
Sunita Suralkar, Ashwini Mujumdar, Gayatri Masiwal, Manasi Kulkarni / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp1293-1298

1293 | P a g e

Review of Distributed File Systems: Case Studies

Sunita Suralkar, Ashwini Mujumdar, Gayatri Masiwal, Manasi Kulkarni
Department of Computer Technology, Veermata Jijabai Technological Institute

Abstract
 Distributed Systems have enabled

sharing of data across networks. In this paper

four Distributed File Systems Architectures:

Andrew, Sun Network, Google and Hadoop will

be reviewed with their implemented

architectures, file system implementation,

replication and concurrency control techniques

employed. For better understanding of the file

systems a comparative study is required.

Keywords— Distributed File Systems, Andrew

File System, Sun Network File System, Google File

System, Hadoop File System.

I. INTRODUCTION
 File system is a subsystem of an operating

system whose purpose is to organize, retrieve, store

and allow sharing of data files. A Distributed File

System is a distributed implementation of the

classical time-sharing model of a file system, where

multiple users who are geographically dispersed

share files and storage resources. Accordingly, the

file service activity in a distributed system has to be

carried out across the network, and instead of a

single centralized data repository there are multiple

and independent storage devices.

 The DFS can also be defined in terms of the
abstract notation of a file. Permanent storage is a

fundamental abstraction in computing. It consists of

a named set of objects that come into existence by

explicit creation, are immune to temporary failures

of the system, and persist until explicitly destroyed.

A file system is the refinement of such an

abstraction. A DFS is a file system that supports the

sharing of files in the form of persistent storage over

a set of network connected nodes. The DFS has to

satisfy three important requirements: Transparency,

Fault Tolerance and Scalability.

II. CASE STUDY 1: ANDREW FILE SYSTEM
 Andrew is a distributed computing

environment being developed in a joint project by

Carnegie Mellon University and IBM. One of the

major components of Andrew is a distributed file

system. The goal of the Andrew File System is to

support growth up to at least 7000 workstations (one

for each student, faculty member, and staff at
Carnegie Mellon) while providing users, application

programs, and system administrators with the

amenities of a shared file system.

Architecture

Figure 1: Andrew File System Architecture

File System

 The general goal of widespread

accessibility of computational and informational

facilities, coupled with the choice of UNIX, led to

the decision to provide an integrated, campus-wide

file system with functional characteristics as close to

that of UNIX as possible. The first design choice

was to make the file system compatible with UNIX

at the system call level.
 The second design decision was to use

whole files as the basic unit of data movement and

storage, rather than some smaller unit such as

physical or logical records. This is undoubtedly the

most controversial and interesting aspect of the

Andrew File System. It means that before a

workstation can use a file, it must copy the entire file

to its local disk, and it must write modified files

back to the file system in their entirety. This in turn

requires using a local disk to hold recently-used

files. On the other hand, it provides significant
benefits in performance and to some degree in

availability. Once a workstation has a copy of a file

it can use it independently of the central file system.

This dramatically reduces network traffic and file

server loads as compared to record-based distributed

file systems. Furthermore, it is possible to cache and

reuse files on the local disk, resulting in further

reductions in server - loads and in additional

workstation autonomy.

 Two functional issues with the whole file

strategy are often raised. The first concerns file

sizes: only files small enough to fit in the local disks
can be handled. Where this matters in the

environment, the large files had to be broken into

smaller parts which fit. The second has to do with

updates. Modified files are returned to the central

system only when they are closed, thus rendering

Sunita Suralkar, Ashwini Mujumdar, Gayatri Masiwal, Manasi Kulkarni / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp1293-1298

1294 | P a g e

record-level updates impossible. This is a

fundamental property of the design. However, it is

not a serious problem in the university computing

environment. The main application for record-level

updates is databases. Serious multi-user databases

have many other requirements (such as record- or

field-granularity authorization, physical disk write
ordering controls, and update serialization) which

are not satisfied by UNIX file system semantics,

even in a non-distributed environment.

 The third and last key design decision in the

Andrew File System was to implement it with many

relatively small servers rather than a single large

machine. This decision was based on the desire to

support growth gracefully, to enhance availability

(since if any single server fails, the others should

continue), and to simplify the development process

by using the same hardware and operating system as

the workstations. At the present time, an Andrew.
file server consists of a workstation with three to six

400-megabyte disks attached. A price/performance

goal of supporting at least 50 active workstations per

file server is acheived, so that the centralized costs

of the file system would be reasonable. In a large

configuration like the one at Carnegie Mellon, a

separate "system control machine" to broadcast

global information (such as where specific users'

files are to be found) to the file servers is used. In a

small configuration the system control machine is

combined with a (the) server machine.

