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Abstract 
In finding solutions to many “real world” 

engineering optimizationproblems, it is generally 

desirable to be able to construct several 

quantifiably good alternatives that provide very 

different perspectives to the particular problem. 

This is because complex decision-making 

situations typically involve problems riddled with 

incompatible performance objectives and possess 

competing design requirements that are very 

difficult – if not impossible – to quantify and 

capture when the supporting decision models 

must be formulated. There are invariably 

unmodelled design issues, not apparent during 

model construction, which can greatly impact the 

acceptability of any model’s solutions. 

Consequently, it is preferable to generate 

numerous alternatives that provide dissimilar 

approaches to the problem. These alternatives 

should possess near-optimal objective measures 

with respect to all known modelled objective(s), 

but be fundamentally different from each other 

in terms of the system structures characterized 

by their decision variables. This maximally 

different solution creation approach is referred to 

as modelling-to-generate-alternatives (MGA). 

This paper provides an efficient, biologically-

inspired metaheuristic MGA method that can 

concurrently create multiple solution alternatives 

that simultaneously satisfy the required system 

performance criteria and are maximally different 

in the decision space. The efficacy of this MGA 

approach is demonstrated on a number of 

benchmark engineering optimizationproblems. 
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1. Introduction 
Typical “real world” engineering decision-

making involves complex problems that possess 

design requirements which are frequently very 
difficult to incorporate into their supporting 

mathematical programming formulations and tend to 

be plagued by numerous unquantifiable components 

[1-3]. While mathematically optimal solutions may 

 

provide the best answers to these modelled 

formulations, they are generally not the best 

solutions to the underlying real problems as there are 
invariably unmodelled aspects not apparent during 

the model construction phase [1-2,4-6]. Hence, it is 

generally considered desirable to generate a 

reasonable number of very different alternatives that 

provide multiple, contrasting perspectives to the 

specified problem [4,7-8]. These alternatives should 

preferably all possess near-optimal objective 

measures with respect to all of the modelled 

objective(s), but be as different as possible from 

each other in terms of the system structures 

characterized by their decision variables. Several 
approaches collectively referred to as modelling-to-

generate-alternatives (MGA) have been developed 

in response to this multi-solution creation 

requirement [6,8-9].  

The primary motivation behind MGA is to 

construct a manageably small set of alternatives that 

are good with respect to all measured objective(s) 

yet are maximally different from each other within 

the prescribed decision space [6,9]. The resulting set 

of alternatives should provide diverse approaches 

that all perform similarly with respect to the known 

modelled objectives, yet very differently with 
respect to any unmodelled issues [3]. Obviously the 

decision-makers must subsequently conduct a 

comprehensive comparison of these alternatives to 

determine which option(s) would most closely 

satisfy their very specific circumstances. 

Consequently, MGA approaches are necessarily 

considered as decision support processes rather than 

the role of explicit solution determination methods 

assumed, in general, for optimization. 

In this paper, it is shown how to efficiently 

generate sets of maximally different solution 
alternatives by employing a modified version of the 

biologically-inspired Firefly Algorithm (FA) of 

Yang [10-11] combined with a concurrent, co-

evolutionary MGA approach [12-13]. For 

calculation and optimization purposes, Yang [11] 

has demonstrated that the FA is more 

computationally efficient than such commonly-

employed metaheuristic procedures as genetic 

algorithms, simulated annealing, and enhanced 
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particle swarm optimization [14-15]. The new FA-

driven MGA procedure exploits the earlier approach 

of Imanirad et al. [12-13] by extending the concept 

of co-evolution into the FA’s solution approach to 

concurrently generate the desired number of solution 

alternatives. Remarkably, this novel algorithm 

simultaneously produces the global optimal solution 
together with n locally optimal, maximally different 

alternatives in a single computational run. Hence, 

this concurrent co-evolutionary FA-driven procedure 

is extremely computationally efficient for MGA 

purposes. The efficacy of this approach for 

constructing multiple, maximally different solution 

alternatives for engineering optimization is 

illustrated using a highly non-linear optimization 

problem [6],  a benchmark multimodal constrained 

optimization problem [16] and a well-known 

engineering optimization test problem [14]. 

