these codes with relatively low complexity. 

The low complexity is a consequence of the sparsity  

 

of the Tanner graph. Iterative decoding techniques 

in general have received significant attention 

recently and various results have been reported 

[4][5]. The standard message passing schedule is the 

flooding schedule, where in each iteration all the 

variable nodes, and subsequently all the check 

nodes, pass new messages to their neighbors. 

In ‗section 2‘, we reviewed the algorithms proposed 

by various authors on decoding of LDPC codes 

using iterative decoding schemes and the results 
obtained from these algorithms. ‗Section 3‘ includes 

some future scope according to application base is 

explained on the basis of ‗section 2‘, ‗section 4‘ 

gives some concluding remarks on this paper. 

 

2. ITERATIVE DECODING ALGORITHMS FOR    

LDPC CODES  
Different authors come up independently 

with more or less the same iterative decoding 

algorithm. They call it different names: the sum-

product algorithm, the belief propagation algorithm, 

and the message passing algorithm. There are two 

derivations of this algorithm: hard-decision and soft-

decision schemes. 

 

2.1 Hard Decision Decoding 

In this decoding scheme the check nodes 

finds the bit in error by checking the even/odd 
parity[5]. The messages from message nodes are 

transmitted to check nodes, check node checks the 

parity of the data stream received from message 

nodes connected to it. If number of 1‘s received at 

check nodes satisfies the required parity, then it 

sends the same data back to message node, else it 

adjusts each bit in the received data stream to satisfy 

the required parity and then transmits the new 

message back to message nodes. 

The bit-flipping algorithm is an example of 

hard-decision message-passing algorithm for LDPC 
codes[4]. The bit-flipping decoder can be 

immediately terminated whenever a valid codeword 

has been found by checking if all of the parity-check 

equations are satisfied. This is true of all message-

passing decoding of LDPC codes and has two 

important benefits; firstly additional iterations are 

avoided once a solution has been found, and 

secondly a failure to converge to a codeword is 

always detected. 
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2.2 Soft Decision Decoding 

Soft-decision decoding of LDPC codes, 

which is based on the concept of belief propagation, 

yields in a better decoding performance and is 

therefore the preferred method[5]. The underlying 

idea is exactly the same as in hard decision 

decoding. In this decoding scheme, the messages are 
the conditional probability that the received bit is a 1 

or a 0 given the received vector. 

The sum-product algorithm is a soft 

decision message-passing algorithm[4],[9]. The 

input bit probabilities are called the a priori 

probabilities for the received bits because they were 

known in advance before running the LDPC 

decoder. The bit probabilities returned by the 

decoder are called the a posteriori probabilities. In 

the case of sum-product decoding these probabilities 

are expressed as log-likelihood ratios. For a binary 

variable x it is easy to find P(x = 1) given P(x = 0), 
since P(x = 1) = 1−P(x = 0) and so we only need to 

store one probability value for x. Log likelihood 

ratios are used to represent the metrics for a binary 

variable by a single value: 

 

L(x) =log                ……(1) 

Where log to mean loge.  

 

2.2.1 Standard Belief propagation decoding 

The best algorithm for decoding of LDPC 

codes is the sum-product algorithm, also known as 

iterative probabilistic decoding or belief 

propagation[4],[9]. The aim of sum-product 

decoding is to compute the maximum a posteriori 
probability (MAP) for each codeword bit, which is 

the probability that the i-th codeword bit is a 1 

conditional on the event N that all parity-check 

constraints are satisfied. The sum-product algorithm 

iteratively computes an approximation of the MAP 

value for each code bit. However, the a posteriori 

probabilities returned by the sum-product decoder 

are only exact MAP probabilities if the Tanner 

graph is cycle free. 

The extra information about bit i received 

from the parity-checks is called extrinsic 
information for bit i. the extrinsic information 

obtained from a parity check constraint in the first 

iteration is independent of the a priori probability 

information for that bit. The extrinsic information 

provided to bit ‗i‘ in subsequent iterations remains 

independent of the original a priori probability for 

bit i until the original a priori probability is returned 

back to bit i via a cycle in the Tanner graph. 

In sum-product decoding the extrinsic 

message from check node j to bit node i, Ej,i, is the 

LLR of the probability that bit i causes parity-check 

j to be satisfied. The probability that the parity-
check equation is satisfied if bit i is a 1 is, 

 

 =   -     …... (2) 

 

where  is the current estimate, available to 

check j, of the probability that bit i‘ is a one. The 

probability that the parity-check equation is satisfied 

if bit i is a zero is thus (1 - ). Expressed as a 

log-likelihood ratio, 

Ej,i = LLR( ) = log                    …..(3) 

and substituting (2) we finally get, 

 

Ej,i = log           …..(4) 

Where, 

Mj,i‘ = LLR ( ) = log                 .….(5) 

 

Each bit has access to the input a priori LLR, ri, and 
the LLRs from every connected check node. The 

total LLR of the i-th bit is the sum of these LLRs: 

Li = LLR  = ri +                 ..…(6) 

 

However, the messages sent from the bit 

nodes to the check nodes, Mj,i, are not the full LLR 

value for each bit. This process continues till the 

equation Hx[mod 2] = 0 is satisfied (where x[mod 2] 

is received codeword) or maximum number of 

iterations set. 

 

2.2.2 TWO REDUCED-COMPLEXITY   

               DECODING ALGORITHMS 

Two simplified versions of the belief 
propagation algorithm for fast iterative decoding of 

low-density parity check codes on the additive white 

Gaussian noise channel are proposed [6],[13][14]. 

