
 Dhanya Geethanjali Sasidharan, Aarathy Iyer / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1513-1516

1513 | P a g e

Comparison of Multipliers Based on Modified Booth Algorithm

Dhanya Geethanjali Sasidharan , Aarathy Iyer
Department of Electronics and Communication Engineering Mahathma Gandhi University Kolenchery,India

Abstract
In this paper comparison of different 16

x 16 and 4 x 4 multipliers based on booth

algorithm has been presented. Different

variations of booth algorithm for recording

circuitry and the adder for final compression of

partial products are implemented.. The

proposed architecture was synthesized using

Xilinx tool. Based on the theoretical and

experimental estimation, analysis was carried on

results such as the amount of hardware resources

and delay . Proposed multipliers can be used for

high performance applications like signal

processing, image processing.

Keywords—Booth Algorithm,Carry Save
Adder,Kogge Stone Adder ,Digitl Signal Processing

I. INTRODUCTION
Multiplication is an important fundamental

function in arithmetic operations. Multiplication-

based operations such as Multiply and Accumulate

(MAC) is used in many Digital Signal Processing

(DSP) applications such as convolution, Fast Fourier

Transform (FFT), filtering and in the arithmetic and
logic unit of microprocessors[1]. In many DSP

algorithms, the multiplier lies in the critical delay

path and ultimately determines the performance of

algorithm. The speed of multiplication operation is

of great importance in DSP as well as in general

processor. Since multiplication dominates the

execution time of most DSP algorithms and

determines the speed of ALU, there is a need of high

speed multiplier[2].

In general, a multiplier uses Booth‟s

algorithm and array of full adders (FAs), or Wallace
tree instead of the array of FAs., i.e., this multiplier

mainly consists of three parts: Booth encoder, a tree

to compress the partial products such as Wallace

tree, and final adder. To reduce the number of

calculation steps for the partial products, MBA

algorithm has been applied mostly where Wallace

tree has taken the role of increasing the speed to add

the partial products

The rest of the paper is organized as

follows. In section two, an introduction to the

standard design is given . Section three deals with
adders such as carry save adder and kogge stone

adder. Section four shows implementation result and

the characteristics of parallel multiplier based on

both of the booth encodings. Finally, the conclusion

will be given in section five in which provides a brief

summary of the proposed approach and discussion

on scope of future extensions

II. GENERAL STRUCTURE
A.Standard Design

In this section, we discuss basic MAC

operation. Basically, multiplier operation can be

divided into three operational steps. The first one is
booth encoding to generate the partial products. The

second one is adder array or partial product

compression and the last one is final addition in

which final multiplication result is produced. If the

multiplication process is extended to accumulate the

multiplied result, then MAC consists of four steps.

General multiplier executes the

multiplication operation by multiplying input

multiplier X and input multiplicand Y. After that

current multiplication result is added to the previous
multiplication result Z as accumulation step.

The N-bit 2‟s complement binary number X can be

expressed as

𝑌 = −2𝑁−1𝑦𝑁−1 + 2𝑖 𝑛−2
𝐼=0 𝑦𝑖 (1)

If “Eq. (1)” is expressed in base-8 type redundant

sign digit form in order to apply the radix-8 booth‟s

algorithm,

it would be

𝑌 = 𝑑𝑖8
𝑖 𝑁+1/3 −2

𝑖=0
 (2)

𝑑𝑖 ∈ ±4, ±3, ±2, ±1,0 (3)

If “Eq. (1)” is expressed in base - 4 type redundant
sign digit form in order to apply the radix - 4

booth‟s algorithm ,it would be

𝑌 = 𝑑𝑖4
𝑖

𝑁

2
−1

𝑖=0
 (4)

𝑑𝑖 ∈ ±2, ±1,0 (5)

Here di refers to the select signals for the partial

product. If “Eq. (2)” is used, then multiplication can

be expressed as

𝑋 × 𝑌 = 𝑌𝑑𝑖
 𝑁+𝐼/3 −2

𝑖=0
23𝑖 (6)

 Dhanya Geethanjali Sasidharan, Aarathy Iyer / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1513-1516

1514 | P a g e

If these equations are used, then multiplication

accumulation result can be expressed as

𝑃 = 𝑋 × 𝑌 + 𝑍 = 𝑑𝑖2
3𝑖 𝑁+1/3 −2

𝑖=0
+ 𝑧𝑖2

3𝑖2𝑁−1
𝑗=0

(7)

Here the MAC architecture implemented by “Eq.

(7)” is called standard design.

