
Mrs. Archana Ajay Nawandhar / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.1381-1385

1381 | P a g e

3D Graphics Texture Compression And Its Recent Trends.

*Mrs. Archana Ajay Nawandhar,
*(Department Of Telecommunication Engineering, CMRIT, Bangalore.)

ABSTRACT
Texture compression is a specialized

form of image compression designed for storing

texture maps in 3D computer graphics rendering

systems. Texture compression is an important

technique in graphics processing units (GPUs)

for saving memory bandwidth. Unlike

conventional image compression algorithms,

texture compression algorithms are optimized

for random access. Therefore, the variable-rate

sequential coding used in many image

compression systems cannot be employed,

whereas lossy, fixed-rate block-based approaches

are mainly used for texture compression

algorithms. Secondly it is highly desirable to be

able to render directly from the compressed

texture data. Therefore in order not to impact

rendering performance, decompression must be

fast. Along with these requirements high image

quality and compression ratio both are needed.

This paper gives an overview and comparison

between different types of 3-D graphics texture

compression standards and algorithms available.

Keywords – compression, texture, compression

ratio, rendering, graphics, texel.

I. INTRODUCTION

Texturing plays an important role in a
graphics pipeline, and the applications of texture

data have become much wider in recent graphics

systems. The process of applying texture image to

the surface of a polygon is texture mapping. An

illustration of texture mapping is shown in Fig.(1),

where a handmade paper texture is mapped onto a

triangle. In the texture mapping of rendering

pipelines, two spaces exist: pixel space and texture

space. For each fragment (x, y) of the triangle, there

is a corresponding texel (s, t) in the texture space.

Since s and t are usually not integer numbers, a
texture filter–such as point sampling (nearest

neighbor) and bilinear filter [1] is usually required

to interpolate a fragment’s texel value. Texture

elements are usually expressed using RGBA tuples,

among which RGB stand for color and A means

transparency α. Therefore texture compression

schemes generally handle both color channels and

alpha channel. Texture maps can be viewed as

images and they can also be used to store a lot of

parameters for rendering, such as transparency,

reflectivity, and bumpiness, which greatly increases

the reality of the virtual objects and visual effects.

To achieve better image quality by considering level

of details (LOD), mipmapping textures

Fig. (1) consisting of multi-scale texture maps are

also designed.

When the resolutions of the pixel space and

texture space are different, texture mapping with

point sampling (nearest neighbour) and bilinear
interpolation usually causes aliasing effects. The

most popular method for anti-aliasing texturing is

trilinear interpolation applied in a mipmapping

texture [2], when the mipmapping method is used;

the original texture is augmented with a set of

smaller versions of the texture. The texture (level

zero) is downsampled to a quarter of the original

area, with each new texel value often computed as

the average four neighbour texels in the level zero

texture. The reduction is performed recursively until

the last level texture, where only one texel exists.
Fig. (2) shows the mipmapping process [5].

 (x,y)

(s,t)

Mrs. Archana Ajay Nawandhar / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.1381-1385

1382 | P a g e

 Fig. (2)

However, they also lead to large memory bandwidth

requirements. Consequently, in modern graphics

processing unit (GPU) hardware architecture the

texture unit is a dedicated module: it reads large

amount of data from the off-chip texture buffer and

sends the required data to the unified shader array
after some filtering operations.

 In this paper different texture mapping algorithms

like S3TC’s DXT1-7, ASTC, PVRTC, ATI’s 3DC

are discussed.

II. S3 TEXTURE COMPRESSION (S3TC)
Sometimes also called DXTn or DXTC; is

a group of related lossy texture compression

algorithms originally developed by Iourcha et al. of
S3 Graphics, Ltd.[4] for use in their Savage 3D

computer graphics accelerator. The method of

compression is similar to the Color Cell

Compression. Color Cell Compression is an early

lossy image compression algorithm first described

by Campbell et al. in 1986.[1] It is a variant of

Block Truncation Coding. The encoding process

works on small blocks of pixels. For each block, it

first partitions the pixels in that block into two sets

based on their luminance values, then generates

representative colour values for each of these sets,

and a bitmap that specifies which pixels belong to
which set. The two colour values and the bitmap for

each block are then output directly without any

further quantization or entropy coding.