III. CASE STUDY 2: SUN NETWORK FILE

SYSTEM
 NFS views a set of interconnected

workstations as a set of independent machines with

independent file systems. The goal is to allow some

degree of sharing among these file systems in a
transparent manner. Sharing is based on server-client

relationship. A machine may be, and often is, both a

client and a server. Sharing is allowed between any

pair of machines, not only with dedicated server

machines. Consistent with the independence of a

machine is the critical observation that NFS sharing

of a remote file system affects only the client

machine and no other machine. Therefore, there is

no notion of a globally shared file system as in

Locus, Sprite, UNIX United, and Andrew.

 To make a remote directory accessible in a
transparent manner from a client machine, a user of

that machine first has to carry out a mount operation.

Actually, only a superuser can invoke the mount

operation. Specifying the remote directory as an

argument for the mount operation is done in a

nontransparent manner; the location (i.e., hostname)

of the remote directory has to be provided. From

then on, users on the client machine can access files

in the remote directory in a totally transparent

manner, as if the directory were local. Since each

machine is free to configure its own name space, it is

not guaranteed that all machines have a common

view of the shared space. The convention is to

configure the system to have a uniform name space.

By mounting a shared file system over user home

directories on all the machines, a user can log in to

any workstation and get his or her home

environment. Thus, user mobility can be provided,

although again by convention.
 Subject to access rights accreditation,

potentially any file system or a directory within a

file system can be remotely mounted on top of any

local directory. In the latest NFS version, diskless

workstations can even mount their own roots from

servers (Version 4.0, May 1988 described in Sun

Microsystems Inc. . In previous NFS versions, a

diskless workstation depends on the Network Disk

(ND) protocol that provides raw block I/O service

from remote disks; the server disk was partitioned

and no sharing of root file systems was allowed.

One of the design goals of NFS is to provide file
services in a heterogeneous environment of different

machines, operating systems, and network

architecture. The NFS specification is independent

of these media and thus encourages other

implementations.

 This independence is achieved through the

use of RPC primitives built on top of an External

Date Representation (XDR) protocol-two

implementation independent interfaces [Sun

Microsystems Inc. 19881. Hence, if the system

consists of heterogeneous machines and file systems
that are properly interfaced to NFS, file systems of

different types can be mounted both locally and

remotely.

Architecture

In general, Sun’s implementation of NFS is

integrated with the SunOS kernel for reasons of

efficiency (although such integration is not strictly

necessary).

Figure 2: Schematic View of NFS Architecture

 The NFS architecture is schematically

depicted in Figure 6. The user interface is the UNIX

system calls interface based on the Open, Read,

Write, Close calls, and file descriptors. This

interface is on top of a middle layer called the
Virtual File System (VFS) layer. The bottom layer is

the one that implements the NFS protocol and is

Sunita Suralkar, Ashwini Mujumdar, Gayatri Masiwal, Manasi Kulkarni / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp1293-1298

1295 | P a g e

called the NFS layer. These layers comprise the NFS

software architecture. The figure also shows the

RPC/XDR software layer, local file systems, and the

network and thus can serve to illustrate the

integration of a DFS with all these components. The

VFS serves two important functions:

 It separates file system generic operations
from their implementation by defining a clean

interface. Several implementations for the VFS

interface may coexist on the same machine, allowing

transparent access to a variety of types of file

systems mounted locally (e.g., 4.2 BSD or MS-

DOS).

 The VFS is based on a file representation

structure called a unode, which contains a numerical

designator for a file that is networkwide unique.

(Recall that UNIXi- nodes are unique only within a

single file system.) The kernel maintains one vnode

structure for each active node (file or directory).
Essentially, for every file the vnode structures

complemented by the mount table provide a pointer

to its parent file system, as well as to the file system

over which it is mounted. Thus, the VFS

distinguishes local files from remote ones, and local

files are further distinguished according to their file

system types. The VFS activates file system specific

operations to handle local requests according to their

file system types and calls the NFS protocol

procedures for remote requests. File handles are

constructed from the relevant vnodes and passed as
arguments to these procedures.

 As an illustration of the architecture, let us

trace how an operation on an already open remote

file is handled (follow the example in Figure 6). The

client initiates the operation by a regular system call.

