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ABSTRACT 
Electrical Discharge Machining (EDM) 

is a non conventional machining process, where 

electrically conductive materials are machined by 

using precisely controlled sparks that occur 

between an electrode and a work piece in the 

presence of a dielectric fluid. It has been a 

demanding research area to model and optimize 

the EDM process in the present scenario. Lots of 

efforts have been exercised to model and 

optimize the performance and process 

parameters of EDM process using ANN. To 

model ANN architectures, learning/training 

algorithms and nos. of hidden neurons are varied 

to accomplish minimum error, but the deviation 

is made in an arbitrary manner. Artificial Neural 

Network model should be generated for both 

electrode geometry and various electrode 

materials to compare the influence of both in 

EDM. 
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I. INTRODUCTION 
Electrical discharge machining (EDM) is a 

non-traditional machining method commonly used 

to produce die cavities with the erosive effect of 
electrical discharges. It uses thermoelectric energy 

sources for machining low machinability materials; 

a complicated intrinsic-extrinsic shaped job 

regardless of hardness has been its distinguishing 

characteristics. EDM founds its wide applicability in 

manufacturing of plastic moulds, forging dies, press 

tools, die castings, automotive, aerospace and 

surgical components. In EDM, a power supply 

delivers high characteristics. EDM has its wide 

applications in manufacturing of plastic moulds, 

forging dies, press tools, die castings, automotive, 

aerospace and surgical components. No direct 
contact is made by EDM between the electrode and 

the work piece. It annihilates mechanical stresses, 

chatter and vibration problems during machining. 

Various types of EDM process are available, but 

here it is Die-Sinking type EDM machine which 

requires the electrode to be machined in the exact 

contradictory shape as the one in the work piece.  

 

II. EDM PROCESS 
To overcome some specific advantages of 

conventional machining processes, an EDM process 

has been introduced. This method is especially 

effective in machining hard die steels, complex 

cavities and small work pieces. Die casting, 

injection molding, forging, extrusion, upset forging 

and power compaction dies are manufactured using 

EDM technology [1]. EDM, basically a thermo 
electric process, has the ability to machine any 

conducting materials regardless of their mechanical 

and chemical properties. As there is no contact 

between the tool and the work piece required, it is 

very efficient and effective in machining very hard 

and high strength materials. The recent trends in 

development of EDM process have focused on the 

production of micro-features [3]. It becomes a basic 

machining method for manufacturing industries viz. 

Aerospace, Automotive, Nuclear, Medical and Die-

mold production etc [4].  

 

 
Fig. 2.1 Set up of Electrical Discharge Machining   
 

In EDM, a power supply hands over high-

frequency electric pulses to the electrode tool and 

the work piece. The gap between the tool and work 

piece is flushed with a flow of dielectric liquid. 

When an electric pulse is delivered from the electric 

supply, the insulating property of the die electric 

fluid is temporarily made ineffective. This permits a 

small spark to fly the shortest distance between the 

tool and work piece. A small pool of molten metal is 

shaped on the work piece and the tool at the point of 
discharge. A gas boils form around the discharge 

and the molten pools. As the electric pulse ends and 
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the discharge disappears, the gas boil collapses. The 

wave of cool dielectric causes the molten metal to 

be ejected from the work piece and the tool, leaving 

small craters. This action is repeated no. of times 

each second during EDM processing. This removes 

material from the work piece in a shape 

corresponding to that of the tool [2].  
 

Electrical discharge machining (EDM) 

processes are now gaining in popularity, since many 

complex 3D shapes can be machined using a simple 

shaped tool electrode. Depending on the kind of 

material used and other requirements, positive or 

negative polarity can be applied. When gap width 

between the tool and the electrode achieves the 

maximum sparking gap width, a micro-conductive 

ionized path appears and the electric spark occurs 

achieving temperatures up to 15,000 or 20,000°C 

[18]. 
 

Owing to the complex nature of the process 

involving physics of the EDM spark (plasma), it is 

difficult to observe the process experimentally and 

quantify the mechanism of material removal [17]. 

 

 
Fig.  2.2 Scheme of EDM Equipment 

 

III. ELECTRODE GEOMETRY  
To nurture the scope of further 

improvements in the process, the literature study 

works as a guide to run this analysis.  

