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ABSTRACT 

Floating-point numbers are widely adopted in 

many applications due their dynamic 

representation capabilities. Floating-point 

representation is able to retain its resolution and 

accuracy compared to fixed-point representations. 

Unfortunately, floating point operators require 

excessive area (or time) for conventional 

implementations. The creation of floating point 

units under a collection of area, latency, and 

throughput constraints is an important 

consideration for system designers. This paper 

presents the implementation of a general purpose, 

scalable architecture used to synthesize floating 

point multipliers on FPGAs. Although several 

implementations of floating point units targeted to 

FPGAs have been previously reported, most of 

them are customized for specific applications. This 

paper presents a fully parallel floating-point 

multiplier compliant with the IEEE 754 Standard 

for Floating-point Arithmetic. The design offers 

low latency and high throughput. A comparison 

between our results and some previously reported 

implementations shows that our approach, in 

addition to the scalability feature, provides 

multipliers with significant improvements in area 

and speed. We implemented our algorithms using 

Xilinx ISE 12.1, with Xilinx Virtex-II Pro 

XC2VP100 FPGA as our target device. 
 

Keywords – Floating Point Multiplier, FPGA, 

VHDL. 

1. INTRODUCTION 
     Field-programmable gate arrays (FPGAs) have 

long been attractive for accelerating fixed-point 

applications. Early on, FPGAs could deliver tens of 

narrow, low latency fixed-point operations. As 
FPGAs matured, the amount of parallelism to be 

exploited grew rapidly with FPGA size. This was a 

boon to many application designers as it enabled 

them to capture more of the application. It also meant 

that the performance of FPGAs was growing faster 

than that of CPUs [3].  
 

 

 

 

     The design of floating-point applications for 

FPGAs is much different. Due to the inherent 

complexity of floating point arithmetic mapping 

difficulties occurred. With the introduction of high 

level languages such as VHDL, rapid prototyping of 

floating point units has become possible. Elaborate 

simulation and synthesis tools at a higher design level 
aid the designer for a more controllable and 

maintainable product. 

     The IEEE standard for binary floating-point 

arithmetic [2] provides a detailed description of the 

floating-point representation and the specifications 

for the various floating-point operations. It also 

specifies the method to handle special cases and 

exceptions.  

     This paper describes the implementation of 

pipelining in design the floating-point multiplier 

using VHDL and its synthesis for a Xilinx Virtex-II 
FPGA using Xilinx‟s Integrated Software 

Environment (ISE) 12.1. Pipelining is one of the 

popular methods to realize high performance 

computing platform. Pipelining is a technique where 

multiple instruction executions are overlapped. In the 

top-down design approach, four arithmetic modules: 

addition, subtraction, multiplication, and division: are 

combined to form the floating-point ALU. The 

pipeline modules are independent of each other.  

     The organization of this paper is as follows: 

Section 2 describes background on floating point unit 

design. Section 3 describes algorithm for floating 
point multiplication. Section 4 describes our 

approach to multiply floating numbers. The 

simulation environment and results are briefed in 

Section 5 and concluding remarks are discussed 

Section 6. 

2. BACKGROUND 
2.1. Floating Point Representation 

     Standard floating point numbers are represented 

using an 
exponent and a mantissa in the following format: 

(sign bit) mantissa × baseexponent +bias 

     The mantissa is a binary, positive fixed-point 

value. Generally, the fixed point is located after the 

first bit,m0, so that mantissa = {m0.m1m2...mn}, 

where mi is the ith bit of the mantissa. The floating 

point number is “normalized” when m0 is one. The 
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exponent, combined with a bias, sets the range of 

representable values. A common value for the bias is 

−2k−1, where k is the bit-width of the exponent 

[4].The double precision floating point format has an 

11 bit exponent and 52 bit mantissa plus a sign bit. 

This provides a wide dynamic range.  

 

 
Figure 1. 64-bit Floating Point Format 

 

     The IEEE floating point standard makes floating 
point unit implementation portable and the precision 

of the results predictable. A variety of different 

circuit structures can be applied to the same number 

representations, offering flexibility. 

 

2.2. Floating Point Implementations in FPGAs 

     Several efforts to build floating point units using 

FPGAs have been made. These approaches have 

generally explored 

bit-width variation as a means to control precision. A 

floating point library containing units with 

parameterized bitwidth was described in [6]. In this 
library, mantissa and exponent bit-width can be 

customized. The library includes a unit that can 

convert between fixed point and floating point 

numbers. The floating point units are arranged in 

fixed pipeline stages.  

     Several researchers [7, 9, 10] have implemented 

FPGA floating point adders and multipliers that meet 

IEEE754 floating point standards. Most commercial 

floating point libraries provide units that comply with 

the IEEE754 standard [7]. Luk [8] showed that in 

order to cover the same dynamic range, a fixed point 
design must be five times larger and 40% slower than 

a corresponding floating point design. In contrast to 

earlier approaches, our floating point unit generation 

tool automates floating point unit creation. 