 

2. Modelling To Generate Alternatives 
Most mathematical programming methods 

appearing in the optimization literature have 

concentrated almost exclusively upon producing 

solitary optimal solutions to single-objective 

problem instances or, equivalently, generating 

noninferior solution sets to multi-objective 

formulations [2-3,9]. While such algorithms may 

efficiently generate solutions to the derived complex 
mathematical models, whether these outputs actually 

establish “best” approaches to the underlying real 

problems is certainly questionable [1-2,6,9]. In most 

“real world” decision environments, there are 

innumerable system objectives and requirements that 

are never explicitly apparent or included in the 

decision formulation stage [1,3-5,7-8]. Furthermore, 

it may never be possible to explicitly express all of 

the subjective components because there are 

frequently numerous incompatible, competing, 

design requirements and, perhaps, adversarial 
stakeholder groups involved [4-5]. Therefore most 

subjective aspects of a problem necessarily remain 

unquantified and unmodelled in the resultant 

decision models [7]. This is a common occurrence in 

situations where final decisions are constructed 

based not only upon clearly stated and modelled 

objectives, but also upon more fundamentally 

subjective socio-political-economic goals and 

stakeholder preferences [8]. Numerous “real world” 

examples describing these types of incongruent 

modelling dualities appear in Loughlin et al. [6], 

Brill et al. [9], Baugh et al. [17]  and Zechman & 
Ranjithan [18].  

When unquantified issues and unmodelled 

objectives exist, non-conventional approaches are 

required that not only search the decision space for 

noninferior sets of solutions, but must also explore 

the decision space for discernibly inferior 

alternatives to the modelled problem. In particular, 

any search for good alternatives to problems known 

or suspected to contain unmodelled objectives must 

focus not only on the non-inferior solution set, but 

also necessarily on an explicit exploration of the 

problem’s inferior region.  

To illustrate the implications of an unmodelled 

objective on a decision search, assume that the 

optimal solution for a quantified, single-objective, 

maximization decision problem is X* with 
corresponding objective value Z1*. Now suppose 

that there exists a second, unmodelled, maximization 

objective Z2 that subjectively reflects some 

unquantifiable “political acceptability” component. 

Let the solution Xa, belonging to the noninferior, 2-

objective set, represent a potential best compromise 

solution if both objectives could somehow have been 

simultaneously evaluated by the decision-maker. 

While X
a might be viewed as the best compromise 

solution to the real problem, it would appear inferior 

to the solution X* in the quantified mathematical 

model, since it must be the case that Z1aZ1*. 
Consequently, when unmodelled objectives are 

factored into the decision making process, 

mathematically inferior solutions for the modelled 

problem can prove optimal to the underlying 

“reallife” problem.  

Therefore, when unmodelled objectives and 

unquantified issues might exist, different solution 

approaches are needed in order to not only search 

the decision space for the noninferior set of 
solutions, but also to simultaneously explore the 

decision space for inferior alternative solutions to 

the modelled problem. Population-based solution 

methods such as the FA permit concurrent searches 

throughout a feasible region and thus prove to be 

particularly adept procedures for searching through a 

problem’s decision space.  

The primary motivation behind MGA is to 

produce a manageably small set of alternatives that 

are quantifiably good with respect to the known 

modelled objectives yet are as different as possible 
from each other in the decision space. In doing this, 

the resulting alternative solution set is likely to 

provide truly different choices that all perform 

somewhat similarly with respect to the modelled 

objective(s) yet very differently with respect to any 

unknown unmodelled issues. By generating such a 

set of good-but-different solutions, the decision-

makers can explore desirable qualities within the 

alternatives that may prove to satisfactorily address 

the various unmodelled objectives to varying 

degrees of stakeholder acceptability. 

In order to properly motivate an MGA search 
procedure, it is necessary to apply a more 

mathematically formal definition to the goals of the 

MGA process [6,8]. Suppose the optimal solution to 

an original mathematical model is X* with objective 

value Z* = F(X*). The following model can then be 

solved to generate an alternative solution that is 

maximally different from X*: 
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Maximize=
i | Xi -Xi*|  [P1] 

 

Subject to:XD 

| F(X) - Z* |   T 

 

where   represents some difference function (for 

clarity, shown as an absolute difference in this 

instance), D is the original mathematical model’s 

feasible domain and T is a targeted tolerance value 

specified relative to the problem’s original optimal 

objective Z*.  T is a user-supplied value that 
determines how much of the inferior region is to be 

explored in the search for acceptable alternative 

solutions.  