 

Kamlesh V. Dave et. al [1] reported that the tool 

electrode in EDM process is the means of providing 

electrical energy to the work piece. The contribution 
of Tool Geometry was found a significant factor on 

the Surface Roughness and Material Removal Rate 

(MRR). Copper was used as an electrode tool 

having different geometries such as Round, Square, 

Rectangle and Triangle. The work was carried out 

on AISI H13 Steel work piece. 

 

 
Fig. 3.1 Practically processed specimens. 

Fig. 3.1 shows the processed specimen of Ø 50 mm 

round bar of 6 mm thickness on which four 

geometry of tool electrode is grooved of 2 mm 

depth. 

 
 

 
Fig. 3.2 Comparison of MRR and SR with 

current intensity at different tool geometry 
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     Figure 3.2 shows that as current intensity 

increases, the MRR increases and so the Surface 

Quality decreases. Both the graphs show a same 

result that is the basic rule. But for current intensity 

36 the results are different and the MRR is good and 

Surface Quality also good for Triangle and 

Rectangle Geometry. 
 

 

 
Fig. 3.3 Comparison of MRR and SR with pulse 

off time at different pulse on time 
 

Fig. 3.3 shows that as the pulse on time and 

pulse off time difference increases the MRR and SR 

both give negative results that MRR decreases and 

SR increases. But as they come nearer to each other 

both the output parameter showing good results. 

 

As per the S/N ratio and ANOVA the 

percentage contribution of the tool Geometry varies 

from 10% to 20% which shows that the geometry 

change improve MRR and SR up to certain extent. 

 
Kamlesh V. Dave et. al [2] reported that designing 

and re-shaping of electrodes for each feature are 

time consuming and large number of electrodes are 

required. So to increase the productivity, quality and 

flexibility unvarying simple electrode shapes must 

be analyzed. Tool geometry is not the most 

significant factor that affects the performance 

measures the most but it is a significant factor that 

affects the performance measures. The Rectangle 

Geometry at 43 A current gives good results for 

both the performance measures. 
 

B. B. Pradhan
 
et. al [3] presents the attempts to 

optimize micro-EDM process parameters for 

machining Ti-6Al-4V super alloy which is 

possessing high strength, low weight, and 

outstanding corrosion 

resistance having applications in aerospace, 

automobile, chemical plant, power generation, oil 

and gas extraction, surgical instruments, and other 

major 
industries.  High melting point of the tool material is 

required for machining difficult-to-cut materials. 

Out of copper, brass, and tungsten tools, the brass 

electrodes of 500 μm were used due to their high 

tensile stress compared to pure copper tools. 

    

M. Kiyak et. al
 

[4] studied that the EDM of 

40CrMnNiMo864 tool steel on AISI P20 steel work 

piece provided important quantitative results for 

obtaining possible high surface finish quality and 

machining outputs. Increasing wear on electrode 

surface is unavoidable during EDM process which 
increases work piece surface roughness due to wear 

rate on electrode caused by pulsed current density. 

Debabrata Mandal et. al [5] worked on EDM of 

C40 Steel with a copper (electrolytic grade) of 

cylindrical shape with a diameter of 12mm.  

      

Ali Ozgedik et. al
 
[6] presented that the tool wear 

problem is very critical in EDM since the tool shape 

degeneration directly affects the final shape of the 

die cavity. 1040 steel was used for the work piece. 

Tools were prepared by cutting round electrolytic 
copper rods of 22 mm diameter at 31.5mm length. 

The tools were then turned down to 20 mm 

diameter. For easier and even flushing purposes, a 4 

mm diameter hole was drilled through the centre of 

the tool. The densities of the electrolytic copper tool 

and 1040 steel work piece specimens used in the 

experiments were 8.9 g/cm3 and 9 g/cm3, 

respectively. 

 

Cao Fenggou et. al [7] reported that electrode zoom 

value has a major role to play with EDM, so that the 

discharge gap corresponding to the rough machining 
current peak value should not be less than the 

electrode zoom value. The experiment was carried 

out on the work piece S136 with an electrode of Ø 

9.56 mm red copper rod. 

 

Shing, S. et. al [8] performed the electric discharge 

machining of En-31 tool steel hardened and 

tempered to 55 HRc as a work piece with cylindrical 

copper, copper tungsten, brass and aluminium 

electrodes by varying the pulsed current at reverse 

polarity. Surface roughness depends on electrode 
material. The pulsed discharge current was applied 

in various steps in positive mode with four different 

electrode materials. The copper and aluminium 

electrodes achieve the best MRR with the increase 

in discharge current, followed by copper–tungsten 

electrode. Brass does not show significant increase 

in MRR with the increase in discharge current. 
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Copper gives the best MRR on En-31 work material. 

