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Abstract 
As more and more IP cores are integrated    

into  an   SOC  design,  the communication   flow   

between   IP cores   has increased  drastically and 

the efficiency of the on-chip bus has  become a 

dominant factor for the performance of a  system. 

The on-chip bus design can be divided into two 

parts, namely the interface and the internal 

architecture of the bus. In this work the well-

defined interface standard is adopted, the Open 

Core Protocol (OCP), and focus  on  the design  of 

the  internal bus architecture. The Open Core 

Protocol (OCP) is a core   centric  protocol  which  

defines  a  high- performance, bus-independent 

interface between IP cores that reduces  design 

time, design risk, and manufacturing costs for 

SOC designs. Main property of OCP is that it can 

be  configured with  respect  to  the  application  

required.  The OCP is chosen because of its 

advanced supporting    features such   as   

configurable sideband  control  signaling  and  test   

harness signals, when compared to other core 

protocols. 

 

I. Introduction 
An SOC  chip  usually  contains  a  large 

number of IP cores that communicate with each other   

through  on-chip  buses.  As  the  VLSI process  

technology continuously advances, the frequency and  

the amount   of the data communication between IP 

cores   increase substantially. As a result, the ability 

of on chip buses  to  deal  with  the  large  amount  of  

data traffic becomes a dominant factor for the overall 

performance. The design  of on-chip buses can be 
divided into two parts: bus interface and bus 

architecture. The bus interface involves a set of 

interface signals and their corresponding timing 

relationship, while the bus architecture refers to the   

internal   components   of   buses   and   the 

interconnections   among the   IP   cores.   The widely   

accepted  on-chip  bus,  AMBA  AHB, defines a set 

of  bus interface to facilitate basic (single) and burst 

read/write transactions. AHB also defines the internal 

bus architecture, which is mainly    a shared  bus  

composed  of multiplexors.    The  multiplexer-based    
bus architecture works well for a design with a small 

number  of  IP  cores.  When  the   number  of 

integrated   IP   cores   increases,     the 

communication between IP cores also increase and it 

becomes quite frequent that two or more master  IPs   

 

 

 

would  request  data  from  different slaves   at   the   

same   time.   The   shared   bus architecture   often  

cannot   provide efficient communication since only 

one bus  transaction can  be  supported  at  a  time.  

To  solve   this problem, two bus protocols have been 

proposed recently.   One   is   the   Advanced  
eXtensible Interface protocol (AXI) proposed by the 

ARM company.  AXI   defines   five  independent 

channels  (write  address,  write  data, write response, 

read address, and read data channels). Each  channel  

involves  a  set  of  signals.  AXI does not restrict the 

internal bus architecture and leaves   it   to   

designers.   Thus   designers   are allowed to integrate 

two  IP cores with AXI by either connecting the 

wires directly or invoking an in-house bus between 

them. The  other bus interface protocol is  proposed 

by   a  non- profitable organization, the Open Core 

Protocol – International Partnership (OCP-IP). OCP 
is an interface  (or socket) aiming to standardize and 

thus simplify the system integration problems. It 

facilitates system integration by defining a set of 

concrete   interface  (I/O  signals   and  the 

handshaking  protocol) which is independent of the 

bus architecture.  Based on this interface IP core 

designers can concentrate on designing the internal 

functionality of IP cores, bus designers can 

emphasize on the internal bus architecture, and 

system integrators can focus on the system issues 

such as the requirement of the bandwidth and the 
whole system architecture. In this way, system  

integration  becomes  much  more efficient. Most of 

the bus functionalities defined in AXI and OCP are 

quite  similar. The most conspicuous  difference  

between  them  is  that AXI divides    the   address 

channel  into independent  write  address  channel  

and  read address   channel   such   that   read   and   

write transactions  can  be  processed  

simultaneously. However, the additional  area of the 

separated address channels is the penalty.  Some 

previous work   has   investigated   on-chip   buses   
from various aspects. The work presented in [3] and 

[4] develops high-level AMBA bus models with fast 

simulation speed and high timing accuracy. The   

authors  in   [5]  propose   an automatic approach  to   

generate  high-level  bus  models from a formal 

channel model of OCP. In both of the above work, 

the authors concentrate on fast and accurate 

simulation models at high level but did not provide 

real hardware  implementation details. In [6], the 
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authors implement  the AXI interface   on   shared   

bus   architecture.   Even though it costs less in area, 

the benefit of AXI in the communication efficiency 

may be limited by the  shared-bus  architecture.  In  

this  paper  we propose a high-performance on-chip 

bus design with OCP as the bus interface. We choose 

OCP because it is open to the public and OCP-IP has 
provided some free tools to verify this protocol. 