 The decoding process is simple; each pixel of an

output block is generated by choosing one of the

two representative colours for that block, based on

that block's bitmap. It had the advantage of very

simple decompression and fast random access into

the compressed image, and it can be regarded as a

forerunner of modern texture compression

algorithms.

Table (1) . S3TC Format Comparison
FOUR

CC

DX 10

Name

Descriptio

n

Alpha

premultipl

ied?

Compress

ion ratio

Textu

re

Type

DXT1 BC1 1-bit

Alpha /

Opaque

N/A 6:1(for 24

bit source

image)

Simpl

e

non-

alpha

DXT2 (none) Explicit

alpha

Yes 4:1 Sharp

alpha

DXT3 BC2 Explicit

alpha

No 4:1 Sharp

alpha

DXT4 (none) Interpolat

ed alpha

Yes 4:1 Gradi

ent

alpha

DXT5 BC3 Interpolat

ed alpha

No 4:1 Gradi

ent

alpha

S3TC supports fixed-rate data compression coupled

with the single memory access. There are five

variations of the S3TC algorithm named DXT1

through DXT5, each designed for specific types of
image data. All convert a 4×4 block of pixels to a

64-bit or 128-bit quantity, resulting in compression

ratios of 6:1 with 24-bit RGB input data or 4:1 with

32-bit RGBA input data. Since its a lossy

compression algorithm, it results in an image quality

degradation, an effect which is minimized by the

ability to increase texture resolutions while

maintaining the same memory requirements. Hand-

drawn cartoon-like images do not compress well,

nor do normal map data, both of which usually

generate artifacts.
The only really important ones are DXT1, DXT3,

and DXT5. They all handle colour compression in

the same way, but the key difference is how they

handle the alpha channel. DXT1 has a binary alpha,

and is basically unsuitable for anything that will be

rendered with alpha blending (it might be ok for

simple alpha testing). DXT3 stores an

uncompressed 4-bit alpha for each pixel. This

means that the colours are all in the right place, but

there are only 16 levels to choose from, causing

severe banding artifacts on long gradients. DXT5

stores an interpolated 4-bit alpha. This means that
there are the same kind of block compression

artifacts as in the colour channel, but smooth

gradients look pretty good. It's safe to say that

DXT5 alpha channels look the best for most images.

If there's no alpha channel, we should use DXT1,

because it's half as big as DXT5. If there are only

sharp edges, DXT3 is actually slightly more

accurate than DXT5. Fig 3 shows alpha channel of a

smoke sprite compressed with each type:

Mrs. Archana Ajay Nawandhar / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.1381-1385

1383 | P a g e

Fig 3

III. ATI'S 3DC COMPRESSION ALGORITHM
ATI's 3Dc compression algorithm is a

modification of DXT5 designed to overcome

S3TC's shortcomings with regard to normal maps.

Normal maps are special textures that are used to

add detail to 3D surfaces. They are an extension of

earlier “bump map” textures, which contained per-

pixel height values and were used to create the

appearance of bumpiness on otherwise smooth

surfaces. Normal maps contain more detailed

surface information, allowing them to represent

much more complex shapes. ATI’s 3Dc technology
is designed to allow game developers to pack more

detail into real time 3D images than ever before,

making 3Dc a key enabler of the HD Gaming

vision. DXTC & S3TC are ineffective at

compressing normal maps. They tend to have

trouble capturing the small edges and subtle

curvature that normal maps are designed to capture,

and they also introduce unsightly block artifacts fig.

4. Because normal maps are used to capture light

reflections and realistic surface highlights, these

problems are amplified relative to their impact on
color textures. The results are sufficiently poor that

game artists and developers would rather not use

normal maps at all on most surfaces, and instead

limit themselves to lower resolution maps on

selected parts of the rendered scene.

