On **πgr**-Continuous functions.

1.Jeyanthi.V & 2.Janaki.C

1. Department of Mathematics, Sree Narayana Guru College, Coimbatore, India.

2. Department of Mathematics, L.R.G. Govt. College for Women, Tirupur, India.

Abstract:

The aim of this paper is to consider and characterize π gr-closure , π gr- interior, π gr-continuous and almost π gr-continuous functions and to relate these concepts to the classes of π gr-compact spaces, π gr-connected spaces.

Mathematics Subject Classification: 54A05,54C10,54C08.

Key Words: Tgr-cl(A), Tgr-int(A), almost Tgr-continuous, Tgr-compactness, Tgr-connectedness and $T_{\pi\nu r}^*$.

8 Barry 1

1.Introduction

Levine [10] initiated the study of so-called generalized closed set(briefly g-closed set). The notion has been studied extensively in recent years by many topologists, because g-closed sets are not only the generalization of closed sets. More importantly, they also suggested several new properties of topological spaces. Later on N.Palaniappan[11,12] studied the concept of regular generalized closed set in topological space. Zaitsev [16]introduced the concept of TF-closed sets in topological space. Dontchev.J and Noiri.T[4] introduced the concept of Tg-closed set in topological space.

Hussain(1966) [7], M.K.Singal and A.R.Singal(1968)[14] introduced the concept of almost continuity in topological spaces. K.Balachandran, P.Sundram and Maki [2] introduced a class of compactness called GO-compact spaces and GO-connected spaces using g-open cover.

Recently Jeyanthi.Vand Janaki.C [9] introduced and studied the properties of Tgr-closed sets in topological spaces. The purpose of this paper is to study Tgr-closure, Tgr -interior, almost Tgr-continuous functions and some of its basic properties. Further, we introduce the concepts of Tgr-compact spaces, Tgr-connected spaces and study their behaviours under Tgr-continuous functions.

2. Preliminaries

Throughout this paper, X and Y denote the topological spaces (X,T) and (Y,σ) respectively, on which no separation axioms are assumed.

Let us recall the following definitions which are useful in the sequal.

Definition :2.1

A subset A of a topological space X is said to be

- (i) a regular open[12] if A = int(cl(A)) and regular closed if A = cl(int(A))
- (ii) TF open [16] if A is the finite union of regular open sets and the complement of TF open is TF closed set in X. The family of all open sets [regular open, TF open] sets of X will be denoted by O(X)(resp. RO(X),

ПО(X)]

Definition :2.2

A subset A of topological space X is said to be

- (1) a generalized closed set [10] (g-closed set) if cl (A) \subset U whenever A \subset U and U \in O(X).
- (2) a regular generalized closed [12] (briefly rg-closed set) if $cl(A) \subset U$ whenever $A \subset U$ and $U \in RO(X)$.
- (3) a generalized pre regular closed set [5] (briefly gpr -closed set) if $pcl(A) \subset U$ whenever $A \subset U$ and $U \in RO(X)$.
- (4) a π -generalized closed [4] (briefly π g- closed set) if cl (A) \subset U whenever A \subset U and U $\in \pi O(X)$.

(5) a $\pi g \alpha$ - closed set [8] if $\alpha cl(A) \subset U$ whenever $A \subset U$ and $U \in \pi O(X)$.

- (6) a T^{*}g-closed set [6] if $cl(int(A)) \subset U$ whenever $A \subset U$ and $U \in TO(X)$.
- (7) a Tgb-closed set[15] if $bcl(A) \subset U$ whenever $A \subset U$ and $U \in TO(X)$.
- (8) a π gp-closed set [13]if pcl(A) \subset U whenever A \subset U and U $\in \pi$ O(X).

(9) a Tgs-closed set[1] if $scl(A) \subset U$ whenever $A \subset U$ and $U \in TO(X)$.

(10) a generalized regular closed set [12] (briefly g-r-closed set) if $rcl(A) \subset U$ whenever $A \subset U$ and $U \in Open$ in X.

(11) A subset A of X is called π gr- closed set[9] in X if rcl(A) \subset U whenever A \subset U and U is π -open in X.The complement of π gr-closed set is π gr-open set.

We denote the family of all Tgr-closed (resp. Tgr-open)sets in X by TGRC(X)(resp. TGRO(X)).

Definition :2.3

A map f: $X \rightarrow Y$ is said to be

(1) continuous function[10] if $f^{1}(V)$ is closed in X for every closed set V in Y.

(2) regular continuous [12] if $f^{1}(V)$ is regular closed in X for every closed set V in Y.

(3) π gr- continuous[9] if $f^{1}(V)$ is π gr- closed in X for every closed set V of Y.

(4) almost continuous [14]if $f^{1}(V)$ is closed in X for every regular closed set V of Y

(5) almost π -continuous[4]if $f^{-1}(V)$ is π -closed in X for every regular closed set V in Y.

(6) almost Tgb-continuous [15] if $f^{1}(V)$ is Tgb-closed in X for every regular closed set V in Y.

(7) almost $Tg\alpha$ -continuous[8] if $f^{1}(V)$ is $Tg\alpha$ -closed in X for every regular closed set V in Y.

(8) almost Tg-continuous[4] if $f^{1}(V)$ is Tg-closed in X for every regular closed set V in Y.