Brass electrode could not have effective machining 

rate and the mirror-shape of the tool electrode was 

found to be coated with a thin layer of the tool 

material. They concluded that for the En-31 work 

material, copper and aluminium electrodes offer 

higher MRR. Copper and copper–tungsten 
electrodes offer comparatively low electrode wear 

whereas aluminium electrode shows good results 

while brass wears the most. Cu and Al electrodes 

produce comparatively high surface roughness at 

high values of currents. Copper–tungsten electrode 

offers comparatively low surface roughness at high 

discharge currents giving good surface finish. 

Copper is comparatively a better electrode materials 

having better surface finish, low diametric overcut, 

high MRR and less electrode wear for En-31 work 

material and aluminium is next to copper in 

performance, and may be favored where surface 
finish is not essential. 

 

H. Juhr et. al [10] reported that the cost of 

producing electrodes for the SEDM process is 

important, because electrodes wear out, and in most 

cases, several electrodes are required. The necessary 

number of tool electrodes is thereby a cost factor. 

 

Angelos P. Markopoulos et. al [12] showed that 

the electrolytic copper of a rectangular work area 

40×22 mm2 was used for tool electrode of positive 
polarity on the work pieces of St 37, C 45, 100Cr6, 

Mic/al 1 and DP 1. 

 

S. Assarzadeh et. al [13] reported that the BD3 

steel and commercial copper were used as the work 

piece and tool electrode materials respectively. The 

bottom surface of the electrode is flat and parallel to 

the work piece surface. Also, the diameter of the 

cylindrical electrode was equal to the diameter of 

the round bar work piece of 12 mm.  

 

Kesheng Wang et. al [14] suggested that the test 
was done on graphite electrode (size 2.9 × 9.8 mm) 

with nickel-base alloy work piece using an AGIE 

INNOVATION EDM machine. 

 

G. Krishna Mohana Rao et. al [15] accounted that 

the experiments were carried out on Ti6Al4V, 

HE15, 15CDV6 and M-250 by varying the peak 

current and voltage and the corresponding values of 

hardness with use of copper tool electrode. 

 

S. N. Joshi et. al [16] conducted the experiments on 
AISI P20 mold steel with use of Copper electrode 

and tried out an integrated approach to obtain the 

expected optimum performance of the EDM 

process. 

 

S. N. Joshi et. al [17] described that work material 

AISI W1 tool steel was with an electrode material of 

graphite.     

 

Narcis Pellicer et. al [18] reported that the 

experiment was carried out in H13 steel using 

different geometries of electrolytic copper 
electrodes such as square, triangle, circle and 

rectangle due to their simplicity and to their 

different machining contact area. The groove of 3 

mm width and 1 mm depth was used as 

experimental target feature. They found the great 

impact of the tool geometry on the final feature 

accuracy and target width of 3 mm is nearly 

achieved by square electrodes and, in second 

term, by round and rectangle electrodes. Triangle 

electrodes do not do well and are not useful for 

complex geometries machining. Square and 

rectangle electrodes present better radial and axial 
wear ratios so, they are the best option for flexible 

tool electrode shape design. 

 

IV. PROCESS PARAMETERS 
Kamlesh V. Dave et. al [1] reported that when 

current intensity increases, the MRR increases and 

so the Surface Quality decreases. But for current 

intensity 36 the results are different and the MRR is 

good and Surface Quality also good for Triangle and 
Rectangle Geometry [Fig. 3.2]. They also described 

that as the pulse on time and pulse off time 

difference increases the MRR and SR both give 

negative results that MRR decreases and SR 

increases. But as they come nearer to each other, 

both the output parameters show good results [Fig. 

3.3]. Gap Voltage, Current Intensity, Pulse on time, 

pulse off time are influential parameters to the 

common performance measures like MRR and 

Surface roughness. The rank was provided that 

which parameter affects the most to the least. For 
Surface roughness it is 1. Current intensity 2. Tool 

Geometry .3.Pulse off time 4. Pulse on time 5. Gap 

voltage and for MRR it is 1. Current Intensity 2. 

Pulse on time 3.Tool Geometry. 4. Pulse off time 5. 

Gap Voltage. The Rectangle Geometry at 43 A 

current gives good results for both the performance 

measures. Also, Pulse on time and Pulse off time 

range affect the MRR and SR. At PON=22 & POFF 

=22 hold good results but at PON=22 & POFF=62 the 

results are not friendly. 