Fig 4: uncompressed image (leftmost); DXT5

compressed image (middle); 3Dc compressed image

(rightmost).
 3Dc is a block-based compression technique. It

breaks a texture map up into 4x4 blocks containing

16 values each. These values must consist of two

components. Each component is compressed

separately. A maximum and minimum value is

determined for each block, and these are stored as 8-

bit values. A set of six intermediate values are then

calculated, spaced equally between the minimum

and the maximum. This gives a total of eight values

that each component can take within a block. Each

component is assigned a 3-bit index corresponding
to whichever of these values is closest to its original

value. The resulting compressed blocks consist of

four 8-bit values and thirty-two 3-bit values, for a

total of 128 bits. Since the original blocks consisted

of sixteen 32-bit values, for a total of 512 bits, this

represents a compression ratio of 4:1. If the original

values were 16-bit rather than 32-bit, then a

compression ratio of 2:1 can still be achieved. Using

3Dc to compress normal maps requires an

additional step. This is because each value in a

normal map is actually a 3D vector, consisting of 3
components (x, y & z). These values must be

reduced to 2-component values in order to work

with 3Dc. Fortunately, this can be handled in a

simple way by assuming that all of the normal

vectors have a length of 1. Given the values of two

components of a vector, the value of the third

component can be found using the following

mathematical relationship: z =√ (1- (x2+y2)) .

This formula can be implemented using just a

couple of pixel shader instructions. Thus 3Dc is an

exciting new compression technology designed to

bring out fine details in games while minimizing
memory usage. It is the first compression technique

optimized to work with normal maps, which allow

fine per-pixel control over how light reflects from a

textured surface. With up to 4:1 compression

possible, this means game designers can now

include up to 4x the detail without changing the

amount of graphics memory required and without

impacting performance.

Mrs. Archana Ajay Nawandhar / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.1381-1385

1384 | P a g e

III. VARIABLE BIT RATE TEXTURE

COMPRESSION.
All the DXT1-5 are fixed bit rate

compression techniques and they inevitably has

some blocks that are compressed too much, leading

to artifacts, and some blocks that could be

compressed more, leading to larger files.to

overcome this variable bit rate compression

techniques are being developed. Some of them are

DXT6, DXT7, and ASTC. The VBR texture
compression algorithm [6] are designed for fast

GPU decompression. A high compression rate

algorithm that can be decompressed on the GPU

allows a vast increase in on-GPU texture storage.

Even as future GPUs move to unified memory,

memory will still limit texture capacity, and fast

GPU decompression still increases total texture

capacity. Unlike most image compression

algorithms, which only reconstruct an image at a

single resolution, VBR algorithm reconstructs the

entire MIP chain, avoiding the significant overhead

of compressing each MIP level independently,
while allowing independent selection of MIP filter

or artistic tailoring of the MIP levels.

Adaptive Scalable Texture Compression (ASTC) is

a lossy block-based texture compression algorithm

[3] developed by Jørn Nystad et al. of ARM Ltd.

The stated primary design goal for ASTC is to

enable content developers to have better control

over the space/quality tradeoff inherent in any lossy

compression scheme. With ASTC, the ratio between

adjacent bit rates is of the order of 25%, making it

less expensive to increase quality for a given
texture.

 Encoding different assets often requires

different color formats. ASTC allows a wide choice

of input formats, including luminance-only,

luminance-alpha, RGB, RGBA, and modes

optimized for surface normals. The designer can

thus choose the optimal format without having to

support multiple different compression schemes.

The choices of bit rate and color format do not

constrain each other, so that it possible to choose

from a large number of combinations. Despite this

flexibility, ASTC achieves better peak signal-to-
noise ratios than PVRTC, S3TC, and ETC2 when

measured at 2 and 3.56 bits per texel. For HDR

textures, it produces results comparable to BC6H at

8 bits per texel.

ASTC textures are compressed using a fixed block

size of 128 bits, but with a variable block footprint

ranging from 4x4 texels up to 12x12 texels. The

available bit rates thus range from 8 bits per texel

down to 0.89 bits per texel, with fine steps in

between.