(9) almost π^* g-continuous[6]if $f^1(V)$ is π^* g-closed in X for every regular closed set V in Y.

(10)almost gpr-continuous[5]if $f^{1}(V)$ is gpr-closed in X for every regular closed set V in Y.

(11) pre-regular closed[12]if f(F) is regular closed in Y for every regular closed set F in X.

Definition: 2.4 .

Regular closure (briefly r-closure) [12] of a set A is defined as the intersection of all regular closed sets containing the set and regular interior(briefly r-interior)[12] of a set A is the union of regular open set contained in the set.

The above are denoted by rcl(A) and r int(A)

Definition:2.5

A map f: $X \rightarrow Y$ is said to be

- (1) a irresolute function [1] if $f^{1}(V)$ is closed in X for every closed set V in Y.
- (2) an R-map [3] if $f^{1}(V)$ is regular-closed in X for every regular closed set V in Y.
- (3) Tgr- irresolute [9] if $f^{1}(V)$ is Tgr- closed in X for every Tgr -closed set V of Y.

3. πgr –Closure and Interior

Definition: 3.1

For any set $A \subset X$, the Tgr-closure of A is defined as the intersection of Tgr -closed sets containing A. The complement of Tgr-closure is Tgr-interior.

We write π gr-cl(A) = $\bigcap \{ F: A \subset F \text{ is } \pi$ gr-closed in X $\}$

Lemma: 3.2

For an $x \in X$, $x \in \pi gr-cl(A)$ iff $V \cap A \neq \phi$ for every πgr -open set V containing x.

Proof:

First, let us suppose that there exists a Tgr-open set V containing x such that $V \cap A = \varphi$.

Since $A \subset X-V$, $\pi gr-cl(A) \subset X-V$

 \Rightarrow x \notin Tgr-cl(A), which is a contradiction to the fact that x \in Tgr-cl(A). Hence V \cap A $\neq \phi$ for every Tgr-open set V containing x.

On the other hand, let $x \notin \operatorname{Tgr-cl}(A)$. Then there exists a Tgr-closed subset F containing A such that $x \notin F$. Then $x \in X$ -F and X-F is Tgr-open. Also, $(X-F) \cap A \neq \phi$, a contradiction. Hence the lemma.

Lemma :3.3

Let A and B be subsets of (X, T). Then

(i) $\operatorname{Tgr-cl}(\varphi) = \varphi$ and $\operatorname{Tgr-cl}(X) = X$.

- (ii) If $A \subset B$, then $\operatorname{Tgr-cl}(A) \subset \operatorname{Tgr-cl}(B)$
- (iii) $A \subset \pi gr-cl(A)$
- (iv) $\Pi gr-cl(A) = \Pi gr-cl(\Pi gr-cl(A))$
- (v) $\Pi gr-cl(A \cup B) = \Pi gr-cl(A) \cup \Pi gr-cl(B)$

Proof: Obvious.

Remark: 3.4

If $A \subset X$ is Tgr-closed, then Tgr-cl(A)=A.But the converse is need not be true as seen in the following example.

Example: 3.5

Let $X = \{a,b,c,d\}$, $T = \{\phi, X, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}$. Let $A = \{a\}$, Tgr-cl(A) = $\{a\} = A$, but $A = \{a\}$ is not Tgr-closed in X.

Lemma: 3.6

Let A and B be subsets of X. Then $\operatorname{Tgr-cl}(A \cap B) \subset \operatorname{Tgr-cl}(A) \cap \operatorname{Tgr-cl}(B)$

Proof:

Since $A \cap B \subset A$, B. $\Rightarrow \operatorname{Tgr-cl}(A \cap B) \subset \operatorname{Tgr-cl}(A)$, $\operatorname{Tgr-cl}(A \cap B) \subset \operatorname{Tgr-cl}(B)$ $\Rightarrow \operatorname{Tgr-cl}(A \cap B) \subset \operatorname{Tgr-cl}(A) \cap \operatorname{Tgr-cl}(B)$

Remark:3.7

The converse of the above need not be true as seen in the following example.

Example:3.8

Let $X = \{a,b,c,d,e\}, T = \{\phi, X, \{a\}, \{e\}, \{a,e\}, \{c,d\}, \{a,c,d\}, \{a,c,d,e\}, \{c,d,e\}\}$ Let $A = \{a,c,e\} \subset X, B = \{d\} \subset X$. Then $\exists gr-cl(A) = \{a,b,c,e\}, \exists gr-cl(B) = \{b,d\}$ But $\exists gr-cl(A) \cap \exists gr-cl(B) = \{b\} \not\subset \exists gr-cl(A \cap B).$

Remark: 3.9

We denote Tgr-closure of A by TGRCL(X), Tgr-closed sets in a topological space by TgrC(X), Tgr-open sets by TgrO(X).

Definition:3.10

 $\mathsf{T}_{\pi gr}^{*} = \{ \mathsf{V} \subset \mathsf{X}/ \mathsf{T} \mathsf{gr} - \mathsf{cl}(\mathsf{X} - \mathsf{V}) = \mathsf{X} - \mathsf{V} \}$

Theorem:3.11

If TgrO(X) is a topology, then $T^*_{\pi vr}$ is a topology.