Nevertheless,  most  bus design   techniques 

developed in this paper can also be applied  to the  

AXI  bus.  Our  proposed  bus  architecture features  

crossbar/partial-crossbar  based interconnect  and 

realizes  most  transactions defined in OCP, including 

1) single transactions, 

 2) burst  transactions,  3)  lock  transactions,  4) 

pipelined transactions, and 5)  out-of-order 

transactions.  In  addition,  the  proposed  bus  is 

flexible   such  that   one   can   adjust   the   bus 

architecture  according  to  the system requirement. 
One key issue of advanced buses is how to 

manipulate the order of transactions such that 

requests from masters and  responses from slaves  

can  be  carried  out  in  best  efficiency without 

violating any ordering constraint. In this work we 

have developed a key bus component called  the  

scheduler  to  handle  the  ordering issues  of   out-of-

order  transactions.  We  will show that the proposed 

crossbar/partial-crossbar bus architecture together 

with the scheduler can significantly   enhance  the   

communication efficiency of a complex SOC.  
Another notable feature  of  this  work  is  that  we  

employ  both transaction level modeling (TLM) and  

register transfer level (RTL) modeling to design the 

bus. We start from the TLM for the consideration of 

design flexibility and fast simulation speed. We then 

refine the  TLM design into synthesizable and  cycle-

accurate  RTL  codes  which  can  be synthesized into 

gate level hardware to facilitate accurate timing and 

functional  simulation. The proposed  bus  has been   

employed   in  a multimedia SOC  design  and  the  

results  show that   not   only   our   TLM   model   

has   better simulation  efficiency   comparing  to  a 
bus obtained through a commercial ESL tool,  but 

also our RTL on-chip bus design performs much 

more efficient than the multiplexer-based buses or  

those  without  out-of-order  feature  in  real SOC  

design.  The  remainder  of  this  paper  is organized  

as  follows.  The   various  advanced functionalities 

of on-chip buses are described in Section   2.   

Section   3   details   the   hardware architecture of the 

proposed bus. Section 4 gives the experimental 

results  which   show  the efficiency on both 

simulation speed and data communication. 

 

B. On-Chip Bus Functionalities 

We first describe the various bus functionalities 

including 

1) Burst, 2) lock, 3) pipelined, and 4) out-of- order 

transactions. 

1. Burst transactions 

The burst transactions allow the grouping of  

multiple  transactions  that  have  a  certain address  

relationship, and can be classified into multi-request   

burst   and   single-request   burst according to how 

many times the addresses are issued. FIGURE 1 

shows the two types of burst read  transactions.  The  
multi-request  burst  as defined in AHB is illustrated 

in FIGURE 1(a) where the address information must 

be issued for each  command of a burst transaction 

(e.g., A11, A12, A13 and A14). This may cause some 

unnecessary  overhead.  In  the  more  advanced bus 

architecture, the single-request burst transaction is 

supported. As shown in FIGURE 

1(b), which is the burst type defined in AXI, the 

address information is issued only once for each burst 

transaction. In our proposed bus design we support  

both  burst  transactions  such  that  IP cores  with  

various  burst   types  can  use  the proposed  on-chip  
bus  without  changing  their original   burst   

behavior.   FIGURE   1.   Burst transactions 

 

II. Lock transactions 
Lock  is  a  protection  mechanism  for 

masters  that  have  low  bus  priorities.  Without this 

mechanism  the  read/write  transactions  of masters 

with lower priority would be interrupted whenever   a   

higher-priority  master   issues   a request.  Lock  

transactions prevent  an  arbiter from performing 
arbitration and assure that the low priority masters 

can  complete its granted transaction without being 

interrupted._ Pipelined transactions   (outstanding 

transactions)Figure  2(a)   and 2(b) show   the 

difference between non pipelined and pipelined (also 

called  outstanding in  AXI) read transactions. In   

FIGURE   2(a),   for   a   non- pipelined transaction   

a   read   data   must   be returned after its 

corresponding address is issued plus a period of  

latency. For example, D21 is sent  right  after  A21  is  

issued plus t.  For  a pipelined transaction as shown 
in FIGURE 2(b), this hard link is not required. Thus 

