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Abstract-  
Association rule mining is the most 

popular technique in data mining. Mining 

association rules is a prototypical problem as the 

data are being generated and stored every day in 

corporate computer database systems. To 

manage this knowledge, rules have to be pruned 

and grouped, so that only reasonable numbers of 

rules have to be inspected and analyzed. In this 

paper, we present a detailed multifunctional 

itemset mining algorithm called MCRA. MCRA 

shows a number of additional features and 

performs the following, usually independent, 

tasks: identify frequent closed itemsets and 

associate generators to their closures. This makes 

MCRA a complete algorithm for computing 

classes of itemsets including generators and 

closed itemsets. These characteristics allow one to 

extract minimal non-redundant association rules, 

a useful and lossless representation of association 

rules. In addition, being based on the Pascal 

algorithm, MCRA has a rather efficient behavior 

on weakly and strongly correlated data. In 

particular, MCRA is able to perform the 

following, usually independent, tasks: identify 

frequent closed itemsets and associate generators 

to their closures. This allows one to find minimal 

non-redundant association rules. 
 

Keywords -Confidence, Balanced tree, Association 

Rules, Data Mining, Multidimensional dataset, 

Pruning, Frequent itemset, Minimal Non-Redundant 

Association Rules. 

I. IINTRODUCTION 
Mining association rules is particularly 

useful for discovering relationships among items 

from large databases. A standard association rule is 

a rule of the form X→ Y which says that if X is true  

 

of an instance in a database, so is Y true of the same 

instance, with a certain level of significance as 

measured by two indicators, support and confidence. 

The goal of standard association rule mining is to 

output all rules whose support and confidence are 

respectively above some given support and coverage 
thresholds. These rules encapsulate the relational 

associations between selected attributes in the 

database, for instance, coke → potato chips: 0.02 

support; 0.70 coverage denotes that in the database, 

70% of the people who buy coke also buy potato 

chips, and these buyers constitute 2% of the 

database. This rule signifies a positive (directional) 

relationship between buyers of coke and 

potatochips. The mining process of association rules 

can be divided into two steps.1. Frequent Itemset 

Generation: generate all sets of items that have 

support greater than a certain threshold, called 
minsupport.2. Association Rule Generation: from 

the frequent itemsets, generate all association rules 

that have confidence greater than a certain threshold 

called minconfidence. Generating strong association 

rules from frequent itemsets often resultsin a huge 

number of rules, which limits their usefulness in real 

life applications.To solve this problem, different 

concise representations of association rules 

havebeen proposed, e.g. generic basis (GB), 

informative basis (IB), representativerules (RR), 

Duquennes-Guigues basis (DG), Luxenburger basis 
(LB),proper basis (PB), structural basis (SB), etc. 

 

Kryszkiewicz showed that minimal non-redundant 

rules3 (MNR) with the cover operator, and the 

transitive reduction of minimal non-redundant 

rules3 (RMNR) with the cover operator and the 

confidence transitivity property are lossless, sound, 

and informative representations of all valid 

association rules. From the definitions of MNR and 
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RMNR it can be seen that we only need frequent 

closed itemsets and their generators to produce these 

rules. Frequent itemsets have several condensed 

representations, e.g. closed itemsets, generator 
representation, approximate free-sets, disjunction-

free sets, disjunction-free generators, generalized 

disjunction-free generators, nonderivable itemsets, 

etc. From these representations, the one which 

consists of frequent closed itemsets and frequent 

generators gives rise to a concise set of association 

rules, which is lossless, sound, and informative. This 

set of rules, called the set of minimal non-redundant 

association rules (MNR), is not minimal in general 

case, but presents a good compromise between its 

size and time needed to generate it.Bastide et al. 

presented the Pascal algorithm and claimed 
thatMNR can be extracted with this algorithm. 

However, to obtainMNR from the output of Pascal, 

one has to do a lot of computing. First, frequent 

closed itemsets must also be known. Second, 

frequent generators must be associated to their 

closures. Here we propose an algorithm called 

MCRA, an extension of Pascal, which does this 

computing. Thus, MCRA allows one to easily 

construct MNR. Instead of Pascal, we might have 

selected another algorithm. The reason for choosing 

Pascal was as follows: among levelwise frequent 
itemset mining algorithms; it may be the most 

efficient. This is due to its pattern counting 

inference mechanism that can significantly reduce 

the number of expensive database passes. 