Proof:

```
Clearly, \varphi, X \in \tau^*_{\pi gr}. Let \{A_i : i \in A\} \in \tau^*_{\pi gr}.

Tgr-cl(X - (\cup A_i)) = Tgr-cl(\cap(X - A_i))

\subset \capTgr-cl(X - A_i)

= \cap (X - A_i)

= X - \cup A_i

Hence \cup A_i \in \tau^*_{\pi gr}.
```

Let A, B $\in \mathsf{T}_{\pi gr}^*$.

Now, $\operatorname{Tgr-cl}(X - (A \cap B) = \operatorname{Tgr-cl}((X - A) \cup (X - B))$ = $\operatorname{Tgr-cl}(X - A) \cup \operatorname{Tgr-cl}((X - B))$ = $(X - A) \cup (X - B)$

Thus $A \cap B \in \tau^*_{\pi gr}$ and hence $\tau^*_{\pi gr}$ is a topology.

Definition: 3.12

Let X be a topological space and let $x \in X$. A subset N of X is said to be π gr-nbhd of x if there exists a Tgr-open set G such that $x \in G \subset N$.

Definition :3.13

Let A be a subset of X. A point $x \in A$ is said to be Tgr-interior point of A if A is a Tgr-nbhd of x. The set of all Tgr-interior of A and is denoted by Tgr-int(A)

Theorem: 3.1 4

If A be a subset of X. Then $\operatorname{Tgr-int}(A) = \bigcup \{G: G \text{ is } \operatorname{Tgr-open}, G \subset A\}$ **Proof:** Straight forward.

Theorem:3.15

Let A and B be subsets of X. Then

(i) $\operatorname{Tr}\operatorname{gr-int}(X) = X$, $\operatorname{Tr}\operatorname{gr-int}(\varphi) = \varphi$

(ii) $\operatorname{Tgr-int}(A) \subset A$

- (iii) If B is any Tgr-open set contained in A, then $B \subset Tgr-int(A)$
- (iv) If $A \subset B$, then $\operatorname{Tgr-int}(A) \subset \operatorname{Tgr-int}(B)$

(v) Tgr-int(Tgr-int(A)) = Tgr-int(A)

Proof:

Straight Forward.

Theorem:3.16

If a subset A of a space X is π gr-open, then π gr-int(A) = A. **Proof:** Obvious.

Remark:3.17

The converse of the above need not be true as seen in the following example.

Example:3.18

Let X = { a,b,c,d}, T = { ϕ , X, {a}, {b}, {a,b}, {a,b,c}}.

Let $A = \{c,d\}$. Then $\exists gr-int(A) = \{c,d\} = A$. But $A = \{c,d\}$ is not $\exists gr-open$.

Theorem:3.19

If A and B are subsets of X, then πgr -int (A) $\cup \pi gr$ -int(B) $\subset \pi gr$ -int (A \cup B)

Proof:

We know that $A \subset A \cup B$ and $B \subset A \cup B$ Then Tgr-int(A) \subset Tgr-int (A $\cup B$), Tgr-int(B) \subset Tgr-int (A $\cup B$) Hence Tgr-int (A) \cup Tgr-int(B) \subset Tgr-int (A $\cup B$).

Theorem:3.20

If A and B are subsets of a space X, then $\pi gr-int (A \cap B) = \pi gr-int (A) \cap \pi gr-int (B)$

Proof:

We know that $A \cap B \subset A$, $A \cap B \subset B$. Then Tgr-int $(A \cap B) \subset T$ gr-int(A) and Tgr-int $(A \cap B) \subset T$ gr-int(B). \Rightarrow Tgr-int $(A \cap B) =$ Tgr-int $(A) \cap$ Tgr-int (B)------(1)

Again, let $x \in \operatorname{Tigr-int}(A) \cap \operatorname{Tigr-int}(B)$. Then $x \in \operatorname{Tigr-int}(A)$ and $x \in \operatorname{Tigr-int}(B)$. Hence x is a Tigr-interior point of each of sets A and B. It follows that A and B are Tigr-nbhds of x, so that their intersection $A \cap B$ is also a Tigr-nbhd of x. Hence $x \in \operatorname{Tigr-int}(A \cap B)$

Thus, $x \in \operatorname{Tgr-int} (A) \cap \operatorname{Tgr-int} (B) \Longrightarrow x \in \operatorname{Tgr-int} (A \cap B)$ Therefore, $\operatorname{Tgr-int} (A) \cap \operatorname{Tgr-int} (B) \subset \operatorname{Tgr-int} (A \cap B)$ ------(2) From (1) and (2), $\operatorname{Tgr-int} (A \cap B)$ = $\operatorname{Tgr-int} (A) \cap \operatorname{Tgr-int} (B)$.

Theorem: 3.21

If A is a subset of X, then (i) r-int(A) \subset Tgr-int(A) and (ii) (X-Tgr-int(A)) = Tgr-cl(X-A) and (X-Tgr-cl(A)) = Tgr-int(X-A). **Proof:** Straight forward.

4. π gr-continuous functions and Almost π gr-continuous functions.

Theorem:4.1

Let X be a Tgr-T_{1/2}-space and $f:X \rightarrow Y$ be a function. Then f is Tgr-continuous iff f is regular continuous.