 

Kamlesh V. Dave et. al [2] accounted that to 
determine influential parameters for EDM groove 

machining, 24 experiments have been carried out 

based on Taguchi Orthogonal Array OA16(4
5) has 

been chosen in order to have representative data. 

The Taguchi method aims to find an optimal 

combination of parameters that have the smallest 

variance in performance. They concluded that p-

value for B is less than others, so current intensity is 

the most significant factor. 
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B. B. Pradhan
 
et. al [3] described that positive 

polarity i.e., work piece ‘+ve’ and tool ‘-ve’ was 

used during micro-EDM experimentation as tool 

wear is less in this case due to low sparking energy 

distribution at the cathode, i.e., tool as compared to 

reverse polarity and this helps in improving the 

micro-machining accuracy. Peak current (Ip), pulse-
on-time (Ton), dielectric jet flushing pressure (Pr), 

and duty ratio (t) were considered as varying 

parameters by keeping other machining parameters 

constant. They took (i) Peak current (amp): 0.5 to 

1.5, (ii) pulse-on-time: 1 to 20 μs, (iii) Duty factor 

(%): 60 to 90, (iv) Flushing pressure (kg/cm2): 0.1 to 

0.5. The dielectric used was kerosene so as to use 

conventional EDM machine. The experimental 

scheme has been designed based on L9 orthogonal 

array of Taguchi technique, which has nine rows 

corresponding to nine experimental runs with eight 

degrees of freedom on the basis of four input 
factors, i.e., peak current (Ip), pulse-on-time (Ton), 

flushing pressure (Pr), and duty factor (t), each 

factor having three levels. It is observed that there 

are weak effects of dielectric flushing pressure and 

duty factor on MRR. 

 

 
 

Fig. 4.1 Optical view of end of the tool after 

machining at a) 1.5 A, 1 μs, 0.5 kg/cm
2
, 80%, b) 

1.5 A, 20 μs, 0.3 kg/cm
2
, 60% 

 

They observed that Ton, the most 

influencing factor, has the maximum percentage of 
contribution on MRR, OC, and taper whereas peak 

current, Ip has the maximum percentage of 

contribution on TWR during micro-drilling of 

titanium alloy by EDM. Metal removal rate and 

tool-wear rate are found to increase with the 

increase in peak current due to higher discharge 

energy at higher value of Ip. Also MRR and TWR 

are found to increase when Ton increases from 1 to 

10 μs but with further increase in Ton, MRR 

decreases. Flushing pressure and duty factor have no 

significant effect on both MRR and TWR. Overcut 
of the machined micro-hole is affected by the peak 

current and on time and increased with increase in Ip 

and Ton. 

 

M. Kiyak et. al
 
[4] studied that EDM-work piece 

material interaction is influenced by many process 

parameters and considered highly non-linear 

process. They concluded that Surface roughness 

increased with increasing pulsed current and pulse 

time. Low current and pulse time with high pulse 

pause time produced minimum surface roughness. 

High pulsed current and pulse time provide low 

surface finish quality. However, this combination 

would increase material removal rate and reduce 

machining cost. So, this combination should be used 

for rough machining step of EDM process. Rough 
and finish machining steps require different level of 

machine power. For rough EDM application, the 

machine power should be one fourth of the 

produced power with 16A of current, 6s of pulse 

time and 3s of pulse pause time. Finish machining 

should be carried out at one-half level of power at 

8A of current and 6s of pulse time and 3 s of pulse 

pause time. Surface roughness of machined work 

piece would increase when surface quality of 

electrode decreases due to pulsed current density. 

For the same pulse pause time, the trends of surface 

roughness on the work piece and electrode are 
similar. Thus, there will be a relation between wear 

on electrode and increase of surface roughness from 

work piece with a view of surface quality. 

 

Debabrata Mandal et. al [5] reported that as 

current decreases, MRR and TWR decreases but at 

that point of time TON decreases and TOFF increases.    

 

Ali Ozgedik et. al
 
[6] found experimentally that 

increasing discharge current increases the work 

piece removal rate, tool wear rate, relative wear, 
front-surface wear rate and average surface 

roughness. The front-surface inclination angle 

increases with discharge current and decreases 

slightly for high settings of current. Inner and outer 

edge-wear radii increase rapidly against increasing 

discharge current. 