 

3.  Firefly Algorithm For Function 

Optimization 
While this section supplies only a relatively 

brief synopsis of the FA procedure, more detailed 

explanations can be accessed in Yang [10-11], 

Imanirad et al. [12-13] and Gandomi et al. [15]. The 

FA is a biologically-inspired, population-based 

metaheuristic. Each firefly in the population 

represents one potential solution to a problem and 

the population of fireflies should initially be 

distributed uniformly and randomly throughout the 

solution space. The solution approach employs three 

idealized rules. (i) The brightness of a firefly is 

determined by the overall landscape of the objective 

function. Namely, for a maximization problem, the 
brightness is simply considered to be proportional to 

the value of the objective function. (ii) The relative 

attractiveness between any two fireflies is directly 

proportional to their respective brightness. This 

implies that for any two flashing fireflies, the less 

bright firefly will always be inclined to move 

towards the brighter one. However, attractiveness 

and brightness both decrease as the relative distance 

between the fireflies increases. If there is no brighter 

firefly within its visible neighborhood, then the 

particular firefly will move about randomly. (iii) All 
fireflies within the population are considered unisex, 

so that any one firefly could potentially be attracted 

to any other firefly irrespective of their sex. Based 

upon these three rules, the basic operational steps of 

the FA can be summarized within the pseudo-code 

of Fig.1 [11]. 

Objective Function F(X), X = (x1, x2,… xd) 

Generate the initial population of n fireflies, Xi, i = 

1, 2,…, n 

Light intensity Ii at Xi is determined by F(Xi) 

Define the light absorption coefficient γ 
while (t < MaxGeneration) 

fori = 1: n , all n fireflies 

forj = 1: n ,all n fireflies (inner loop) 

 if (Ii<Ij), Move firefly i towards j; end if 

 Vary attractiveness with distance r via e- γr 

endforj 

end fori 

Rank the fireflies and find the current global best 

solution G* 

end while 
Postprocess the results 

Figure 1: pseudo code of the firefly algorithm 

 

In the FA, there are two important issues to 
resolve: the formulation of attractiveness and the 

variation of light intensity. For simplicity, it can 

always be assumed that the attractiveness of a firefly 

is determined by its brightness which in turn is 

associated with its encoded objective function value. 

In the simplest case, the brightness of a firefly at a 

particular location X would be its calculated 

objective value F(X). However, the attractiveness,, 

between fireflies is relative and will vary with the 

distance rij between firefly i and firefly j. In addition, 

light intensity decreases with the distance from its 

source, and light is also absorbed in the media, so 
the attractiveness needs to vary with the degree of 

absorption. Consequently, the overall attractiveness 

of a firefly can be defined as:   

= 0exp(-r2) 

where 0is the attractiveness at distance r = 

0 and  is the fixed light absorption coefficient for 

the specific medium. If the distance rij between any 

two fireflies i and j located at Xi and Xj, respectively, 
is calculated using the Euclidean norm, then the 

movement of a firefly i that is attracted to another 

more attractive (i.e. brighter) firefly j is determined 

by: 

Xi = Xi + 0 exp(- (rij)
2)(Xi – Xj) + I 

In this expression of movement, the second 
term is due to the relative attraction and the third 

term is a randomization component. Yang [11] 

indicates that  is a randomization parameter 

normally selected within the range [0,1] and i is a 

vector of random numbers drawn from either a 
Gaussian or uniform (generally [-0.5,0.5]) 

distribution. It should be explicitly noted that this 

expression represents a random walk biased toward 

brighter fireflies and if 0 = 0, it becomes a simple 

random walk. The parameter  characterizes the 
variation of the attractiveness and its value 

determines the speed of the algorithm’s 

convergence. For most applications,  is typically set 
between 0.1 to 10 [11,15]. In any given optimization 

problem, for a very large number of fireflies n>>k, 

where k is the number of local optima, the initial 

locations of the n fireflies should be distributed 

relatively uniformly throughout the entire search 

space. As the FA proceeds, the fireflies begin to 

converge into all of the local optima (including the 

global ones). Hence, by comparing the best solutions 

among all these optima, the global optima can easily 

be determined. Yang (2010) proves that the FA will 

approach the global optima when n and the 

number of iterations t, is set so that t>>1. In reality, 
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the FA has been found to converge extremely 

quickly with n set in the range 20 to 50 [10,15]. 

Two important limiting or asymptotic cases 

occur when  0 and when  . For  0, 

the attractiveness is constant  = 0, which is 
equivalent to having a light intensity that does not 

decrease. Thus, a firefly would be visible to every 

other firefly anywhere within the solution domain. 