Proof:

Let f be a Tgr-continuous function. Then $f^{1}(V)$ is Tgr-closed in X for every closed set V in Y. Since X is a $\pi gr-T_{1/2}$ -space, every πgr -closed set is regular closed. Hence f⁻¹(V) is regular closed in X for every closed set V in Y and hence f is regular continuous.

Let f be a regular continuous function in X. Then $f^{1}(V)$ is regular closed in X for every closed set V in Y. Since every regular closed set is Ter-closed. Then $f^{1}(V)$ is Ter-closed in X for every closed set V in Y and hence f is **T**gr-closed.

Theorem:4.2

Let f: $(X,T) \rightarrow (Y, \sigma)$ be a function, then the following are equivalent.

a)f is Trgr-continuous

b) The inverse image of every open set in Y is Tgr-open in X.

Proof:

Follows from the definitions.

Theorem:4.3

If f: $(X,T) \rightarrow (Y, \sigma)$ is π gr-continuous, then $f(\pi$ gr-cl(A)) \subset cl(f(A)) for every subset A of X.

Proof:

Let A \subset X. Since f is Tgr-continuous and A \subset f¹(cl(f(A))), we obtain $\operatorname{Tgr-cl}(A) \subset f^{1}(\operatorname{cl}(f(A)))$ and then $f((\operatorname{Tgr-cl}(A)) \subset \operatorname{cl}(f(A)))$

Remark:4.4

The converse of the above need not be true as seen in the following example.

Example:4.5

Let X = { a,b,c,d}, T = { ϕ , X, {a}, {b}, {a,b}}, $\sigma = {\phi,Y, {c,d}}$. Let f: (X,T) \rightarrow (Y, σ) be an identity map.Let A = $\{a,b\}$. Then $\operatorname{Tgr-cl}(\{a,b\}) = \{a,b\} \subset f^1(\operatorname{cl}(f(\{a,b\}))) = X$. But $f^{1}(\{a,b\}) = \{a,b\}$ is not Tgr-closed in X.Hence f is not Tgr-continuous.

Proposition:4.6

Let f: $(X,T) \rightarrow (Y, \sigma)$ be a Tgr-continuous function and H be T-open, Tgr-closed subset of X. Assume that $\operatorname{Tgr}C(X, T)$ closed under finite intersections. Then the restriction be f/H: (H, T/H) \rightarrow (Y, σ) is Tgr-continuous. **Proof:**

Let F be any regular closed subset in Y. By hypothesis and our assumption $f^{-1}(F) \cap H_1$, it is Tgr-closed in X.Since $(f/H)^{-1}(F) = H_1$, it is sufficient to show that H_1 is Tgr-closed in H.Let $H_1 \subset H_1$ G₁, where G₁ is any T-open set in H.We know that a subset A of X is open, then $TO(A, T/A) = \{V \cap A: V \in V \in V \}$ $\pi O(X,T)$ ------(1).By (1), $G_1 = G \cap H$ for some π -open set G in X.

Then H₁ \subset G₁ \subset G and H₁ is Ter-closed in X implies rcl_x(H₁) = rcl_x(H₁) \cap H \subset G \cap H= G₁ and so H₁ is Ter-closed in H. Therefore, f/H is ngr-continuous.

Generalization of Pasting Lemma for mgr-continuous maps. Theorem:4.7

Let $X = G \cup H$ be a topological space with topology T and Y be a topological space with topology σ . Let f: $(G, T/G) \rightarrow (Y, \sigma)$ and g: $(H, T/H) \rightarrow (Y, \sigma)$ be Tgr-continuous functions such that f(x)=g(x) for every $x \in [X, T/G]$ G∩H. Suppose that both G and H are **T**-open and **T**gr-closed in X. Then their combination (f ∇ g): (X, T) → (Y, σ) defined by $(f \nabla g)(x) = f(x)$ if $x \in G$ and $(f \nabla g)(x) = g(x)$ if $x \in H$ is Tgr-continuous.

Proof:

Let F be any closed set in Y.Clearly $(f \nabla g)^{-1}(F) = f^{-1}(F) \cup g^{-1}(F)$. Since $f^{-1}(F)$ is π gr-closed in G and G is Tropen in X and Tgr-closed in X, f¹(F) is Tgr-closed in X.Similarly, g⁻¹(F) is Tgr-closed in X. Therefore, $(f \nabla g)$ is The production of the second s

Proposition :4.8

If a function f: $(X, T) \rightarrow (Y, \sigma)$ is Tigr-irresolute, then

- $f(\operatorname{Trgr-cl}(A)) \subset \operatorname{Trgr-cl}(f(A))$ for every subset A of X. (i)
- π gr-cl(f¹(B)) \subset f¹(π gr-cl (B))for every subset B of Y. (ii)

Proof:

(i)For every $A \subset X$, $\operatorname{Tgr-cl}(f(A))$ is $\operatorname{Tgr-closed}$ in Y.By hypothesis, $f^1(\operatorname{Tgr-cl}(f(A))$ is $\operatorname{Tgr-closed}$ in X. Also, $A \subset f^1(f(A)) \subset f^1(\operatorname{Tgr-cl}(A))$. By the definition of $\operatorname{Tgr-closure}$, we have $\operatorname{Tgr-cl}(A) \subset f^1(\operatorname{Tgr-cl}(A))$. Hence, we get $f(\operatorname{Tgr-cl}(A)) \subset \operatorname{Tgr-cl}(f(A))$

(ii) Tgr-cl(B) is Tgr-closed in Y and so by hypothesis, f^{1} (Tgr-cl(B)) is Tgr-closed in X. Since $f^{1}(B) \subset f^{1}$ (Tgr-cl(B)), it follows that Tgr-cl($f^{1}(B)$) $\subset f^{1}$ (Tgr-cl(B)).