The work piece removal rate increases with 

increasing pulse duration. The increase in tool wear 

rate with the increasing pulse duration is evident up 

to 50 μs. Further increase in pulse duration reduces 

the tool wear rate. The relative wear decreases with 

increasing pulse duration since the work piece 
removal rate increases at a faster rate than the tool 

wear rate. Work piece average surface roughness 

increases with increasing pulse duration due to the 

larger craters formed on the surface. Increasing 

pulse duration leads to an increase in the tool front-

surface wear rate and front surface inclination angle, 

and it leads to a decrease in the outer and inner 

edge-wear radii. The best surface quality is obtained 

in injection flushing. The high front-surface wear 

rates are observed in injection flushing while the 

low values are obtained in the static condition. 
 

Cao Fenggou et. al [7] presents a method that can 

be used to automatically determine the optimal nos. 

of hidden neuron and optimize the relation between 

process and response parameters of EDM process 

using GA and BP learning algorithm based ANN 

modeling. The ANN modeling was implemented to 
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establish relation between EDM process parameters 

such as current peak value (A), pulse width on (μs) 

,processing depth (mm) with the response 

parameters 

SR (μm), TWR(%), electrode zoom value (μm) and 

finish depth(mm). Good processing speed can be 

achieved under the premise of guaranteeing 
processing accuracy. 

 

Shing, S. et. al [8] accounted that the copper and 

aluminum electrodes achieve the best MRR with the 

increase in discharge current, followed by copper–

tungsten electrode. Brass does not point out 

significant increase in MRR with the increase in 

discharge current. Copper gives the best MRR on 

En-31 work material. The increase in MRR with the 

increase in discharge current is due to the fact that 

the spark discharge energy is increased to facilitate 

the action of melting and vaporization, and 
advancing the large impulsive force in the spark 

gap, thereby increasing the MRR. Copper electrode 

shows the most consistent overcut with the increase 

in current. Aluminium is also the best electrode 

material that shows low diametric overcut. Copper–

tungsten and brass gave poor dimensional accuracy 

by resulting in higher diametric overcut. The 

diametric overcut is low due to the fact that at low 

current with reverse polarity, erosion is less. As 

spark energy is low at low current, the crater formed 

on the work material is small in depth and hence 
results in good dimensional accuracy. . Brass and 

aluminium show a considerable increase in the 

electrode wear with the increase in the discharge 

current. The EDMing has been done with reverse 

polarity, where the electrons strike the tool electrode 

surface liberating greater energy at this surface, and 

an electrode material with higher melting point 

wears less. Copper–tungsten gives low values of 

surface roughness at high discharge currents on En-

31. It is also seen that copper and aluminium 

electrode results in poor machined surface at high 

currents due to the fact that higher MRR of Cu and 
Al metal electrodes is accompanied by larger and 

deeper craters, resulting in a greater surface 

roughness. 

 

H. Juhr et. al [10] reported that for developing the 

continuous parameter generation technology the 

input parameters such as pulse current, discharge 

duration and duty cycle and response parameters as 

removal rate, wear ratio and arithmetic mean 

roughness were considered. In order to find levels of 

the pulse current Ie for the main experiments, the 
procedure is analogue, but in this case, the pulse 

current Ie is orthogonal projected onto the axis z. 

 

Angelos P. Markopoulos et. al [12] showed that 

the process parameter to the ANN model were work 

piece material, pulse current and pulse duration at 

3,4 and 4 levels respectively. 

S. Assarzadeh et. al [13] reported that the current 

(I), period of pulses (T), and source voltage (V) 

were selected at 6, 4 and 4 levels respectively as 

network process parameters.  

 

Kesheng Wang et. al [14] accounted that The 

surface roughness agrees with accepted trends 
indicating that good surface quality can be achieved 

for short on-time with low peak current (e.g. 10 A), 

hence with loss of productivity. 

 

G. Krishna Mohana Rao et. al [15] presents the 

effects of current, voltage, machining time and type 

of material on hardness. Kerosene was used as 

dielectric medium. Current is the most influencing 

factor for surface roughness. From the sensitivity 

analysis it is concluded that type of material is 

having highest influence on all performance 

measures. 
 

S. N. Joshi et. al [16] described that The 

recommended optimal values of process conditions 

are: discharge current of about 32 A, discharge 

duration 400 µs and duty cycle 80% for roughing 

operation. The intelligent process modeling and 

optimization approach developed in this work will 

provide a very effective tool to a process engineer to 

choose optimum process parameters for enhancing 

the productivity and finishing capability of the EDM 

process.  
 