Hence, a single (usually global) optima can easily be 

reached. If the inner loop for j in Fig.1 is removed 

and Xj is replaced by the current global best G*, then 

this implies that the FA reverts to a special case of 

the accelerated particle swarm optimization (PSO) 
algorithm. Subsequently, the computational 

efficiency of this special FA case is equivalent to 

that of enhanced PSO. Conversely, when  , 
the attractiveness is essentially zero along the 

sightline of all other fireflies. This is equivalent to 

the case where the fireflies randomly roam 

throughout a very thick foggy region with no other 

fireflies visible and each firefly roams in a 

completely random fashion. This case corresponds 

to a completely random search method. As the FA 

operates between these two asymptotic extremes, it 

is possible to adjust the parameters  and  so that 
the FA can outperform both a random search and the 

enhanced PSO algorithms [15].  

The computational efficiencies of the FA 

will be exploited in the subsequent MGA solution 

approach. As noted, between the two asymptotic 
extremes, the population in the FA can determine 

both the global optima as well as the local optima 

concurrently. This concurrency of population-based 

solution procedures holds huge computational and 

efficiency advantages for MGA purposes [8]. An 

additional advantage of the FA for MGA 

implementation is that the different fireflies 

essentially work independently of each other, 

implying that FA procedures are better than genetic 

algorithms and PSO for MGA because the fireflies 

will tend to aggregate more closely around each 
local optimum [11,15]. Consequently, with a 

judicious selection of parameter settings, the FA will 

simultaneously converge extremely quickly into 

both local and global optima [10-11,15]. 

 

4. FA-Driven Computational Algorithm For 

Concurrent MGA 
The FA-driven MGA approach to be 

introduced is designed to generate a pre-determined 

small number of close-to-optimal, but maximally 

different alternatives, by essentially adjusting the 

value of T in [P1] and using the FA to solve the 

corresponding, maximal difference problem 

instance. By exploiting the co-evolutionary solution 

structure within the population of the FA, stratified 

subpopulations within the algorithm’s overall 

population are established as the Fireflies 

collectively evolve toward different local optima 

within the solution space. In this process, each 

desired solution alternative undergoes the common 

search procedure of the FA. However, the survival 

of solutions depends both upon how well the 

solutions perform with respect to both the modelled 

objective(s) and by how far away they are from all 

of the other alternatives generated in the decision 
space. 

A direct process for generating alternatives 

with the FA would be to iteratively solve the 

maximum difference model [P1] by incrementally 

updating the target T whenever a new alternative 

needs to be produced and then re-running the 

algorithm.  This iterative approach would parallel 

the original Hop, Skip, and Jump (HSJ) MGA 

algorithm of Brill et al. [9] in which, once an initial 

problem formulation has been optimized, 

supplementary alternatives are iteratively created 

through a systematic, incremental adjustment of the 
target constraint to force the sequential generation of 

the suboptimal solutions. While this approach is 

straightforward, it requires a repeated execution of 

the specific optimization algorithm employed [8,12-

13].   

In contrast, the concurrent MGA approach 

is designed to generate the pre-determined number 

of maximally different alternatives within the entire 

population in a single run of the FA procedure (i.e. 

the same number of runs as if FA were used solely 

for function optimization purposes) and its 
efficiency is based upon the concept of co-evolution 

[12-13]. In this FA-driven co-evolutionary approach, 

pre-specified stratified subpopulation ranges within 

the FA’s overall population are established that 

collectively evolve the search toward the creation of 

the stipulated number of maximally different 

alternatives. Each desired solution alternative is 

represented by each respective subpopulation and 

each subpopulation undergoes the common 

processing operations of the FA.  

The FA-driven approach can be structured 

upon any standard FA solution procedure containing 
appropriate encodings and operators that best 

correspond to the problem. The survival of solutions 

in each subpopulation depends simultaneously upon 

how well the solutions perform with respect to the 

modelled objective(s) and by how far away they are 

from all of the other alternatives. Consequently, the 

evolution of solutions in each subpopulation toward 

local optima is directly influenced by those solutions 

currently existing in all of the other subpopulations, 

which necessarily forces the concurrent co-evolution 

of each subpopulation towards good but maximally 
distant regions of the decision space. This co-

evolutionary concept enables the simultaneous 

search for, and production of, the set of quantifiably 

good solutions that are maximally different from 

each other according to [P1] [8]. 

By employing this co-evolutionary concept, 

it becomes possible to implement an FA-driven 
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MGA procedure that concurrently produces 

alternatives which possess objective function bounds 

that are somewhat analogous, but inherently 

superior, to those created by the sequential, iterative 

HSJ-styled solution generation approach. While each 

alternative produced by an HSJ procedure is 

maximally different only from the single, overall 
optimal solution together with a bound on the 

objective value which is at least x% different from 

the best objective (i.e. x = 1%, 2%, etc.), the 

concurrent co-evolutionary procedure is able to 

generate alternatives that are no more than x% 

different from the overall optimal solution but with 

each one of these solutions being as maximally 

different as possible from every other generated 

alternative that is produced. Co-evolution is also 

much more efficient than the sequential HSJ-styled 

approach in that it exploits the inherent population-

based searches of FA procedures to concurrently 
generate the entire set of maximally different 

solutions using only a single population. Namely, 

while an HSJ-styled approach would need to run n 

different times in order to generate n different 

alternatives, the concurrent algorithm is required to 

run only once to produce its entire set of maximally 

different alternatives irrespective of the value of n. 