Definition:4.9

A function f: $(X,T) \rightarrow (Y, \sigma)$ is called almost-Tigr- continuous if $f^{1}(V)$ is Tigr- closed in X for every regular closed set V of Y.

Theorem:4.10

For a function $f: X \rightarrow Y$, the following are equivalent to one another.

(i) f is almost Trgr-continuous.

(ii) $f^{1}(V)$ is π gr-open in X for every regular open set V of Y.

(iii) $f^{1}(int-cl(V))$ is Tgr-open in X for every open set V of Y.

(iv) $f^{1}(cl-int(V))$ is Tgr-closed in X for every closed set V of Y.

Proof:(i) \Rightarrow (ii)

Let V be a regular open subset of Y. Since Y–V is regular closed and f is almost π gr-continuous, then $f^{1}(Y-V) = X - f^{1}(V)$ is π gr-closed in X. Thus $f^{1}(V)$ is π gr-open on X.

 $(ii) \Rightarrow (i)$

Let V be a regular closed subset of Y. Then Y–V is regular open.By hypothesis,

 $f^{1}(Y-V)=X-f^{1}(V)$ is Tgr-open in X. Then $f^{1}(V)$ is Tgr-closed and hence f is almost Tgr-continuous. (ii) \Rightarrow (iii)

Let V be an open subset of Y. Then int(cl(V)) is regular open. By hypothesis

 $f^{1}(int(cl(V)))$ is Tgr-open in X.

 $(iii) \Rightarrow (ii)$

Let V be a regular open subset of Y. Since V- int(cl(V)) and every regular open set is open, then $f^{1}(V)$ is πgr -open in X.

 $(iii) \Rightarrow (iv)$

Let V be a closed subset of Y. Then Y-V is open. By hypothesis,

 $f^{1}(int(cl(Y-V))) = f^{1}(Y-cl(int(V)))$

= $X-f^{-1}(cl(int (V)))$ is πgr -open in X.

Hence $f^{1}(cl(int(V)))$ is Tgr-closed in X.

$(iv) \Rightarrow (iii)$

Let V be a open subset of Y. Then Y-V is closed. By hypothesis,

 $f^{1}(cl(int(Y-V))) = f^{1}(Y-int(cl(V)))$

= $X-f^1(int(cl(V)))$ is Tgr-closed in X. Hence $f^1(int(cl(V)))$ is Tgr-open in X.

Remark:4.11

Every Tgr-continuous function is almost Tgr-continuous but not conversely.

Example:4.12

Let $X = \{a,b,c,d\}=Y$, $T = \{\varphi, X, \{a\}, \{b\}, \{a,b\}\}$, $\sigma = \{\varphi, Y, \{a\}, \{d\}, \{a,d\}, \{a,b,d\}\}$, Let $f:X \rightarrow Y$ be defined by f(a)=c, f(b)=a, f(c)=d and f(d)=b. Here f is almost Tigr-continuous but nor Tigr-continuous.

Remark:4.13

An R-map is almost Tgr-continuous **Proof:** Follows from the definitions.

Remark :4.14

The converse of the above need not be true as seen in the following example.

Example:4.15

Let $X = \{a,b,c,d\} = Y$, $T = \{\phi, X, \{a\}, \{b\}, \{a,b\}\}, \sigma = \{\phi, Y, \{a\}, \{d\}, \{a,d\}, \{a,b,d\}\},$

Let $f:X \rightarrow Y$ be an identity map .Here f is almost π gr-continuous but not an R-map.

Theorem:4.16

Let X be a π gr-T_{1/2}- space. Then f:X \rightarrow Y is almost π gr-continuous iff f is an R-map.

Proof: Necessity

Let A be a regular closed set of Y and $f:X \rightarrow Y$ be an almost Tgr-continuous function. Then $f^{1}(A)$ is

Tgr-closed in X. Since X is a Tgr- $T_{1/2}$ -space $f^{1}(A)$ is regular closed in X. Hence f is an R-map.

Sufficiency:

Suppose that f is an R-map and let A be a regular closed subset of Y. Then

 $f^{1}(A)$ is regular closed in X. Since every regular closed set is Tgr-closed, then $f^{1}(A)$ is Tgr-closed. Therefore, f is almost Tgr-continuous.

Result:4.17

Every almost Tgr-continuous function is almost Tgb-continuous, almost Tgc-continuous, almost Tg-continuous, almost Tf^*g -continuous, almost Tf^*

Remark:4.18

The converse of the above need not be true as seen in the following examples.