Both versions are implemented with real additions 

only, which greatly simplifies the decoding 

complexity of belief propagation in which products 

of probabilities have to be computed. Also, these 

two algorithms do not require any knowledge about 

the channel characteristics. 

 

A) APP-Based Decoding Algorithm 
In APP (a priori probability) based 

decoding a priori probability for the bit in error is 

defined (qn), Then the probability (rmn) of having an 

odd number of errors in the hard decisions of the 

bits is calculated. Then σm is defined as the result of 

check sum evaluated from the hard decisions 

corresponding to qn, and σm
‘ as its modulo 2 

complement. Furthermore, as the a posteriori 

probability that bit n is in error based on the results 

of the check sums intersecting in position-n are 
defined. 
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rmn =     

                                                                          …(7) 

 

Where,  is set N(m) with bit n excluded 

from it. 

All check sums can be re-evaluated based 

on the hard decisions corresponding to the values  

, which are used as new a priori probabilities qn 

Consequently, we obtain an iterative decoding 

algorithm, which can be viewed as a simplified 
version of sum-product algorithm since instead each 

non zero element in parity check matrix only 

required elements are updated. For example, in sum-

product decoding (BP decoding) it needs to find 

extrinsic bit probabilities for each non zero element 

in the parity check matrix, but in APP based 

decoding it needs to find it only for required 

message bits.  

This algorithm is not dependent on power 

spectral density and therefore does not require any a 

priori information about the AWGN channel, it is 

referred to as the uniformly most powerful (UMP) 
APP-based iterative decoding algorithm.  

 

B) BP-Based Decoding Algorithm 

In this algorithm for x = 0,1 rmn is written as, 

 

rmn
x=  

                                                                   ……(8) 

In this algorithm, hard decisions values of 

each input symbol and replied symbol from check 

node (i.e.      a priori & a posteriori probabilities for 

bit in error) are initialized to the hard decisions of 

the received symbol. For each bit σmn & σmn
‘, which 

are the check sum values are evaluated. From these 

obtained values the probabilities for the received 

bits are found, which are extrinsic posteriori 

probabilities. This algorithm follows that the hard 

decisions for a priori & a posteriori probabilities for 

bit in error are correct, unless the reliability 

associated with the initial decision about bit ‗n‘ is 

till larger than the sum of the reliabilities associated 

with each check sum intersecting on bit ‗n‘. 

This algorithm is also not dependent on 

power spectral density and therefore does not 

require any a priori information about the AWGN 
channel, it is referred to as the uniformly most 

powerful (UMP) BP-based iterative decoding 

algorithm.  

 

2.2.3 Comparison results proved for reduced 

complexity algorithms with standard belief 

propagation algorithm 

 
Fig.1 Error performance for iterative decoding of 

the (1008, 504) LDPC code with BP, UMP BP-

based, and UMP APP-based decoding algorithms, 

and at most 50 and 200 iterations. 

 
Fig. 2 Average number of iterations for iterative 

decoding of the (1008, 504) LDPC code with BP 

and UMP BP-based decoding algorithms, and at 

most 50 and 200 iterations. 

 

Fig.1 depicts the bit error performance for 
iterative decoding of the (1008, 504) LDPC code, 

with the BP, UMP BP-based, and UMP APP-based 

decoding algorithms, and at most 50 and 200 

iterations[6]. The results are obtained by Monte 

Carlo simulations, with at least 1000 bit errors for 

each recorded point. For both codes, we observe that 

at the BER 10-5 , the UMP APP-based algorithm 

performs at least 1 dB worse than the BP algorithm. 

Fig.2 depicts the average number of iterations for 

iterative decoding of the (1008, 504) LDPC code 

with BP and UMP BP-based decoding algorithms, 

and at most 50 and 200 iterations. 
 

3. Future scope based on applications for 

these algorithms 
LDPC code implementations are widely 

used in DVB-S2, T2 or WiMAX standards[7],[11]. 

For DVBS2 about 300000 messages are processed 
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and reordered in each of the 30 iterations. These 

huge data processing and storage requirements are a 

real challenge for the decoder hardware realization, 

which has to fulfill the specified throughput of 

255MBit/s for base station applications. As so many 

iterations are required for decoding of LDPC codes 

used in these standards. Standard BP decoding 
algorithm will increase complexity of hardware used 

for the decoder. If we use any of the ‗Reduced 

complexity decoding algorithm‘ explained above, it 

will reduce the system complexity. 

The VLSI implementation of high-speed 

LDPC decoder remains a big challenge[12]. The 

decoder can be efficiently implemented to obtain 

very high decoding speeds and the throughput in 

Gb/s. By using above algorithms the ‗shift LDPC‘ 

codes which are designed for this application are 

decoded using above algorithms which will reduce 

the hardware complexity for the VLSI 
implementation of the codes. 

 

4. Conclusion 
In this paper, two simple iterative low 

complexity algorithms for decoding LDPC codes 

have been explained. These algorithms require real 

additions only, and therefore achieve a good trade-

off between error performance and decoding 

complexity as well as fit hardware implementation 
with quantized received values. LDPC codes used 

for these algorithm can perform within the lower 

range of Bit Error Rate (BER). UMP decoding 

algorithms can provide attractive and less complex 

solutions to implement LDPC codes. 

For DVB-S2, T2 and WiMAX standards 

these algorithms may provide much less complex 

implementations for bulkier messages. For VLSI 

implementations using  shift LDPC codes it will 

give improved hardware efficiency. 
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