Hence, it is a much more computationally efficient 

solution generation process. 

The steps in the FA-driven co-evolutionary MGA 

algorithm are as follows: 
1. Create the initial population stratified into P 

equally-sized subpopulations. P represents the 

desired number of maximally different alternative 

solutions within a prescribed target deviation from 

the optimal to be generated. Sp represents the pth 

subpopulation set of solutions, p = 1,…,P and there 

are K solutions contained within each Sp. Note: The 

value for P must be set a priori by the decision-

maker. 

2. Evaluate all solutions in Sp, p = 1,…,P, with 

respect to the modelled objective. Solutions meeting 

the target constraint and all other problem 
constraints are designated as feasible, while all other 

solutions are designated as infeasible. 

3. Apply an appropriate elitism operator to each Sp to 

preserve the best individual in each subpopulation. 

In Sp, p = 1,…,P, the best solution is the feasible 

solution most distant in decision space from all of 

the other subpopulations (the distance measure is 

defined in Step 6). Note: Because the best solution to 

date is always placed into each subpopulation, at 

least one solution in Sp will always be feasible. This 

step simultaneously selects a set of alternatives that 
respectively satisfy different values of the target T 

while being as far apart as possible (i.e. maximally 

different in the sense of [P1]) from the solutions 

generated in each of the other subpopulations. By 

the co-evolutionary nature of this algorithm, the 

alternatives are simultaneously generated in one pass 

of the procedure rather than the P implementations 

suggested by the necessary increments to T in 

problem [P1]. 

4. Stop the algorithm if the termination criteria (such 

as maximum number of iterations or some measure 

of solution convergence) are met. Otherwise, 

proceed to Step 5. 

5. Identify the decision space centroid, Cip, for each 

of the K’  K feasible solutions within k = 1,…,K of 

Sp, for each of the N decision variables Xikp, i = 1,…, 
N. Each centroid represents the N-dimensional 

centre of mass for the solutions in each of the 

respective subpopulations, p. As an illustrative 

example for determining a centroid, calculate Cip = 

(1/K’)
k Xikp. In this calculation, each 

dimension of each centroid is computed as the 
straightforward average value of that decision 

variable over all of the values for that variable 

within the feasible solutions of the respective 

subpopulation. Alternatively, a centroid could be 

calculated as some fitness-weighted average or by 

some other appropriately defined measure. 

6. For each solution k = 1,…, K, in each Sq, calculate 

Dkq, a distance measure between that solution and all 

other subpopulations. As an illustrative example for 

determining a distance measure, calculate Dkq = Min 

{
i | Xikp - Cip | ; p = 1,…,P, p q}. This distance 

represents the minimum distance between solution k 

in subpopulation q and the centroids of all other 

subpopulations. Alternatively, the distance measure 

could be calculated by some other appropriately 

defined function.  

7. Rank the solutions within each Sp according to the 

distance measure Dkq objective – appropriately 

adjusted to incorporate any constraint violation 
penalties. The goal of maximal difference is to force 

solutions from one subpopulation to be as far apart 

as possible in the decision space from the solutions 

of each of the other subpopulations. This step orders 

the specific solutions in each subpopulation by those 

solutions which are most distant from the solutions 

in all of the other subpopulations. 

8. In each Sp, apply the appropriate FA “change 

operations” to the solutions and return to Step 2. 

 

5. Computational Testing Of The Firefly 

Algorithm Used For MGA 
As described in the previous sections, “real 

world” decision-makers generally prefer to be able 

to select from a set of “near-optimal” alternatives 

that significantly differ from each other in terms of 

the system structures characterized by their decision 

variables. The ability of the co-evolutionary FA-
driven MGA procedure to concurrently produce such 

maximally different alternatives will be 

demonstrated using a 100-peak multimodal 

optimization problem taken from Loughlin et al. [6], 

a benchmark non-linear constrained optimization 

problem from Aragon et al. [16] and a widely-tested 
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constrained engineering optimization problem from 

Cagnina et al. [14].  