Furthermore, MCRA can be generalized, and thus it 

can be applied to any frequent itemset mining 

algorithm. The paper is organized as follows. In the 

next section, we overview the basic concepts and 

essential definitions. This is followed by the 

description of the three main features of the MCRA 

algorithm. We then present MCRA and give a 
running example. Then, the generation of minimal 

nonredundant association rules is presented. Next, 

we provide experimental results for comparing the 

efficiency of MCRA to Pascal and Apriori. Finally, 

we draw conclusions in the last section. 

 

II.PROPOSED ALGORITHM 
A.Derived algorithm (MCRA)  - 

MCRA has three main features, namely (1) 
pattern counting inference, (2) identifying frequent 

closed itemsets, and (3) identifying generators of 

frequent closed itemsets. 

A.1 Pattern Counting Inference in Pascal and 

MCRA 

The first part of MCRA is based on Pascal, which 

employs properties of the counting inference. In 

levelwise traversal of frequent itemsets, first the 

smallest elements of an equivalence class are 

discovered, and these itemsets are exactly the 

generators. Later, when finding a larger itemset, it is 

tested if it belongs to an already discovered 

equivalence class. If it does, the database does not 

have to be accessed to determine the support of the 

itemset. This way the expensive database passes and 
support counts can be constrained to the case of 

generators only. From some level on, all generators 

can be found, thus all remaining frequent itemsets 

and their supports can be inferred without any 

further databasepass.In Figure 1 (left) we show the 

output of Pascal when executed on dataset D (Fig 

2): it finds frequent itemsets and marks frequent 

generators. Recalling the definitions ofMNR and 

RMNR, we see that this output is not enough. From 

our running example, the output of MCRA is shown 

in Figure 1 (right). Here one can see the equivalence 

classes of database D. Only the maximal (frequent 
closed itemset) and minimal elements (frequent 

generators) of each equivalence class are indicated. 

Support values are shown in the top right-hand 

corner of classes. As can be seen, the output of 

MCRA is necessary and sufficient for generating 

GB,IB, RIB, MNR, and RMNR. 

 

A.2 Identifying Closed Itemsets among Frequent 

Itemsets in MCRA 

The second part of MCRA consists in the 

identification of FCIs among FIs, adapting this idea 
from Apriori-Close [5]. By definition, a closed 

itemset has no proper superset with the same 

support. At the ith step all i-itemsets are marked as 

“closed”. At the (i + 1)th iteration for each (i + 1)-

itemset we test if it contains an i-itemset with the 

same support. If so, then the i-itemset is not a closed 

itemset since it has a proper superset with the same 

support, thus it is marked as “not closed”. When the 

algorithm terminates with the enumeration of all 

FIs, itemsets still marked “closed” are the FCIs of 

the dataset. 
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 Fig.1 . Result of MCRA with min_supp = 0.2 

(40%) 

 
A.3 Associating the Generators to their Closures in 

MCRA 

Because of the levelwise itemset search, when an 

FCI is found, all its frequent subsets are already 

known. This means that its generators are already 

computed,they only have to be identified. We show 

that the search space for generatorscan be narrowed 

to not closed ones. This is justified by the following 

properties:Property 4. A closed itemset cannot be a 

generator of a larger itemset.Property 5. The closure 

of a frequent not closed generator g is the smallest 
proper superset of g in the set of frequent closed 

itemsets.By using these two properties, the 

algorithm for efficiently finding generatorsis the 

following: generators are stored in a list l. At the ith 

iteration, frequent closed i-itemsets are filtered. For 

each frequent closed i-itemset z, the following steps 

are executed: find the subsets of z in list l, register 

them as generators of z, and delete them from l. 

Before passing to the (i+1)th iteration, add the i-

itemsets that are not closed generators to list l. 