S. N. Joshi et. al [17] concluded that a multilayered 

feed-forward neural network with leaning 

algorithms such as gradient descent (GD), GD with 

momentum (GDA), Levenberg – Marquardt (LM), 

conjugate gradient (CG), scaled conjugate gradient 

(SCG) were employed to establish relation between 

input process conditions (discharge power, spark on 

time, and duty factor) and the process responses 

(crater geometry, material removal rate, and tool 

wear rate) for various work tool work materials. 

Important process parameters were identified and 
their effects on performance parameters were 

extensively studied. 

 

Narcis Pellicer et. al [18] presented  the influence 

of the main EDM process parameters and different 

tool geometries on basic process performance 

measures. A set of designed experiments with 

varying parameters such as pulsed current, open 

voltage, pulse time and pulse pause time are carried 

out in H13 steel using different geometries of 

copper electrodes. Results help to select appropriate 
EDM process parameters to machine parts 

depending on product requirements. Influence of 

different process parameters (pulse current, open 

voltage, pulse time and pulse pause time) as well as 

tool electrode shape on several performance 

measures (MRR, surface roughness, depth, width, 

slope, and DVEE) has been analyzed for copper 
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electrode and AISI H13 steel work piece in sinking 

type EDM process using statistical tools. They 

concluded that the MRR and surface roughness 

increase with discharge current. Pulse-off variation 

affects MRR, but its behavior is not lineal due to the 

interactions with other process parameters.  

 

V. ARTIFICIAL NEURAL NETWORK 

(ANN) 
Debabrata Mandal et. al [5] presents the attempts 

to model and optimize the complex electrical 

discharge machining (EDM) process using soft 

computing techniques. Artificial neural network 

(ANN) with back propagation algorithm is used to 
model the process. A multi-objective optimization 

method, non-dominating sorting genetic algorithm-

II is used to optimize the process. Experiments have 

been carried out over a wide range of machining 

conditions for training and verification of the model. 

Testing results demonstrate that the model is 

suitable for predicting the response parameters.  

 
 Fig. 5.1 Architecture of the neural network 

model 
 

Neural network architecture of two hidden 

layers with three inputs and two outputs has been 
used to model the process, as shown in Fig. 5.1. 

AMSE is the least corresponding to momentum 

coefficient equals to 0.6 and it is taken as an optimal 

value. To find out the suitable architecture of the 

network for the above problem different 

architectures have been studied. The model with 3-

10-10-2 architecture is found the most suitable for 

the task under consideration with learning rate as 0.6 

and momentum co-efficient as 0.6. Out of 78 

screened patterns, 69 have been used for training, 

and 9 have been used for testing of prediction 
capability of the model. The maximum, minimum 

and mean prediction errors for this network are 9.47, 

0.0137 and 3.06%, respectively. Mean prediction 

error has been calculated by taking the average of all 

the individual errors, for all the testing patterns. 

They just concluded that the MRR and tool wear 

have been measured for each setting of current, 

pulse on time and pulse off time. An ANN model 

has been trained within the experimental data. 

Various ANN architecture have been studied, and 3-

10-10-2 is found to be the best architecture, with 

learning rate and momentum coefficient as 0.6, 
having mean prediction error is as low as 3.06%. 

The MRR and tool wear have been optimized using 

a multi-objective optimization method, non-

dominating sorting genetic algorithm-II.  

  

Cao Fenggou et. al [7] present a method that can be 

used to automatically determine the optimal nos. of 

hidden neuron and optimize the relation between 
process and response parameters of EDM process 

using GA and BP learning algorithm based ANN 

modelling. The ANN modeling was implemented to 

establish relation between EDM process parameters 

such as current peak value(A), pulse width on(μs) 

,processing depth (mm) with the response 

parameters 

SR(μm), TWR(%), electrode zoom 

value(μm) and finish depth(mm).A three layer feed 

forward neural architecture was used to implement 

the ANN modeling in EDM process. The number of 

neurons at the middle layer was determined by GA 
and node deleting network structure optimization 

method. GA combined with node deleting network 

structure optimization method was implemented to 

find out the global optimal solution, since it is hard 

for GA based optimization method to find out the 

local optimal solution, a BP algorithm was finally 

implemented to converge on the global optimum 

solution. AS GA converged to global optimal 

solution quickly the training time is reduced now 

and as in the second phase BP algorithm was 

implemented the local optimal solution problem also 
solved now. Finally they concluded 8 nos. of hidden 

neuron were found to be optimal for ANN modeling 

with a desired processing precision and efficiency. 