IV. PVRTC AND PVRTC2

These are from the family of lossy, fixed-

rate texture compression formats used in PowerVR's

MBX (PVRTC only), SGX and Rogue technologies.

These differ from block-based texture formats such

as S3TC and Ericsson Texture Compression (ETC)

in that the compressed image is represented by two
lower resolution images which are bilinearly

upscaled and then blended according to low

precision, per-pixel weights. They also differ in that

they support ARGB data in both 4-bpp and 2-bpp

modes. PVRTC is the compressed texture format

used in all generations of the iPhone, iPod Touch,

and iPad.

IV. CONCLUSION
In computer graphics achieving high visual

quality typically requires high-resolution textures.

However the desire for increasing texture resolution

conflicts with the limited amount of graphics

memory and available. Memory bandwidth is the

most important aspect of graphics system

performance today. Especially for embedded

systems increasing the memory bandwidth may not

be an option. Texture compression can help to

achieve higher graphics quality with given memory

and bandwidth without degrading quality too much.
DXT compression is a lossy texture compression

algorithm that can reduce texture storage

requirements and decrease texture bandwidth. The

DXT compressions are good to use on decal texture

images, especially those images that are high in

resolution BUT does not give good results with

normal maps. Whereas ATI’s 3Dc compression

technique can be used effectively to compress

normal map data or to compress multiple pieces of

data into a single texture. This format compresses

the images while retaining the highest level of detail

in it. Which texture format and compression
technique needs to be used will depend on the type

of images and the target application requirements.

ASTC provides better peak signal-to-noise ratios as

compared to other compression formats. PVRTC

compression algorithm is used for embedded

systems. It tries to take advantage of the correlation

of texel position and color, used in PDAs and

smartphones..

REFERENCES

Journal Papers:
[1] Chih-Hao Sun, You-Ming Tsao, and Shao-Yi

Chien, Member Graphics Processing Units;,

IEEE;”High-Quality Mipmapping Texture

compression With Alpha Maps for”;IEEE

TRANSACTIONS ON MULTIMEDIA,

VOL. 11, NO. 4, JUNE 2009

[2] Campbell, G.; Defanti, T. A.; Frederiksen, J.;

Joyce, S. A.; Leske, L. A. (1986). "Two
bit/pixel full color encoding". Proceedings of

the 13th annual conference on Computer

graphics and interactive techniques -

Mrs. Archana Ajay Nawandhar / International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 2, March -April 2013, pp.1381-1385

1385 | P a g e

SIGGRAPH '86. pp. 215. doi:10.1145/

15922.15910. ISBN 0897911962.

[3] US 5956431 "Fixed-rate block-based image

compression with inferred pixel values"

[4] Yifei Jiang∗, Mindan Gui†, Dongdong Lu∗,

Yuanchao Xu‡§ ∗Shanghai High

Performance IC Design Center, Shanghai,

China †Department of Electronic &

Information Engineering, Wuxi South Ocean

College, Wuxi, China ‡Institute of

Computing Technology, Chinese Academy

of Sciences, Beijing, China §College of

Information S3 Texture Compression;

en.wikipedia.org/wiki/
S3_Texture_Compression Engineering,

Capital Normal University, Beijing, China

jiangyifei01@gmail.com

[5] Adaptive Scalable Texture compression

(ASTC), en.wikipedia.org/wiki/ Adaptive_

Scalable_ Texture_compression

[6] Texture Compression with Variable Data

Formats 2012 IEEE 12th International

Conference on Computer and Information

TechnologyM Ozaki, Y. Adachi, Y. Iwahori,

and N. Ishii, Application of fuzzy theory to
writer recognition of Chinese characters,

International Journal of Modelling and

Simulation, 18(2), 1998, 112-116.

Books:
[7] Tomas Akenine-Moller, Eric Haines, Naty

Hoffman, Real time graphics rendering [3e

A K Peters LTD: Natick, MA] .