The operating system layer maps this call to a VFS

operation on the appropriate vnode. The VFS layer

identifies the file as a remote one and invokes the

appropriate NFS procedure. An RPC call is made to

the NFS service layer at the remote server. This call

is reinjected into the VFS layer, which finds that it is

local and invokes the appropriate file system
operation. This path is retraced to return the result.

An advantage of this architecture is that the client

and the server are identical; thus, it is possible for a

machine to be a client, or a server, or both. The

actual service on each server is performed by several

kernel processes, which provide a temporary

substitute to a LWP facility.

IV. CASE STUDY 3: GOOGLE FILE SYSTEM

 The Google File System (GFS) is a

proprietary DFS developed by Google. It is designed

to provide efficient, reliable access to data using

large clusters of commodity hardware. The files are

huge and divided into chunks of 64 megabytes. Most

files are mutated by appending new data rather than

overwriting existing data: once written, the files are

only read and often only sequentially. This DFS is

best suited for scenarios in which many large files

are created once but read many times. The GFS is

optimized to run on computing clusters where the

nodes are cheap computers. Hence, there is a need

for precautions against the high failure rate of

individual nodes and data loss.

Motivation for the GFS Design:
The GFS was developed based on the following

assumptions:

a. Systems are prone to failure. Hence there is a

need for self monitoring and self recovery from

failure.

b. The file system stores a modest number of large

files, where the file size is greater than 100 MB.

c. There are two types of reads: Large streaming

reads of 1MB or more. These types of reads are from

a contiguous region of a file by the same client. The

other is a set of small random reads of a few KBs.

d. Many large sequential writes are performed. The
writes are performed by appending data to files and

once written the files are seldom modified.

e. Need to support multiple clients concurrently

appending the same file.

Architecture

Master – Chunk Servers – Client

 A GFS cluster consists of a single master

and multiple chunkservers and is accessed by

multiple clients. Files are divided into fixed-size

chunks. Each chunk is identified by an immutable
and globally unique 64 bit chunk handle assigned by

the master at the time of chunk creation.

Chunkservers store chunks on local disks as Linux

files and read or write chunk data specified by a

chunk handle and byte range.

 For reliability, each chunk is replicated on

multiple chunkservers. By default, we store three

replicas, though users can designate different

replication levels for different regions of the file

namespace. The master maintains all file system

metadata. This includes the namespace, access

control information, the mapping from files to
chunks, and the current locations of chunks. It also

controls system-wide activities such as chunk lease

management, garbage collection of orphaned

chunks, and chunk migration between chunkservers.

The master periodically communicates with each

chunkserver in HeartBeat messages to give it

instructions and collect its state. Neither the client

nor the chunkserver caches file data.

The GFS architecture diagram is shown below:

Sunita Suralkar, Ashwini Mujumdar, Gayatri Masiwal, Manasi Kulkarni / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp1293-1298

1296 | P a g e

Figure 3: Google File System Architecture

Chunk Size

The GFS uses a large chunk size of 64MB. This has

the following advantages:

a. Reduces clients’ need to interact with the master

because reads and writes on the same chunk require
only one initial request to the master for chunk

location information.

b. Reduce network overhead by keeping a persistent

TCP connection to the chunkserver over an extended

period of time.

c. Reduces the size of the metadata stored on the

master. This allows keeping the metadata in memory

of master.

File Access Method

File Read
A simple file read is performed as follows:

a. Client translates the file name and byte offset

specified by the application into a chunk index

within the file using the fixed chunk size.

b. It sends the master a request containing the file

name and chunk index.

c. The master replies with the corresponding chunk

handle and locations of the replicas. The client

caches this information using the file name and

chunk index as the key.

d. The client then sends a request to one of the

replicas, most likely the closest one. The request
specifies the chunk handle and a byte range within

that chunk.

e. Further reads of the same chunk require no more

client-master interaction until the cached

information expires or the file is reopened.

This file read sequence is illustrated below:

Figure 4: File Read System

File Write

The control flow of a write is given below as

numbered steps:

1. Client translates the file name and byte offset

specified by the application into a chunk index

within the file using the fixed chunk size. It sends

the master a request containing the file name and
chunk index.

2. The master replies with the corresponding chunk

handle and locations of the replicas

3. The client pushes the data to all the replicas.

Data stored in internal buffer of chunkserver.