 

 
 

Fig. 5.2 Multi-layer feed-forward network 

structure model 
 
Kuo-Ming Tsai et. al [9] took six neural networks 

and a neuro-fuzzy network model for modeling 

material removal rate (MRR) in EDM process and 

analyzed based on pertinent machine process 

parameters. The networks, namely the LOGMLP, 

the TANMLP, the RBFN, the Error TANMLP, the 

Adaptive TANMLP, the Adaptive RBFN, and the 

ANFIS have been trained and compared under the 

same experimental conditions for two different 

materials considering the change of polarity. The 

various neural network architectures that were used 
here for modeling were trained with the same 

Gradient descent learning algorithm. For 

comparisons among the various models various 
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performance parameters like training time, RMSE, 

R2 were used. On the basis of comparisons they 

found ANFIS model to be more accurate than the 

other models. 

 

H. Juhr et. al [10] made a comparison between 

NRF (nonlinear regression function) and ANN for 
the generation of continuous parameter technology, 

which is a continuous mapping or regression. They 

found ANN’s to much easier than NRF’s. For 

modeling with ANN’s, feed forward networks with 

three to five layers were used, which were trained 

with back- propagation with momentum term. For 

developing the continuous parameter generation 

technology they considered the input parameters as 

pulse current, discharge duration and duty cycle and 

response parameters as removal rate, wear ratio and 

arithmetic mean roughness. They used two major 

performance evaluation criteria sum of squared 
deviation and sum of relative deviation to evaluate 

the performance of the two mapping functions. At 

the end they just concluded that ANN shows better 

prediction accuracy than nonlinear regression 

functions. 

 

Promod Kumar Patowari et. al [11] have applied 

ANN to model material transfer rate (MTR) 

and layer thickness (LT) by EDM with tungsten 

copper (W–Cu) P/M sintered electrodes. They have 

used input parameters to the ANN model such as 
compaction pressure (CP), sintering temperature 

(ST), peak current (Ip), pulse on time (Ton), pulse off 

time (Toff) with target measures like MTR, and LT. 

A multilayer feed-forward neural network with 

gradient-descent learning algorithm with 5 nos. of 

neuron in hidden layer has been used to train the 

ANN model. Two activation functions tansig and 

purelin have been used in hidden and output layers, 

respectively. To evaluate the ANN model two 

performance measures average error percentage and 

MSE have been implemented. The performance 

measure MSE during training and testing of MRR 
were found to be 0.0014 and 0.0038, respectively. 

Another performance measure average error 

percentage during training and testing of MRR were 

found to be 3.3321 and 8.4365, respectively. While 

modeling LT, MSE during training and testing were 

found to be 0.0016 and 0.0020 respectively and 

average error percentage during training and testing 

were calculated to be 6.5732 and 3.1824 

respectively. 

 

Angelos P. Markopoulos et. al [12] implemented 
an ANN model for the prediction of SR in EDM. 

For this purpose they used Matlab® as well as 

Netlab®. The process parameter to the ANN model 

were work piece material, pulse current and pulse 

duration at 3, 4 and 4 levels respectively. They used 

back propagation algorithm for training with model 

assessment criteria as MSE and R. Finally they 

concluded  that both Matlab® as well as Netlab® 

were found efficient for the prediction of SR of 

EDM process. 

 

S. Assarzadeh et. al [13] presented a research work 

on neural network modeling and multi-objective 

optimization of responses MRR and SR of EDM 
process with Augmented Lagrange Multiplier 

(ALM) algorithm. A 3–6–4–2-size back-propagation 

neural network was developed to predict these two 

responses efficiently. The current (I), period of 

pulses (T), and source voltage (V) were selected at 

6, 4 and 4 levels respectively as network process 

parameters. Out of 96 experimental data sets 82 data 

sets were used for training and residual 14 data sets 

were used for testing the network. The training 

model was trained with back propagation training 

algorithm with momentum term. Relative 

percentage error and total average percentage error 
were used to evaluate the models. From the results 

in terms of mean errors of 5.31% and 4.89% in 

predicting the MRR and Ra they concluded that the 

neural model can predict process performance with 

reasonable accuracy. Having established the process 

model, the augmented Lagrange multiplier (ALM) 

algorithm was implemented to optimize MRR 

subjected to three machining regimes of prescribed 

Ra constraints (i.e. finishing, semi-finishing and 

roughing) at suitable operating conditions. 