Properties 4 and 5 guarantee that whenever the 

subsets of a frequent closed itemset are looked for in 
list l,only its generators are returned. The returned 

subsets have the same support as the frequent closed 

itemset; it does not even have to be tested. Since 

only the generators are stored in the list, it means 

that we need to test far fewer elements than the 

whole set of FIs. Since at step i the size of the 

largest itemset in list l can be maximum (i − 1), we 

do not find the generators that are identical to their 

closures. If an FCI has no generator registered, it 

simply means that its generator is itself. As for the 

implementation, instead of using a “normal” list for 
storing generators, the trie data structure is 

suggested, since it allows a very quick lookup of 

subsets.
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Fig.2 .Execution of MCRA on Dataset D with min_supp = 0.2 (40%) 

 

BThe MCRA Algorithm 

B.1 Pseudo Code 

 

The main block of the algorithm is given in 

Algorithm 1. MCRA uses three differentkinds of 

tables, their description is provided in Tab(s). 1 and 
2. We assume thatan itemset is an ordered list of 

attributes, since we will rely on this in the 

MCRAGen function (Algorithm 2).SupportCount 

Procedure: this method gets a Ci table with 

potentially frequent candidate itemsets, and it fills 

the support field of the table. This steprequires one 

database pass. For a detailed description consult 

[22]. 

 

Subsets function: this method gets a set of itemsets 

S, and an arbitraryitemset l. The function returns 

such elements of S that are subsets of l. 
Thisfunction can be implemented very efficiently 

with the trie data structure.Note that the empty set 

is only interesting, from the point of view of 

rulegeneration, if its closure is not itself. By 

definition, the empty set is always agenerator and 

its support is 100%, i.e. it is present in each object 

of a dataset(sup(∅) = |O|). As a consequence, it is 

the generator of an itemset whosesupport is 100%, 

i.e. of an itemset that is present in each object. In a 

booleantable it means a rectangle that fills one or 

more columns completely. In this case,the empty 

set is registered as a frequent generator (line 15 of 

Algorithm 1), andattributes that fill full columns 

are marked as “not keys” (line 10 of Algorithm 
1).Since in our database D there is no full column, 

the empty set is not registeredas a frequent 

generator and not shown in Fig. 1 either. 

 

B.2 Optimizing the Support Count of 2-itemsets 

 

It is well known that many itemsets of length 2 turn 

out to be infrequent.Counting the support of 2-

itemsets can be done more efficiently the 

followingway. Through a database pass, an upper-

triangular 2D matrix can be built containing the 

support values of 2-itemsets. This technique is 
especially useful forvertical algorithms, e.g. Eclat 

[23] or Charm [10], where the number of 

intersection operations can thus be significantly 

reduced, but this optimization can alsobe applied to 

levelwise algorithms. Note that for a fair 

comparaison with otheralgorithms, we disabled this 

option in the experiments 

. 
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Table 1. Tables used in MCRA. 

 
Table 2.Fields of the tables of MCRA. 

 
Algorithm 1 (MCRA): 

1) fullColumn   false; 
2) FG   {}; // global list of frequent generators 

3) filling C1 with 1-itemsets; // copy attributes to C1 

4) SupportCount(C1); 

5) F1   {c 2 C1 | c.support _ min supp}; 

6) loop over the rows of F1 (l) 

7) { 

8) l.closed   true; 

9) if (l.supp = |O|) { 

10) l.key   false; // the empty set is its generator 

11) fullColumn   true; 

12) } 
13) else l.key   true; 

14) } 

15) if (fullColumn = true) FG   {;}; 

16) for (i   1; true; ++i) 

17) { 

18) Ci+1   MCRA-Gen(Fi); 

19) if (Ci+1 = ;) break; // exit from loop 

20) if Ci+1 has a row whose “key” value is true, then 

21) { 

22) loop over the elements of the database (o) { 

23) S   Subsets(Ci+1, o); 

24) loop over the elements of S (s): 
25) if (s.key = true) ++s.support; 

26) } 

27) } 

28) loop over the rows of Ci+1 (c) 

29) { 

30) if (c.support _ min supp) { 

31) if ((c.key = true) and (c.support = c.pred supp)): 

32) c.key   false; 

33) Fi+1   Fi+1 [ {c}; 

34) } 
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35) } 

36) loop over the rows of Fi+1 (l) { 

37) l.closed   true; 

38) S   Subsets(Fi, l); 
39) loop over the elements of S (s): 

40) if (s.support = l.support) s.closed   false; 

41) } 

42) Zi   {l 2 Fi | l.closed = true}; 

43) Find-Generators(Zi); 

44) } 

45) Zi   Fi; 

46) Find-Generators(Zi); 

47) 

48) Result: 

49) FIs: Si Fi 

50) FCIs + their generators: Si Zi 
Algorithm 2 (MCRA-Gen function): 

 

Input: Fi – set of frequent itemsets 

Output: table Ci+1 with potentially frequent candidate itemsets. 