4. Client sends a write request to the primary. The

primary assigns serial numbers to all the write

requests it receives. Perform write on data it stores in

the serial number order

5. The primary forwards the write request to all

secondary replicas

6. The secondaries all reply to the primary on
completion of write

7. The primary replies to the client.

Figure 5: A File Write Sequence

Replication and Consistency

Consistency

 The GFS applies mutations to a chunk in

the same order on all its replicas. A mutation is an

operation that changes the contents or metadata of a

chunk such as a write or an append operation. It uses
the chunk version numbers to detect any replica that

has become stale due to missed mutations while its

chunkserver was down. The chance of a client

reading from a stale replica stored in its cache is

small. This is because the cache entry uses a timeout

mechanism. Also, it purges all chunk information for

that file on the next file open.

Replication

The GFS employs both chunk replication and master

replication for added reliability.

System Availability

 The GFS supports Fast Recovery to ensure

availability. Both the master and the chunkserver are

Sunita Suralkar, Ashwini Mujumdar, Gayatri Masiwal, Manasi Kulkarni / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp1293-1298

1297 | P a g e

designed to restore their state and start in seconds no

matter how they terminated. The normal and

abnormal termination are not distinguished. Hence,

any fault will result in the same recovery process as

a successful termination.

Data Integrity
 The GFS employs a checksum mechanism

to ensure integrity of data being read / written. A 32

bit checksum is included for every 64KB block of

chunk. For reads, the chunkserver verifies the

checksum of data blocks that overlap the read range

before returning any data to the requester. For writes

(append to end of a chunk) incrementally update the

checksum for the last partial checksum block, and

compute new checksums for any brand new

checksum blocks filled by the append.

Limitations of the GFS
1. No standard API such as POSIX for

programming.

2. The Application / client have opportunity to get a

stale chunk replica, though this probability is low.

3. Some of the performance issues depend on the

client and application implementation.

4. If a write by the application is large or straddles a

chunk boundary, it may be added fragments from

other clients.

V. CASE STUDY 4: HADOOP FILE SYSTEM
 The Hadoop is a distributed parallel fault

tolerant file system inspired by the Google File

System. It was designed to reliably store very large

files across machines in a large cluster. Each file

stored as a sequence of blocks; all blocks in a file

except the last block are the same size. Blocks

belonging to a file are replicated for fault tolerance.
The block size and replication factor are

configurable per file. The files are “write once” and

have strictly one writer at any time. This DFS has

been used by Facebook and Yahoo.

Architecture

 The file system metadata and application

data stored separately. The Metadata stored on a

dedicated server called the NameNode. Application

data are stored on other servers called DataNodes.

All servers are fully connected and communicate
with each other using TCP-based protocols. File

content is split into large blocks (typically 128MB)

and each block of the file is independently replicated

at multiple DataNodes for reliability.

Name Node

 The files and directories represented by

inodes, which record attributes like permissions,

modification and access times, namespace and disk

space quotas. The metadata comprising the inode

data and the list of blocks belonging to each file is

called the Image. Checkpoints are the persistent

record of the image stored in the local host’s native

files system. The modification log of the image

stored in the local host’s native file system is

referred to as the Journal. During restarts the

NameNode restores the namespace by reading the

namespace and replaying the journal.

Data Node

 Each block replica on a DataNode is

represented by two files in the local host’s native file

system. The first file contains the data itself and the

second file is block’s metadata including checksums

for the block data and the block’s generation stamp.

The size of the data file equals the actual length of

the block and does not require extra space to round it

up to the nominal block size as in traditional file

systems. Thus, if a block is half full it needs only

half of the space of the full block on the local drive.

During startup each DataNode connects to the
NameNode and performs a handshake. The purpose

of the handshake is to verify the namespace ID and

the software version of the DataNode. If either does

not match that of the NameNode the DataNode

automatically shuts down. A DataNode identifies

block replicas in its possession to the NameNode by

sending a block report. A block report contains the

block id, the generation stamp and the length for

each block replica the server hosts. The first block

report is sent immediately after the DataNode

registration. Subsequent block reports are sent every
hour and provide the NameNode with an up-to date

view of where block replicas are located on the

cluster.

File Access Method

File Read

 When an application reads a file, the HDFS

client first asks the NameNode for the list of

DataNodes that host replicas of the blocks of the file.

It then contacts a DataNode directly and requests the

transfer of the desired block.

File Write

 When a client writes, it first asks the

NameNode to choose DataNodes to host replicas of

the first block of the file. The client organizes a

pipeline from node-to-node and sends the data.

When the first block is filled, the client requests new

DataNodes to be chosen to host replicas of the next

block. A new pipeline is organized, and the client

sends the further bytes of the file. Each choice of

DataNodes is likely to be different.