Example: 4.19

 $X = \{a,b,c,d\}=Y, T = \{\varphi, X, \{a\}, \{c,d\}, \{a,c,d\}, \sigma = \{\varphi, Y, \{a,b\}, \{c\}, \{a,b,c\}\}, Let f: X \rightarrow Y$ be an identity map .Here f is almost Tgb-continuous but not almost Tgr-continuous.

Example: 4.20

 $X = \{a,b,c,d\}=Y, T = \{\phi, X, \{a\}, \{d\}, \{a,c\}, \{a,c,d\}\}, \sigma = \{\phi, Y, \{b\}, \{a,c,d\}\},$ Let f:X \rightarrow Y be an identity map .Here f is almost gpr-continuous but not almost Tgr-continuous.

Example: 4.21

 $X = \{a,b,c,d\} = Y, T = \{\varphi, X, \{a\}, \{d\}, \{a,d\}, \{a,c\}, \{a,c,d\}\}, \sigma = \{\varphi, Y, \{a,b,d\}, \{c\}\}, \sigma = \{\varphi, Y, \{a,b,d\}, \{a,$

Let $f:X \rightarrow Y$ be an identity map .Here f is almost Tg α -continuous but not almost Tgr-continuous. Example: 4.22

 $X = \{a,b,c,d\}=Y, T = \{\varphi, X, \{a\}, \{c,d\}, \{a,c,d\}\}, \sigma = \{\varphi, Y, \{a,b,d\}, \{c\}\},$ Let f:X \rightarrow Y be an identity map .Here f is almost Tf*g-continuous but not almost Tgr-continuous. **Example: 4.23**

 $X = \{a,b,c,d\} = Y, T = \{\varphi, X, \{a\},\{b\},\{a,b\},\{a,d\},\{a,b,d\},\{a,c,d\}\}, \sigma = \{\varphi, Y,\{a,c,d\},\{b\}\},$ Let f:X \rightarrow Y be an identity map . Here f is almost Tg-continuous but not almost Tgr-continuous.

Proposition:4.24

If f is Tgr-irresolute, then it is almost- Tgr-continuous. **Proof:**Straight forward.

Remark :4.25

The converse of the above need not be true as seen in the following example.

Example:4.26

Let $X = Y = \{a, b, c, d\}, T = \{\varphi, X, \{a\}, \{d\}, \{a, d\}, \{a, c, d\}, \{a, b, d\}\}, \sigma = \{\varphi, Y, \{a\}, \{c, d\}, \{a, c, d\}\}$.Let $f : (X, T) \rightarrow (Y, \sigma)$ be defined by f(a) = b, f(b) = a, f(c) = c, f(d) = d. The function f is almost-Tgr-continuous but not Tgr-irresolute.

Definition:4.27

A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called a TFopen map[4]if f(U) is TFopen in (Y, σ) for every TFopen set U in (X, τ)

Proposition:4.28

If f is bijective, TF-open, almost-Tgr-continuous, then f is Tgr-irresolute.

Proof:

Let F be a Tgr-closed set of Y. Let $f^1(F) \subset U$, where U is π -open in X. Then $F \subset f(U)$. Since f is π -open, f(U) is π -open in Y, F is Tgr-closed set in Y and $F \subset f(U) \Longrightarrow rcl(F) \subset f(U)$

(i.e) $f^1(rcl(F)) \subset U$. Since f is almost-Tgr-continuous, $rcl(f^1(rcl(F))) \subset U$.

So, $rcl(f^{1}(F)) \subset rcl(f^{1}(rcl(F))) \subset U$.

 \Rightarrow f⁻¹(F) is Tgr-closed in X. Hence f is Tgr-irresolute.

Corollary:4.29

Let a bijection $f:(X, \tau) \rightarrow (Y, \sigma)$ be τ -open, almost τ -continuous and pre-regular closed. If X is τ -gr- $T_{1/2}$ -space, then (Y,σ) is τ -gr- $T_{1/2}$ -space.

Proof:

Let F be Tgr-closed subset of Y. By proposition 4.28, $f^{1}(F)$ is Tgr-closed in X. Since X is Tgr-T_{1/2}-space, $f^{1}(F)$ is regular closed in X. Since f is bijective, pre-regular closed, $F=f(f^{1}(F))$ is regular closed in Y. Hence Y is Tgr-T_{1/2}-space.

Proposition:4.30

If f is bijective, **T**-open , R-map, then f is **T**gr-irresolute.

Proof:

Since f is an R-map , it is almost Tgr-continuous. By proposition 4.28, f is Tgr-irresolute.

Corollary:4.31

Let a bijection $f:(X, \tau) \rightarrow (Y, \sigma)$ be τ -open, R-map and pre-regular closed. If X is τ gr- $T_{1/2}$ -space, then (Y,σ) is τ gr- $T_{1/2}$ -space. **Proof:** Obvious.

5.πgr-compactness.

Definition: 5.1

A collection $\{A_i: i \in A\}$ of Tgr-open sets in a topological space X is called a Tgr-open cover of a subset S if $S \subset \bigcup \{A_i/i \in A\}$ holds.

Definition : 5.2

A topological space (X, T) is called Tgr-compact if every Tgr-open cover of X has a finite subcover.