Plus: key and pred supp fields will be filled in Ci+1. 

1) insert into Ci+1 

select p[1], p[2], . . . , p[i], q[i] 

from Fi p, Fi q 

where p[1] = q[1], . . . , p[i − 1] = q[i − 1], p[i] < q[i]; // like in Apriori 

2) loop over the rows of Ci+1 (c) 

3) { 
4) c.key   true; 

5) c.pred supp = |O| + 1; // number of objects in the database + 1 (imitating +1) 

6) S   (i − 1)-long subsets of c; 

7) loop over the elements of S (s) 

8) { 

9) if (s /2 Fi) then Ci+1   Ci+1 \ {c}; // remove it if it is rare 

10) else { 

11) c.pred supp   min(c.pred supp, s.support); 

12) if (s.key = false) then c.key   false; // by Prop. 2 

13) } 

14) } 
15) if (c.key = false) then c.support   c.pred supp; // by Th. 2 

16) } 

17) return Ci+1; 

Algorithm 3 (Find-Generators procedure): 

Method: fills the gen field of the table Zi with generators 

Input: Zi – set of frequent closed itemsets 

1) loop over the rows of Zi (z) 

2) { 

3) S   Subsets(FG, z); 

4) z.gen   S; 

5) FG   FG \ S; 

6) } 
7) FG   FG [ {l 2 Fi | l.key = true ^ l.closed = false}; 

B.3 Running Example 

 

Consider the following dataset D (Tab. 3) that we use for our examples throughout the paper. 
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Table 3. A toy dataset (D) for the examples 
 

The execution of MCRA on dataset D with min 

supp = 2 (40%) is illustratedin Tab. 4. The 

algorithm first performs one database scan to count 

the supportsof 1-itemsets. The candidate itemset 

{D} is pruned because it is infrequent. Atthe next 

iteration, all candidate 2-itemsets are created and 

stored in C2. Thena database scan is performed to 

determine the supports of the six potentially 

frequent candidate itemsets. In C2 there is one 

itemset that has the same supportas one of its 

subsets, thus {BE} is not a key generator (see 
Th(s). 1 and 2). UsingF2 the itemsets {B} and {E} 

in F1 are not closed because they have a 

propersuperset in F2 with the same support. The 

remaining closed itemsets {A} and{C} are copied 

to Z1 and their generators are determined. In the 

global listof frequent generators (FG), which is still 

empty, they have no subsets, whichmeans that both 

{A} and {C} are generators themselves. The not 

closed keyitemsets of F1 ({B} and {E}) are added 

to FG.In C3 there are two itemsets, {ABE} and 

{BCE}, that have a non-key subset({BE}), thus by 
Prop. 2 they are not key generators either. Their 

support valuesare equal to the support of {BE} (Th. 

2), i.e. their supports can be determinedwithout any 

database access. By F3 the itemsets {AB}, {AE}, 

{BC} and {CE}turn out to be “not closed”. The 

remaining closed itemsets {AC} and {BE} 

arecopied to Z2. The generator of {AC} is itself, 

and the generators of {BE} are{B} and {E}. These 

two generators are deleted from FG and {AB}, 

{AE}, {BC}and {CE} are added to FG.At the 

fourth iteration, it turns out in MCRA-Gen that the 

newly generatedcandidate itemset contains at least 

one non-key subset. By Prop. 2 the newcandidate 
itemset is not a candidate key generator, and its 

support is determineddirectly in MCRA-Gen by 

Th. 2. As there are no more candidate generators in 

C4,from this step on no more database scan is 

needed.In the fifth iteration no new candidate 

itemset is found and the algorithmbreaks out from 

the main loop. The largest frequent closed itemset 

is {ABCE},its generators are read from FG. When 

the algorithm stops, all frequent andall frequent 

closed itemsets with their generators are 

determined, as shown inTab. 5. In the table the “+” 
sign means that the frequent itemset is closed.
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Table 4. Execution of MCRA on dataset D with min supp = 2 (40%) 

 
 

The support values are indicated in parentheses. If MCRA leaves the generatorsof a closed itemset empty, it 

means that the generator is identical to the closeditemset (as this is the case for {A}, {C} and {AC} in the 

example). Due tothe property of equivalence classes, the support of a generator is equal to thesupport of its 

closure. 