The mathematical formulation for the multimodal 

test problem of Loughlin et al. [6] is: 

Maximize F(x, y) = Sin(19πx) +
7.1

x
 + Sin(19πy) +

7.1

y
 + 2 

  0.0  x    1.0  

  0.0  y    1.0 

 

The feasible region corresponding to this problem 

contains 100 peaks separated by valleys with the 

increasing amplitudes for both the peaks and valleys 

as the values of the decision variables increase from 

their lower bounds of (0,0) toward their upper limits 

at (1,1). For the design parameters employed in this 
specific problem formulation, the mathematically 

optimal solution of F(x, y) = 5.146 occurs at point (x, 

y) = (0.974, 0.974) [6].  

As described in the previous section, in order to 

create the desired set of maximally different 

alternatives for this problem, it would be possible to 

insert extra target constraints in an incrementally 

increasing fashion into the original mathematical 
formulation to force the generation of solutions that 

were structurally different from the initial optimal 

solution. Suppose for example that ten additional 

solution options were to be created through the 

inclusion of a technical constraint that increased 

value of the objective in the original model 

formulation from 1% up to 10% in increments of 

1%. By adding these incremental target constraints 

to the original model and sequentially resolving the 

problem 10 times, it would be possible to create the 

prescribed number of maximally different 

alternatives.  

 

 

Table 1.Objective Values and Solutions for the 11 Maximally Different Alternatives 

Increment 1% Increment Between 

Alternatives 

2.5% Increment Between  

Alternatives 

 F(x,y) x
 

Y
 

F(x,y) X
 

Y
 

Optimal 5.14 0.97 0.97 5.14 0.97 0.97 

Alternative 1 5.10 0.98 0.97 5.01 0.87 0.87 

Alternative 2 5.05 0.87 0.98 4.89 0.66 0.87 

Alternative 3 5.00 0.76 0.98 4.77 0.87 0.45 

Alternative 4 4.99 0.98 0.87 4.65 0.33 0.97 

Alternative 5 4.91 0.98 0.76 4.50 0.98 0.02 

Alternative 6 4.89 0.55 0.97 4.43 0.02 0.98 

Alternative 7 4.89 0.98 0.55 4.29 0.98 0.02 

Alternative 8 4.74 0.34 0.98 4.13 0.02 0.99 

Alternative 9 4.69 0.98 0.24 4.02 0.99 0.02 

Alternative 10 4.64 0.13 0.98 3.87 0.01 0.98 

 

  

However, to improve upon the process of running ten 

separate additional instances, the co-evolutionary FA 
MGA method could be run exactly once to 

concurrently produce all of the desired alternatives. 

By employing the co-evolutionary FA-driven MGA 

algorithm from the previous section, the optimal 

solution together with 10 maximally different 

solutions to it were generated for alternative 
increments of 1% and 2.5%, respectively (see Table 

1). 

The second alternative generation example involves 

the constrained non-linear optimization test problem 
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of Aragon et al. [16]. The mathematical formulation for this problem is: 

 

Min F(X) =      
2 2 24 6 2 4

1 2 3 4 5 6 7 6 7 6 710 5 12 3 11 10 7 4 10 8x x x x x x x x x x x             

Subject to:   g1(X) = 
2 4 2

1 2 3 4 52 3 4 5 127x x x x x       0 

    g2(X) = 
2

1 2 3 4 57 3 10 282x x x x x       0 

    g3(X) = 
2 2

1 2 6 723 6 8 196x x x x      0 

    g4(X) = 
2 2 2

1 2 1 2 3 6 74 3 2 5 12x x x x x x x       0 

     -10  ix   10, i = 1, 2, 3, 4, 5, 6, 7 

 

Table 2. Objective Values and Solutions for the 11 Maximally Different Alternatives 

 

 

Table 3. Objective Values and Solutions for the 11 Maximally Different Alternatives 

 

Increment 2.5% Increment Between Alternatives 

 F(X) 1x  2x  3x  4x
 5x  6x  7x  

Optimal 680.630 2.3304 1.9513 -0.4775 4.3657 0.6244 1.0381 1.5942 

Alternative 1 687.022 2.3056 1.9076 -0.4245 4.3256 -0.6184 1.0388 1.6067 

Alternative 2 711.793 2.3174 1.9111 -0.4084 4.3668 -0.6166 1.0759 1.6116 

Alternative 3 730.671 2.2916 1.9496 -0.4442 4.3474 -0.6154 1.0555 1.5864 

Alternative 4 744.901 2.3468 1.9118 -0.4087 4.3557 -0.6283 0.9899 1.6024 

Alternative 5 756.260 2.2985 1.9019 -0.4452 4.3577 -0.5927 1.0022 1.5770 

Alternative 6 779.735 2.3463 1.9397 -0.4338 4.3425 -0.5867 1.0457 1.6301 

Alternative 7 796.641 2.3011 1.9128 -0.4282 4.3386 -0.5758 1.0035 1.6227 

Alternative 8 811.767 2.3539 1.9579 -0.4543 4.3338 -0.6425 1.0413 1.6155 

Alternative 9 832.123 2.3690 1.9208 -0.4181 4.4001 -0.617 1.0411 1.6374 

Alternative 10 846.019 2.2967 1.897 -0.4684 4.3467 -0.6374 1.0252 1.5721 

 