Synchronization

 The Hadoop DFS implements a single-

writer, multiple-reader model. The Hadoop client

that opens a file for writing is granted a lease for the

file; no other client can write to the file. The writing

client periodically renews the lease. When the file is

closed, the lease is revoked. The writer's lease does

Sunita Suralkar, Ashwini Mujumdar, Gayatri Masiwal, Manasi Kulkarni / International

Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 3, Issue 1, January -February 2013, pp1293-1298

1298 | P a g e

not prevent other clients from reading the file; a file

may have many concurrent readers.

The interactions involved are shown in the figure

below:

Figure 4: File Access in Hadoop

Replication Management

 The blocks are replicated for reliability.

Hadoop has a method to identify and overcome the

issues of under-replication and over- replication. The

default number of replicas for each block is 3.

NameNode detects that a block has become under-
or over-replicated based on DataNode’s block

report. If over replicated, the NameNode chooses a

replica to remove. Preference is given to remove

from the DataNode with the least amount of

available disk space. If under-replicated, it is put in

the replication priority queue. A block with only one

replica has the highest priority, while a block with a

number of replicas that is greater than two thirds of

its replication factor has the lowest priority. It also

ensures that not all replicas of a block are located on

same physical location.

Consistency

 The Hadoop DFS use checksums with each

data block to maintain data consistency. The

checksums are verified by the client while reading to

help detect corruption caused either by the client, the

DataNodes, or network. When a client creates an

HDFS file, it computes the checksum sequence for

each block and sends it to a DataNode along with the

data. DataNode stores checksums in a metadata file

separate from the block’s data file. When HDFS

reads a file, each block’s data and checksums are
returned to the client.

Limitations of Hadoop DFS

1. Centralization: The Hadoop system uses a

centralized master server. So, the Hadoop cluster is

effectively unavailable when its NameNode is down.

Restarting the NameNode has been a satisfactory

recovery method so far and steps being taken

towards automated recovery.

2. Scalability: Since the NameNode keeps all the

namespace and block locations in memory, the size

of the NameNode heap limits number of files and
blocks addressable. One solution is to allow multiple

namespaces (and NameNodes) to share the physical

storage within a cluster.

VI. COMPARISON OF FILE SYSTEMS

File System AFS NFS GFS Hadoop

Architecture symmetric symmetric Clustered-
based,
asymmetric,

parallel,
objectbased

Clustered-
based,
asymmetric

, parallel,
objectbased

Processes Stateless Stateless Stateful Stateful

Communication RPC/

TCP

RPC/

TCP or
UDP

RPC/TCP RPC/TCP

& UDP

Naming - - Central
metadata
server

Central
metadata
server

Synchronizatio

n

Callback

promise

Read-

ahead,
delayed
-write

Write-once-

read-many,

Multiple

producer/Sing

le consumer,

Give locks on

objects to

clients, using

leases

Write-

once-read-
many, give
locks on
objects to
clients,
using
leases

Consistency
and
Replication

Callback
mechanis
m

 One

copy
semantics

, read

only file

stores

can be

replicate

d

Server side

replication,

Asynchronous

replication,

checksum,

relax

consistency

Among

replications of

data objects

Server side

replication,

Asynchrono

us

replication,

Checksum

Fault
Tolerance

Failure as
norm

Failure
as norm

Failure as
norm

Failure as
norm

Table 1: Comparision of AFS, NFS, GFS and

Hadoop

VII. CONCLUSION
 In this paper the Distributed Systems

implementations of Andrew, Sun Network, Google

and Hadoop are reviewed with their Architecture,
File System implementation, replication and

concurrency control techniques. The filesystems are

also compared based on their implementation.

REFERENCES
[1] Howard J. “An Overview of the Andrew

File System”.

[2] Sandberg R., Goldberg D., Kleiman S.,

Walsh D., Lyon B., “Design and

Implementation of the Sun Network
Filesystem”.

[3] Ghemawat S., Gobioff H., Leung S., “The

Google File System”.

[4] Shvacko K., Kunang H., Radia S., Chansler

R., “The Hadoop Distributed File System”,

IEEE 2010.

[5] Dean J., Ghemawat S., “MapReduce:

Simplified Data Processing on Large

Clusters”, OSDI 2004.

[6] Keerthivasan M., “Review of Distributed

File Systems: Concepts and Case Studies”,
ECE 677 Distributed Computing Systems