 

B.4 The Pascal+ Algorithm 

Actually, MCRA can be specified to another algorithm that we call Pascal+. Previously we have seen that 
MCRA has three main features. Removing the thirdpart of MCRA (associating generators to their closures), we 

get Pascal+ thatcan filter FCIs among FIs, just like Apriori-Close. To obtain Pascal+ the FindGenerators() 

procedure calls must be deleted from Algorithm 1 in lines 43 and46. 

 

Table 5. Output of MCRA 

 
 

 



Dr.N.Chandra Sekhar Reddy, Dr.P.C.Rao.Vemuri, Ms.M.SaradaVaralakshmi, Mr B. Aswani 

Kumar / International Journal of Engineering Research and Applications      

   (IJERA)              ISSN: 2248-9622          www.ijera.com 

Vol. 3, Issue 1, January -February 2013, pp.2052-2064 

2060 | P a g e  

 

Table 6. Comparing sizes of different sets of association rules generated with MCRA 

 
C. Finding Minimal Non-Redundant Association 

Ruleswith MCRA 

Generating all strong association rules 
from frequent itemsets produces too manyrules, 

many of which are redundant. For instance in 

dataset D with min supp =2 (40%) and min conf = 

50% no less than 50 rules can be extracted. 

Consideringthe small size of the dataset, 5×5, this 

quantity is huge. How could we find themost 

interesting rules? How could we avoid redundancy 

and reduce the number of rules? Minimal non-

redundant association rules (MNR) can help us.By 

Definitions 1 – 5, an MNR has the following form: 

the antecedent isa frequent generator, the union of 

the antecedent and consequent is a frequentclosed 
itemset, and the antecedent is a proper subset of 

this frequent closeditemset. MNR also has a 

reduced subset called RMNR. Since a generator is 

aminimal subset of its closure with the same 

support, non-redundant associationrules allow to 

deduce maximum information with a minimal 

hypothesis. Theserules form a set of minimal non-

redundant association rules, where 

“minimal”means “minimal antecedents and 

maximal consequents”. Among rules with thesame 

support and same confidence, these rules contain 
the most information andthese rules can be the 

most useful in practice [19]. For the generation of 

suchrules the frequent closed itemsets and their 

associated generators are needed.Since MCRA can 

find both, the output of MCRA can be used directly 

to generatethese rules. 

 

The algorithm for finding MNR is the following: 

for each frequent generator P1 find its proper 

supersets P2 in the set of FCIs. Then add the ruler : 
P1 → P2 \ P1 to the set of MNR. For instance, 

using the generator {E}in Fig. 1, three rules can be 

determined. Rules within an equivalence class 

formthe generic basis (GB), which are exact 

association rules (E ⇒B), while rulesbetween 

equivalence classes are approximate association 

rules (E → BC andE → ABC). For extracting 

RMNR the search space for finding frequent 

closedproper supersets of generators is reduced to 

equivalence classes that are directneighbors (see 

Def. 10), i.e. transitive relations are eliminated. 
Thus, for instance, in the previous example only 

the first two rules are generated: E ⇒Band E → 

BC. A comparative table of the different sets of 

association rules extracted with MCRA are shown 

in Tab. 6.11 In sparse datasets, like 

T20I6D100K,the number ofMNR is not much less 

than the number of AR, however in dense,highly 

correlated datasets the difference is significant. 

RMNR always representmuch less rules than AR, 

in sparse and dense datasets too.As shown in Tab. 

5, MCRA finds everything needed for the 
extraction of minimal nonredundant association 

rules. For a very quick lookup of frequent 

closedproper supersets of frequent generators we 

suggest storing the frequent closeditemsets in the 

trie data structure. 
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III. EXPERIMENT AND RESULT 
We evaluated MCRA against Apriori and 

Pascal. We have implemented thesealgorithms in 

Java using the same data structures, and they are all 

part of theplatform Coron [24]. The experiments 

were carried out on an Intel Pentium IV2.4 GHz 

machine running GNU/Linux operating system, 

with 512 MB of RAM.All times reported are real, 

wall clock times as obtained from the Unix 

timecommand between input and output. Table 7 

shows the characteristics of thedatabases used in 

our evaluation. It shows the number of objects, the 
numberof different attributes, the average 

transaction length, and the largest attributein each 

database.