A.Booth Encoders

The modified Booth‟s algorithm based on a
radix-4, generally called Booth-2 [7] is the most

popular approach for implementing fast multipliers

using parallel encoding [1]. It uses a digit set {0, ±1,

±2} to reduce the number of the partial products to

n‟= [(n+1)/ 2]. Radix- 4 encoding start by appending

a zero to the right of multiplier LSB. Triplets are

taken beginning at position x – 1 and continuing to

the MSB with one bit overlapping between adjacent

triplets

TABLE I

RADIX-2 CODING ALGORITHM

a b b'i Operation Comments

0 0 0 0 String of 0‟s

0 1 +1 +Y End of 1‟s

1 0 -1 -Y Begin of 1‟s

1 1 0 0 String of 1‟s

This recoding scheme applied to a parallel

multiplier halves the number of partial products so

the multiplication time and the hardware

requirements decrease. Radix-8 recoding [5], [7]

applies the same algorithm as radix-4, but now in

this we take quartets of bits instead of triplets. The

Booth-3 scheme is based on a radix-8 encoding to

reduce this number to n‟ = [(n+1)/3].
All digit sets {0, ±1, ±2, ±3, ±4} are

obtained by simple shifting and complementary

operations, except generation of the multiple 3X,

which is computed by an adding and shifting

operation, 3X = 2X+X and -3X can be generated by

complement 3X. Table I depicts the partial product

generating recording algorithm in case of Radix – 2

booth encoding and Table II corresponds to Radix -

4 booth encoding .

TABLE II

RADIX-4 CODING ALGORITHM

B2i+1 B2i B2i-1 Operation Comments

0 0 0 0 String of 0‟s

0 0 1 1 End of 1‟s

0 1 0 1 A single 1

0 1 1 2 End of 1‟s

1 0 0 -2

Beginning of

1‟s

1 0 1 -1 A single 0

1 1 0 -1

Beginning of

1‟s

1 1 1 0 String of 1‟s

III. FINAL ADDER
A.Carry Save Adder

There are many cases where it is desired to

add more than two numbers together. The
straightforward way of adding together m numbers

(all n bits wide) is to add the first two, then add that

sum to the next, and so on. This requires a total of m

− 1 additions, for a total gate delay of O(m.log n).

Instead, a tree of adders can be formed, taking only

O(log m · log n) gate delays.

Using carry save addition, the delay can be

reduced further still. The idea is to take 3 numbers

that has to be added together, X + Y + Z, and

convert it into two numbers „carry + sum‟ (C + S)

such that X + Y + Z = C + S, and do this in O(1)

time. In carry save addition, we refrain from directly
passing on the carry information until the very last

step.

The important point is that c and s can be

computed independently, and furthermore, each Ci

(and Si) can be computed independently from all of

the other C‟s (and S‟s). A carry save adder simply is

a full adder with the Cin input renamed to Z, and the

Cout output renamed to C

.

 Dhanya Geethanjali Sasidharan, Aarathy Iyer / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1513-1516

1515 | P a g e

Figure 1.4 bit carry save adder

B.Kogge Stone Adder

KSA is a parallel prefix form carry look

ahead adder. It generates carry in O (log n) time and

widely considered as the fastest adder and is widely

used in the industry for high performance arithmetic
circuits. In KSA, carries are computed fast by

computing them in parallel at the cost of increased

area.

The complete functioning of KSA can be

easily comprehended by analyzing it in terms of

three distinct parts :

 A = 1001 B = 1100 Sum = 10101

 A3 B3 A2 B2 A1 B1 A0 B0

 1 1 0 1 0 0 1 0

 C3=1 C2=0 C1=0 C0=0

Cin=0

Figure 2. 4 bit kogge stone adder

Pre processing: This step involves computation of

generate and propagate signals corresponding too

eachpair of bits in A and B. These signals are given
by the logic equations below:

pi = Ai xor Bi

gi = Ai and Bi

Carry look ahead network : This block differentiates

KSA from other adders and is the main force behind

its high performance. This step involves

computation of carries corresponding to each bit. It

uses group propagate and generate as intermediate

signals which are given by the logic equations

below:

Pi:j = Pi:k+1 and Pk:j

Gi:j = Gi:k+1 or (Pi:k+1 andGk:j)

Post processing: This is the final step and is

common to all adders of this family (carry look

ahead). It involves computation of sum bits. Sum

bits are computed by the logic given below:

Si = pi xor Ci-1

IV. EXPERIMENTAL RESULTS
The 16×16 bit parallel MAC based on both

the booth encodings (i.e. Radix-2 booth encoding

and Radix-4 booth encoding) and some final adders

(such as CSA adder and Kogge stone adder) is

designed in Verilog and the functionalities of the

algorithms are verified by XILINX ISE 13.2i .