Definition: 5.3

A subset S of a topological space X is said to be Tgr-compact relative to X, if for every collection {A_i: $i \in A$ } of Tgr-open subsets of X such that $S \subset \bigcup \{A_i / i \in A\}$, there exists a finite subset Λ_o of A such that $S \subset \bigcup \{A_i / i \in \Lambda_o\}$

Definition:5.4

A subset S of a topological space X is said to be Tgr-compact if S is Tgr -compact as a subspace of X.

Proposition: 5.5

A Tgr-closed subset of Tgr-compact space is Tgr-compact relative to X.

Proof:

Let A be a Tgr-closed subset of a Tgr-compact space X. Then X–A is Tgr-open.Let θ be a Tgr-open cover for A. Then { θ , X–A} is a Tgr-open cover for X. Since X is Tgr-compact, it has a finite subcover, say{ $P_1, P_2, ..., P_n$ } = θ_1 .

If X-A $\notin \Theta_{1,}$ then Θ_1 is a finite subcover of A. If X-A $\in \Theta_1$, then $\Theta_1 - (X-A)$ is a subcover of A. Thus A is Tgr-compact to relative to X.

Proposition: 5.6

Let f: $(X, T) \rightarrow (Y, \sigma)$ be a surjective, Tgr-continuous map. If X is Tgr-compact, then Y is compact. **Proof:**

Let $\{A_i : i \in A\}$ be an open cover of Y. Then $\{f^1(A_1) : i \in A\}$ is a Tgr-open cover of X. Since X is Tgr-compact, it has a finite subcover, say $\{f^1(A_1), f^1(A_2), \ldots, f^1(A_n)\}$. Surjectiveness of f implies $\{A_1, A_2, \ldots, A_n\}$ is an open cover of Y and hence Y is compact.

Proposition: 5.7

If a map f: $(X, \tau) \rightarrow (Y, \sigma)$ is Tgr-irresolute and a subset S of X is Tgr-compact relative to X, then the image f(S) is Tgr-compact relative to Y.

Proof:

Let $\{A_i: i \in A\}$ be a collection of Tgr-open sets in Y such that $f(S) \subset \bigcup \{A_i/i \in A\}$. Then $S \subset \bigcup \{f^{-1}(A_i): i \in A\}$, where $f^{-1}(A_i)$ is Tgr-open in X for each i. Since S is Tgr-compact relative to X, there exists a finite sub collection $\{A_1, A_2, ..., A_n\}$ such that $S \subset \bigcup \{f^{-1}(A_i): i=1,2,...,n\}$

That is $f(S) \subset \bigcup \{(A_i): i=1,2,...,n\}$. Hence f(S) is Tgr-compact relative to Y.

Lemma :5.8

Let θ : X×Y \rightarrow X be a projection. If A is Tgr-closed in X, then $\theta^{-1}(A) = A \times Y$ is Tgr-closed in X×Y. Proof:

Suppose $A \times Y \subset O$, where O is π -open in $X \times Y$. Then $O = U \times Y$, where U is π -open in X. Since U is a π -open set in X containing A and A is π gr-closed in X, we have $rcl_x(A) \subset U$. The above implies $rcl_X \times_Y (A \times Y) \subset U \times Y$

(i.e) $\operatorname{rcl}_{X \times Y}(A \times Y) \subset U \times Y$. Hence $A \times Y = \theta^{-1}(A)$ is $\operatorname{Tgr-closed}$ in $X \times Y$.

Theorem:5.9

If the product space of two non-empty spaces is Tgr-compact, then each factor space is Tgr-compact. **Proof:**

Let X×Y be the product space of the non-empty spaces X and Y and suppose X×Y is a Tgr-compact. Then the projection θ :X×Y→X is a Tgr-irresolute map.

Hence $\theta(X \times Y) = X$ is Tgr-compact.

Similarly, we prove for the space Y.

6.πgr-connectedness.

Definition:6.1

A topological space (X,T) is said to be Tgr-connected if X cannot be written as the disjoint union of two non-empty Tgr-open sets.

A subset of X is Tgr-connected if it is Tgr-connected as a subspace.

Proposition:6.2

For a topological space X, the following are equivalent.

- (i) X is Tgr- connected.
- (ii) The only subsets of X which are both Tgr-open and Tgr-closed are the empty set φ and X.
- (iii) Each Tgr -continuous map of X into a discrete space Y with atleast two points is a constant map.

Proof:

(i) \Rightarrow (ii): Suppose S \subset X is a proper subset which is both Tgr-open and Tgr-closed. Then its complement X–S is also Tgr-open and Tgr-closed. Then X=S \cup (X–S), a disjoint union of two non-empty Tgr-open sets which contradicts the fact that X is Tgr-connected. Hence S= φ or X.

(ii) \Rightarrow (i): Suppose X = A \cup B, where A \cap B = φ , A $\neq \varphi$, B $\neq \varphi$ and A and B are Tgr-open. Since A = X – B, A is Tgr-closed but by assumption A = φ or X, which is a contradiction. Hence (i) holds.

(ii) \Rightarrow (iii):Let f: X \rightarrow Y be a Tgr-continuous map, where Y is a discrete space with atleast two points. Then f¹(y) is Tgr-closed and Tgr-open for each $y \in Y$ and $X = \bigcup \{f^1(y): y \in Y\}$. By assumption, $f^1(y) = \varphi$ for all $y \in Y$, then f will not be a map. Also, there cannot exist more than one $y \in Y$ such that $f^1(y) = X$. Hence, there exists only one $y \in Y$ such that $f^1(y) = X$ and $f^1(y_1) = \varphi$, where $y \neq y_1 \in Y$. This shows that f is a constant map.