 

 

Table 7. Characteristics of databases 

 
 

The T20I6D100K12 is a sparse dataset, constructed 

according to the properties of market basket data 

that are typical weakly correlated data. The 

numberof frequent itemsets is small, and nearly all 

FIs are closed. The C20D10K is acensus dataset 

from the PUMS sample file, while the Mushrooms 
describemushrooms characteristics. The last two 

are highly correlated datasets. It hasbeen shown 

that weakly correlated data, such as synthetic data, 

constitute easycases for the algorithms that extract 

frequent itemsets, since few itemsets arefrequent. 

For such data, all algorithms give similar response 

times. On the contrary, dense and highly-correlated 

data constitute far more difficult cases for 

theextraction due to large differences between the 

number of frequent and frequentclosed itemsets. 

Such data represent a huge part of real-life datasets. 
 

3.1 Weakly Correlated Data 

 

The T20I6D100K synthetic dataset mimics market 

basket data that are typicalsparse, weakly 

correlated data. In this dataset, the number of 

frequent itemsets issmall and nearly all frequent 

itemsets are generators. Apriori, Pascal and 

MCRAbehave identically. Response times for the 

T20I6D100K dataset are presentednumerically in 

Tab. 8.Table 8 also contains some statistics 

provided by MCRA about the datasets. Itshows the 
number of FIs, the number of FCIs, the number of 

frequent generators,the proportion of the number of 

FCIs to the number of FIs, and the proportionof the 

number of frequent generators to the number of 

FIs, respectively. As wecan see in T20I6D100K, 

above 0.75% minimum support all frequent 

itemsets areclosed and generators at the same time. 
It means that each equivalence class hasonly one 

element. Because of this, MCRA and Pascal cannot 

use the advantage ofpattern counting inference and 

they work exactly like Apriori. 

 

3.2 Strongly Correlated Data 

 

Response times obtained for the C20D10K and 

Mushrooms datasets are givennumerically in Tab. 

8, and graphically in Fig. 2, respectively. In these 

twodatasets, the number of frequent generators is 
much less than the total number of frequent 

itemsets. Hence, using pattern counting inference, 

MCRA has toperform much fewer support counts 

than Apriori. We can observe that in allcases the 

execution times of MCRA and Pascal are almost 

identical: adding thefrequent closed itemset 

derivation and the identification of their generators 

tothe frequent itemset discovery does not induce 

serious additional computationtime. Apriori is very 

efficient on sparse datasets, but on strongly 

correlated datathe other two algorithms perform 

much better. 
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Table 8. Response times of MCRA and other statistics 

 

 
 

3.3 Comparing Pascal+ and Pascal 

 

We also compared the efficiency of Pascal+ with Pascal. Pascal+ gives almostequivalent response times to 
Pascal on both weakly and strongly correlated data,i.e. the filtering of closed itemsets among frequent itemsets 

is not an expensivestep. As Pascal is more efficient than Apriori on strongly correlated data (seeTab. 8), Pascal+ 

is necessarily more efficient than Apriori-Close. If we need bothfrequent and frequent closed itemsets then 

Pascal+ is recommended instead ofApriori-Close. 
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IV.CONCLUSION 
In this paper we presented a 

multifunctional itemset miner algorithm called 

MCRA,which is a refinement of Pascal. With 

pattern counting inference, using the generators of 

equivalence classes, it can reduce the number of 

itemsets counted andthe number of database passes. 

In addition, it can identify frequent closed itemsets 

among frequent itemsets, and it can associate 

generators to their closure.Weshowed that these 

extra features are required for the generation of 

minimal nonredundant association rules. MCRA 

can also be specified to another algorithm thatwe 
call Pascal+. Pascal+ finds both frequent and 

frequent closed itemsets, likeApriori-Close. We 

compared the performance of MCRA with Apriori 

and Pascal.The results showed that MCRA gives 

almost equivalent response times to Pascalon both 

weakly and strongly correlated data, though MCRA 

also identifies closeditemsets and their 

generators.An interesting question is the following: 

can the idea of MCRA be generalizedand used for 

any arbitrary frequent itemset miner algorithm, be 

it either breadthfirst or depth-first? Could we 

somehow extend these algorithms in a 
universalway to produce such results that can be 

used directly to generate not only allstrong 

association rules, but minimal non-redundant 

association rules too? Wethink that the answer is 

positive, but detailed study of this will be subject 

offurther research. 
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