 
Kesheng Wang et. al [14] have employed a hybrid 

artificial neural network and Genetic Algorithm 

methodology for modeling and optimization of two 

responses i.e. MRR and SR of electro-discharge 

machining. To perform the ANN modeling and 

multi-objective optimization they have implemented 

a two-phase hybridization process. In the first phase, 

they have used GA as learning algorithm in 

multilayer feed-forward neural network architecture. 

In the second phase, they used the model equations 

obtained from ANN modeling as the fitness 

functions for the GA-based optimization. The 
optimization was implemented using Gene-Hunter. 

The ANN model optimized error for MRR and SR 

were found to be 5.60% and 4.98% which laid a 

conclusion for these two responses to accept the 

model. 

   

G. Krishna Mohana Rao et. al [15] described a 

work aimed on the effect of various machining 

parameters on hardness. The various input 

parameters that have been considered here are 

different types of materials (Ti6Al4V, HE15, 
15CDV6 and M250), current, voltage and 

machining time. To correlate the machining 

parameters and response parameter they used a 

multi-layer feed forward neural network with GA as 

a learning algorithm. For this purpose they used 

Neuro Solutions software package. They used a 

single hidden layer with sigmoid transfer function in 
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both hidden and output layer. And they found a 

maximum prediction error of 5.42% and minimum 

prediction error of 1.53%. 

   

S. N. Joshi et. al [16] reported an intelligent 

approach for modeling and multi-objective 

optimization of EDM parameters of the model with 
less dependency on the experimental data. The 

EDM parameters data sets were generated from the 

numerical (FEM) simulations. The developed ANN 

process model was used in defining the fitness 

functions of non-dominated sorting genetic 

algorithm II (NSGA-II) to select optimal process 

parameters for roughing and finishing operations of 

EDM. While implementing NSGA-II for 

roughening operation only two contradicting 

objectives MRR and TWR were considered, while 

implementing for finishing operation best trade up 

was shared between 3 conflicting objective namely 
MRR, TWR and crater depth. Finally they carried 

out a set of experiments to validate the process 

performance for the optimum machining conditions 

and found successful implementation of their 

approach. 

 

S. N. Joshi et. al [17] developed two models for the 

electric discharge machining (EDM) process using 

the finite element method (FEM) and artificial 

neural network (ANN). A two-dimensional axis 

symmetric thermal (FEM) model of single-spark 
EDM process was developed with the consideration 

of many thermo-physical characteristics to predict 

the shape of crater cavity, MRR, and TWR. A 

multilayered feed-forward neural network with 

leaning algorithms such as gradient descent (GD), 

GD with momentum (GDA), Levenberg – 

Marquardt (LM), conjugate gradient (CG), scaled 

conjugate gradient (SCG) were employed to 

establish relation between input process conditions 

(discharge power, spark on time, and duty factor) 

and the process responses (crater geometry, material 

removal rate, and tool wear rate) for various work 
tool and work materials. The input parameters and 

targets of the ANN model was generated from the 

numerical (FEM) simulations. To evaluate the 

model they used prediction error (%) and mean error 

(ME) and to improve the efficiency of model two 

BPNN architectures were tried out, viz. single-

layered (4 –N – 4) and two-layered (4 – N1 – N2 – 

4). They found optimal ANN model with network 

architecture 4 – 8 – 12 – 4 and SCG training 

algorithm to give very good prediction accuracies 

for MRR (1.53%), crater depth (1.78%), and crater 
radius (1.16%) and for TWR (17.34%). 

 

VI. CONCLUSIONS 
a) The electrode geometry and electrode 

materials are playing a greater role to affect the 

MRR and Surface Roughness with varying nature of 

process parameters which can be modeled and 

optimized with an ease of operation by ANN and 

GA.     

b) The surface finish of work in the EDM 

process can be modeled and predicted successfully 

by the artificial neural network with reasonable 

accuracy even though the EDM process has been 

known for its stochastic nature. 
 c) Artificial Neural Network is a flexible tool 

for process parameters optimization. It is an 

effective tool to get the contribution of each 

parameter and to determine significant parameters 

which affect the performance characteristics. 

d) ANN technique incorporates the relation 

between EDM process input parameters and the 

obtained S/N ratio absolutely. 

e) The ANN-based process model can be used 

to select optimum process conditions to improve 

EDM process productivity and finishing capability. 

This will be the focus of our further research work. 
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