 

3. FLOATING POINT MULTIPLICATION 

ALGORITHM 
     The aim in developing a floating point multiplier 

routine was to pipeline the unit in order to produce a 

result every clock cycle. By pipelining the multiplier, 

the speed increased, however, the area increased as 

well. Different coding structures were tried in the 

VHDL code used to program the Xilinx chips in 

order to minimize size. 

 

3.1 Algorithm 

     The multiplier structure is organized as a three-

stage pipeline. This arrangement allows the system to 
produce one result every clock cycle, after the first 

three values are entered into the unit. Figure 2 shows 

a flow chart of the multiplier structure.  

 
Figure 2. Floating Point Algorithm 

 

     The two mantissas are to be multiplied, and the 

two exponents are to be added. In order to perform 

floating-point multiplication, a simple algorithm is 

realized: 

1. Add the exponents and subtract bias. 

2. Multiply the mantissas and determine the sign of 

the result. 
3. Normalize the resulting value, if necessary. 

 

4. PIPELINED FLOATING POINT 

MULTIPLICATION MODULE 

     Multiplication entity has three 64-bit inputs and 

two 64-bit outputs. Selection input is used to enable 

or disable the entity. Multiplication module is divided 
into check zero, add exponent, multiply mantissa, 

check sign, and normalize and concatenate all 

modules, which are executed concurrently. Status 

signal indicates special result cases such as overflow, 

underflow and result zero.  

     In this paper, pipelined floating point 

multiplication is divided into three stages (Fig. 3).  

 

 
Figure 3. Pipelined Floating Point Multiplier 
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 Stage 1 check whether the operand is 0 and report 

the result accordingly. Stage 2 determines the product 

sign add exponents and multiply fractions. Stage3 

normalize and concatenate the product. 

 

4.1 Check Zero module: 

     Initially, two operands are checked to determine 
whether they contain a zero. If one of the operands is 

zero, the zero_flag is set to 1. The output results zero, 

which is passed through all the stages and outputted. 

If neither of them are zero, then the inputs with 

IEEE754 format is unpacked and assigned to the 

check sign, add exponent and multiply mantissa 

modules. The mantissa is packed with the hidden bit 

„1‟. 

 

4.2 Add exponent module: 

     The module is activated if the zero flag is set. 

Else, zero is passed to the next stage and exp_flag is 
set to 0. Two extra bits are added to the exponent 

indicating overflow and underflow. The resulting 

sum has a double bias. So, the extra bias is subtracted 

from the exponent sum. After this, the exp_flag is set 

to 1. 

 

4.3 Multiply mantissa module: 

     In this stage zero_flag is checked first. If the 

zero_flag is set to 0, then no calculation and 

normalization is performed. The mant_flag is set to 0. 

If both operands are not zero, the operation is done 
with multiplication operator. Mant_flag is set to 1 to 

indicate that this operation is executed. It then 

produces 46 bits where the lower order 32 bits of the 

product are truncated. 

 

4.4 Check sign module: 

     This module determines the product sign of two 

operands. The product is positive when the two 

operands have the same sign; otherwise it is negative. 

The sign bits are compared using an XOR circuit. 

The sign_flag is set to 1. 

 
4.5 Normalize and concatenate all modules: 

     This module checks the overflow and underflow 

after adding the exponent. Underflow occurs if the 

9th bit is 1. Overflow occurs if the 8 bits is 1. If 

exp_flag, sign_flag and mant_flag are set, then 

normalization is carried out. Otherwise, 32 zero bits 

are assigned to the output. 

     During the normalization operation, the mantissa's 

MSB is 1. Hence, no normalization is needed. The 

hidden bit is dropped and the remaining bit is packed 

and assigned to the output port. Normalization 
module set the mantissa's MSB to 1. The current 

mantissa is shifted left until a 1 is encountered. For 

each shift the exponent is decreased by 1. Therefore, 

if the mantissa's MSB is 1, normalization is 

completed and first bit is the implied bit and dropped. 

The remaining bits are packed and assigned to the 

output port. The final normalized product with the 

correct biased exponent is concatenated with product 

sign. 

 

5. RESULT AND ANALYSIS 
     Design is verified through simulation, which is 

done in a bottom-up fashion. The aim in designing 

the floating point units was to pipeline each unit a 

sufficient number of times in order to maximize 

speed and to minimize area. 

     The simulation output is obtained by using Xilinx 

simulation tool is as follows. 

 

 
Figure 4. Synthesize result of multiplier 

 

 

Figure 5. Simulation result of multiplier 

6. CONCLUSION 
     Pipeline floating point multiplier design using 

VHDL is successfully designed, implemented, and 

tested. With the help of pipelined architecture i.e. 

concurrent processing there will be less 

combinational delay which means faster response and 

better throughput with less latency as compared with 

sequential processing but there will be a tradeoff 

between speed and chip area. Pipelined architecture 

provide a faster response in floating point 
multiplication but also consumes more area i.e. 

number of slices used on reconfigurable hardware are 

more as compared with standard architecture. 

Pipelining is used to decrease clock period. Using 

sequential processing there is larger latency but less 

number of slices are used on FPGAs as compared 

with pipelined architecture. Currently, we are 

conducting further research that considers the further 
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reductions in the hardware complexity in terms of 

synthesis. 
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