Figure 3. Simulation result of Pipelined 16-bit MAC

based on radix-4 modified booth encoder

TABLE III

PERFORMANCE COMPARISON OF 16 BIT

MULTIPLIERS

Performance

Parameters

16 x 16 bit multiplier

 array
multiplier

 radix 2
multiplier

radix
4

multiplier

Supply Power

(mW)
42.10 42.10 42.10

Number of 4 input

LUTs
505 525 621

Number of

Occupied Slices
290 303 313

Figure 4 .Timing comparison of 16 X 16 multipliers

 Dhanya Geethanjali Sasidharan, Aarathy Iyer / International Journal of Engineering Research

and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp.1513-1516

1516 | P a g e

TABLE IV

PERFORMANCE COMPARISON OF 4 BIT

MULTIPLIERS

Performance

Parameters

4 x 4 bit multiplier

Radix 2
Multiplie

r With

Kogge

Stone

Adder

Radix 4
Multipli

er With

Kogge

Stone

Adder

Radix 4
Multiplie

r With

Carry

Save

Adder

Supply Power
(mW)

 42.10 42.10 42.10

Number of 4 input

LUTs
34 24 62

Number of
Occupied Slices

19 12 35

 Figure 5 .Timing comparison of 4 X 4 multipliers

From Table III ,it can be seen that for the

same supply power number of 4 input LUTs and
the number of occupied slices is maximum for

Radix 4 multiplier . But from the Figure 4 , for

timing analysis it can be inferred that Radix 4

multiplier has better performance than Radix 2

multiplier in terms of speed of operation

Considering 4 x 4 multipliers with

different adder ,it can be seen that multipliers with

kogge stone adder has better performance in terms

of speed of operation than carry save adder. From

Table IV ,it can be inferred that multiplier using
carry save adder consumes more hardware than

than one using kogge stone adder.Here again from

figure 5, radix 4 booth multiplier with kogge stone

adder has the best performance comparing all the

other multipliers in terms of speed of operation.

V. CONCLUSION
Proposed multiplier architecture designs

using radix-2 and radix-4 booth algorithm were

found to be faster with same amount of power

consumption as compared to ordinary multiplier
.Radix-4 MBA based multiplier is faster than radix-

2 multiplier .

In the case of different adders used in the

final addition for multiplication kogge stone adder is

found to be faster than ordinary carry save adder .

For high speed applications where little amount of

logic utilisation over head is permissible the

proposed modified booth algorithm architectures

can be considered.These multipliers can be

incorporated into existing applications like filters,

MAC unit, etc. and the performance can be
compared. This work can be utilized in any of the

following such as in DSP applications, Numerical

co-processor, Calculators (pocket, graphic etc),

Filtering, Modulation & Demodulation etc.

REFERENCES
[1] Young-Ho Seo and Dong-Wook Kim, “A

New VLSI Architecture of Parallel

Multiplier Accumulator Based on Radix-2
ModifiedBooth Algorithm”, IEEE trans. on

VLSI Systems, Vol.18 No. 2, Feb. 2010.

R.J. J. F. Cavanagh, “Digital Computer

Arithmetic”, New York: McGraw- Hill,

1984.

[2] F. Elguibaly, “A fast parallel multiplier–

accumulator using the modified Booth

algorithm”, IEEE Trans. Circuits Syst., vol.

27, no. 9,

[3] C. S. Wallace, “A suggestion for a fast

multiplier”, IEEE Trans. Electron Comput.,
vol. EC-13, no. 1, pp. 14–17, Feb. 1964

[4] Fayed and M. Bayoumi, “A merged

multiplier-accumulator for high speed

signal processing application”, Proc.

ICASSP, vol. 3, pp.3212–3215, 2002.

[5] R. Cooper, “Parallel architecture modified

Booth multiplier”, Proc. Inst. Electr. Eng.

G, vol. 135, pp. 125–128, 1988.

[6] J.Fadavi-Ardekani, “M x N Booth encoded

multiplier generator

usingoptimizedWallace trees,” IEEE Trans.
Very Large Scale Integr. (VLSI)Syst., vol.

1, no. 2, pp. 120–125, Jun. 1993.

[7] Marc Hunger and Daniel Marienfeld, “New

self checking booth multiplier”, Int. J.

Appl. Math, Comput. Sci., Vol.18, No.3,

319–328,2008