The optimal solution for the specific design 

parameters employed within this formulation is 

F(X*) = 680.6300573 with decision variable values 

of X* = (2.330499, 1.951372, -0.4775414, 

4.365726, 0.6244870, 1.038131, 1.594227) [16]. 

The FA-driven MGA algorithm was run exactly 

once to generate the optimal solution and the 10 

maximally different solutions shown in Tables 2 and 

3. 

The third illustration will apply the FA-driven MGA 

procedure to the spring design problem taken from 

Cagnina et al. [14]. The design of a tension and 

compression spring has frequently been employed 

as a standard benchmark test problem for 

constrained engineering optimization algorithms 

[14]. The problem involves three design variables: 

(i) 1x , the wire diameter, (ii) 2x , the coil diameter, 

and (iii) 3x , the length of the coil. The aim is to 

essentially minimize the weight subject to 

Increment 1% Increment Between Alternatives 

 F(X) 1x  2x  3x  4x
 5x  6x  7x  

Optimal 680.630 2.3304 1.9513 -0.4775 4.3657 0.6244 1.0381 1.5942 

Alternative 1 683.917 2.3025 1.9353 -0.4881 4.3333 -0.6169 1.0355 1.5889 

Alternative 2 687.580 2.2892 1.8985 -0.4605 4.3364 -0.5962 1.0208 1.5782 

Alternative 3 696.899 2.2934 1.9096 -0.4397 4.3369 -0.6616 1.0331 1.6176 

Alternative 4 705.926 2.3080 1.9171 -0.4724 4.3343 -0.6578 1.053 1.6078 

Alternative 5 706.837 2.2913 1.9003 -0.3965 4.3548 -0.6388 1.0796 1.6023 

Alternative 6 718.478 2.2904 1.9037 -0.427 4.3637 -0.5871 0.9955 1.6230 

Alternative 7 725.652 2.3428 1.9158 -0.4459 4.3929 -0.6672 1.0382 1.6129 

Alternative 8 730.091 2.2892 1.8985 -0.4605 4.3364 -0.5962 1.0208 1.5782 

Alternative 9 741.897 2.2904 1.9037 -0.427 4.3637 -0.5871 0.9955 1.6230 

Alternative 10 747.925 2.3577 1.9121 -0.4395 4.3314 -0.5869 1.0038 1.6148 
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constraints on deflection, stress, surge frequency 

and geometry. The mathematical formulation for 

this test problem can be summarized as: 

 

Minimize F(X) =  2

1 2 32x x x  

Subject to: 

g1(X) = 1 – 
4

1

3

3

2

71785x

xx
  0 

g2(X) = 

 

2

2 1 2

3 4

1 2 1

4

12566

x x x

x x x




 + 

2

15108

1

x
 – 1   

0 

g3(X) = 1 – 1

2

2 3

140.45x

x x
  0 

g4(X) = 
5.1

21 xx 
 – 1   0 

 

 

0.05 1x   2.00.25  2x   1.3 2.0 3x  15.0 

 

The optimal solution for the specific design 

parameters employed within this formulation is 

F(X*) = 0.0127 with decision variable values of X* 

= (0.051690, 0.356750, 11.287126) [14]. The MGA 

procedure was used to create the optimal solution 

and the 10 maximally different solutionsshown in 

Table 4. 