(iii) \Rightarrow (ii) :Let S be both Tgr-open and Tgr-closed set in X. Suppose $S \neq \varphi$. Let f: X \rightarrow Y be a Tgr-continuous map defined by $f(S) = \{a\}, f(X-S) = \{b\}$, where $a \neq b$ and $a, b \in Y$. By assumption, f is constant. Therefore, S=X.

Remark:6.3

Every Tgr-connected space is regular connected but the converse is not true as seen in the following example.

Example:6.4

Let $X = \{a,b,c\}, \tau = \{\phi, X, \{a,b\}, \{a\}\}$. Here the space X is regular connected. The space X is not Tgr-connected, since every subset of X is both Tgr-open and Tgr-closed. **Remark:6.5**

Tgr-connectedness and connectedness are independent.

Example:6.6

Let X={ a,b,c,d}, $T = \{\varphi, X, \{a\}, \{b\}, \{a,b\}, \{a,b\}, \{a,c,d\}\}$. Here the space is not connected, since $\{a,c,d\}, \{b\}$ are both open and closed. But no subset of X is both Tgr-closed and Tgr-open. Hence the space X is Tgr-connected.

Example:6.7

Let $X = \{a,b,c\}, T = \{\phi, X, \{a,b\}\}$. Here the space is connected. But every subset of X is both Tgrclosed and Tgr -open. Hence the space X is not Tgr-connected

Proposition:6.8

If X is topological space with atleast two points and if T-open (X)= T-closed (X), then X is not T-gr-connected.

Proof:

Since π -open (X) = π -closed (X), then there exists a proper subset of X, which is both π gr-open and π gr-closed. Hence the space X is not π gr-connected.

Proposition:6.9

Suppose X is a topological space with $T_{\pi gr}^* = T$, then X is regular connected iff X is πgr -connected.

Proof:

Follows from the definitions.

Proposition: 6.10

(i) If $f:X \rightarrow Y$ is Tigr-continuous and onto, X is Tigr-connected, then Y is regular connected.

(ii) If $f: X \rightarrow Y$ is Tgr-irresolute and onto, X is Tgr-connected, then Y is Tgr-connected.

Proof:

Assume the contrary. Suppose Y is not regular connected. Then $Y=A \cup B$, where $A \cap B = \varphi$, $A \neq \varphi$, $B \neq \varphi$ and A and B are regular open in Y. Since f is Tgr-continuous and onto,

 $X=f^{-1}(A) \cup f^{-1}(B)$ are disjoint non-empty Tgr-open subsets of X. This contradicts the fact that X is Tgrconnected. Hence the result.

(ii)Obvious

References

- [1] Aslim.G.Caksu Guler.A and Noiri.T, On Tgs-closed sets in topological spaces, Acta Math. Hungar., 112(4) (2006),275-283.
- [2] Balachandran.K, P.Sundram and J.Maki, On generalized continuous maps in topological spaces, mem. Fac/. Sci. Kochi Univ. (math) 12(1991), 5-13.
- [3] Carnahan.D.A, Some properties related to compactness in topological spaces, Ph.D, Univ. of Arkansas.
- [4] Dontchev.J, Noiri.T, Quasi normal spaces and Tg-closed sets, Acta Math. Hungar 89(3), 2000, 211-219.
- [5] Gnanambal.Y, On gpr-continuous functions in topological spaces, Indian J.Pure and appl.Math., 30(6):581-593,June 1999.
- [6] Ganes M Pandya, Janaki. C and Arokiarani. I, On Tr*g-closed sets in topological spaces, Antarctica J.Math., 7(^)(2010), 597-604.
- [7] Hussain.T, Almost Continuous mappings, Prace Mat., 10(1966), 1-7.
- [8] Janaki.C, Studies on πgα-closed sets in topology, Ph.D Thesis, Bharathiar University, Coimbatore(2009)
- [9] Jeyanthi.V and Janaki.C, Tgr-closed sets in topological spaces, Asian Journal of Current Engg. Maths 1:5 sep 2012, 241-246.
- [10] Levine.N, generalized closed sets in topology, Rend. circ. Mat. Palermo, 19(1970), 89-96.
- [11] Palaniappan.N and Rao.K.C, On Regular closed sets in topological spaces, Kyungpook Math .J. 33(1993),211-219.
- [12] Palaniappan.N, Regular generalized star open and generalized star regular open sets in topology, J.Indian Acad.Math. Vol.23, No.2(2001),197-204.
- [13] Park.J.H, On Tgp-closed sets in topological spaces, Acta Mathematica Hungarica, 12, (4),257-283.
- [14] M.K.Singal and A.R. Singal, Yokahama Math. J.16(1968),63-73.
- [15] Sreeja.D and Janaki.C,On Tgb-closed sets in topological spaces ,Inter. J.Math.Archive- 2(8),2011,page 1314-1320.
- [16] Zaitsev, On certain classes of topological spaces and their bicompactifications, Dokl.Akad.Nauk.SSSR., 178(1968),778-779.