 

 

 

Table 4. Objective Values and Solutions for the 11 Maximally Different Alternatives 

Increment 1% Increment Between Alternatives 2.5% Increment Between Alternatives 

 F(X) 1x  2x  3x  F(X)
 1x  2x  3x  

Optimal 0.0127 0.0517 0.3567 11.2871 0.0127 0.0517 0.3567 11.2871 

Alternative 1 0.0128 0.05 0.3164 14.1754 0.0128 0.05 0.3165 14.1598 

Alternative 2 0.0128 0.0514 0.3472 12.0089 0.0131 0.05 0.3129 14.777 

Alternative 3 0.0129 0.0529 0.3862 9.9684 0.0132 0.05 0.3167 14.6402 

Alternative 4 0.013 0.0521 0.3656 11.0667 0.0140 0.0557 0.4307 9.5783 

Alternative 5 0.0131 0.0527 0.3766 10.5179 0.0143 0.0542 0.4014 11.6481 

Alternative 6 0.0134 0.05 0.3157 14.978 0.0146 0.0546 0.4247 10.7556 

Alternative 7 0.0135 0.0524 0.3597 11.6966 0.0149 0.0562 0.438 11.1197 

Alternative 8 0.0137 0.052 0.3629 12.1615 0.0152 0.0605 0.4836 8.9963 

Alternative 9 0.0138 0.0523 0.348 13.3247 0.0156 0.0574 0.3841 14.5182 

Alternative 10 0.0140 0.0535 0.3857 14.162 0.0159 0.0553 0.4072 15.0000 

 

These computational examples underscore several 

important findings with respect to the concurrent 

FA-driven MGA method: (i) The co-evolutionary 

capabilities within the FA can be exploited to 

generate more good alternatives than planners would 
be able to create using other MGA approaches 

because of the evolving nature of its population-

based solution searches; (ii) By the design of the 

MGA algorithm, the alternatives generated are good 

for planning purposes since all of their structures 

will be as mutually and maximally different from 

each other as possible (i.e. these differences are not 

just simply different from the overall optimal 

solution as in the HSJ-style approach to MGA); (iii) 

The approach is very computationally efficient since 

it need only be run once to generate its entire set of 

multiple, good solution alternatives (i.e. to generate 
n solution alternatives, the MGA algorithm needs to 

run exactly the same number of times that the FA 

would need to be run for function optimization 

purposes alone – namely once – irrespective of the 

value of n); and, (iv) The best overall solutions 

produced by the MGA procedure will be very 

similar, if not identical, to the best overall solutions 

that would be produced by the FA for function 

optimization alone. 

In summary, the three examples in this section have 

demonstrated how the MGA modelling perspective 

can be used to concurrently generate multiple 

alternatives that satisfy known system performance 

criteria according to the prespecified bounds and yet 
remain as maximally different from each other as 

possible in the decision space. In addition to its 

alternative generating capabilities, the FA 

component within the MGA approach 

simultaneously performs extremely well with respect 

to its role in function optimization. It should be 

explicitly noted that the overall best solutions 

produced by the FA-driven MGA procedure for the 

test problems are indistinguishable from the optimal 

ones determined by Loughlin et al. [6], Aragon et al. 

[16] and Cagnina et al. [14]. 

 

6. Conclusions 
 “Real world” engineering optimization 

problems generally possess multidimensional 

performance specifications that are compounded by 

incompatible performance objectives and 

unquantifiable modelling features. These problems 

usually contain incongruent design requirements 

which are very difficult – if not impossible – to 

capture at the time that supporting decision models 
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are formulated. Consequently, there are invariably 

unmodelled problem facets, not apparent during the 

model construction, that can greatly impact the 

acceptability of the model’s solutions. These 

uncertain and competing dimensions force decision-

makers to integrate many conflicting sources into 

their decision process prior to final solution 
construction. Faced with such incongruencies, it is 

unlikely that any single solution could ever be 

constructed that simultaneously satisfies all of the 

ambiguous system requirements.  

Therefore, any ancillary modelling techniques used 

to support decision formulation have to somehow 

simultaneously account for all of these features 

while being flexible enough to encapsulate the 

impacts from the inherent planning uncertainties. 

Under such circumstances, it is preferable to create a 

set of quantifiably good alternatives that provide 

very different perspectives to the potentially 
unmodelled performance design issues during the 

problem formulation stage. The unique performance 

features captured within these dissimilar alternatives 

can result in very different system performance with 

respect to the unmodelled issues, hopefully thereby 

addressing some of the unmodelled issues into the 

actual solution process.  

In this paper, an FA-driven MGA approach 

was introduced that demonstrated how the 

computationally efficient FA could be exploited to 

concurrently generate multiple, maximally different, 
near-best alternatives via the co-evolutionary nature 

of its population-based solution technique. In this 

MGA capacity, the algorithm produces numerous 

solutions possessing the requisite problem 

characteristics, with each generated alternative 

guaranteeing a very different perspective. Since FA-

driven techniques can be adapted to solve a wide 

variety of problem types, the practicality of this 

MGA approach can clearly be extended into 

numerous disparate “real world” applications. These 

extensions will become the focus of future research.   
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