A21 can be issued right after A11 is issued without 

waiting for there turn of data requested by A11 (i.e., 

D11-D14). 
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III. Out-of-order transactions 
The out-of-order transactions allow the 

return order of responses to be different from the 

order  of their requests. These transactions can  

significantly  improve  the  communication efficiency 

of an SOC system containing IP cores with  various  

access  latencies  as  illustrated  in FIGURE  3.  In  

FIGURE  3(a) which  does  not allow out-of-order 

transactions, the corresponding responses of A21 and  

A31 must be returned after the response of A11. With 

the support of out-of-order transactions as shown in 
FIGURE 3(b), the response with shorter access 

latency  (D21, D22 and  D31) can  be returned before 

those with longer latency (D11-D14) and thus the 

transactions can be completed in much less cycles. 

 

 
 

C. Hardware Design of the On-Chip Bus 

The architecture of the proposed on-chip bus 

is illustrated in FIGURE 3, where we show an 

example with two masters and two slaves. A crossbar  
architecture  is  employed  such  that more  than  one  

master  can  communicate  with more than one  slave 

simultaneously. If not all masters require the 

accessing paths to all slaves, partial crossbar 

architecture is also allowed. The main blocks of the 

proposed bus architecture are described next. 

 

1. Arbiter 
In traditional shared bus architecture, 
resource  contention  happens  whenever  more than 

one  master requests the bus at the same time. For a 

crossbar or partial crossbar architecture, resource 

contention occurs when more than one master is to 

access the same slave simultaneously.  In  the  

proposed  design  each slave  IP  is  associated  with  

an   arbiter  that determines which master can access 

the slave. 

 
 

2. Decoder 

Since more than one slave exists in  the 
system,  the  decoder  decodes  the  address  and 

decides which slave return response to the target 

master. In  addition, the proposed decoder also 

checks whether the transaction address is illegal or  

non  existent  and  responses  with  an  error message 

if necessary. 

 

3. Fsm-m & Fsm-s  

Depending on whether a transaction is a read  or  a  

write  operation,  the  request  and response  

processes  are  different.  For  a  write transaction, the  
data to be written is sent out together with the address 

of the target slave, and the transaction is complete 

when the target slave accepts the data and 

acknowledges the reception of the data. For a read 

operation, the address of the target slave is first sent 

out and the target slave will issue an accept signal 

when it receives the  message.   The  slave  then  

generates  the required data and sends  it to the bus 

where the data  will  be  properly  directed  to  the  

master requesting the data. The read transaction 

finally completes when the master accepts the 

response and   issues   an   acknowledge   signal.   In   
the proposed bus architecture, we employ two types 

of  finite  state  machines,  namely  FSM-M  and 

FSM-S to control the  flow of each transaction. FSM-

M acts as a master and generates the OCP signals of a 

master, while FSM-S acts as a slave and generates 

those of a slave. These finite state machines  are  

designed  in  a  way  that  burst, pipelined, and out-

or-order read/write transactions can all be properly 

controlled. 

 

4. Scheduler 
Out-of-order transactions in either OCP or AXI allow  

the  order of  the returned responses to be different 

from the order of the requests. In the OCP protocol, 

each out-of order transaction is tagged with a Tag ID 

by a master. For those transactions  with the same 

Tag ID, they  must  be  returned  in  the  same  order  

as requested, but for those with different  Tag ID, 

they can be returned in any order. In general, both in 
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order and out-of-order transactions are supported   in  

an  out-of  order  SOC  system. Whether  to  favor   

in-order   or  out-of-order transactions is a design  

issue of the bus. It is stated  that   conventional  bus  

scheduling algorithms tend to favor  the  in-order 

transactions,   while   the   ordering   mechanism 

proposed in favors out-of order transactions. In our 
proposed scheduler, we  reserve the flexibility  of  

being  in-order  response  first  or out-of-order  

response  first,  which  means  that system integrators 

are allowed  to select either order based on the 

applications. The architecture of the proposed 

scheduler is shown in FIGURE 5. 

A multiplexer, MUX1, is used to solve the  problem 

of resource contention when more than one slave 

returns the responses to the same master. It selects  

the response from the slave that has  the  highest  

priority.  The  function  of MUX2  will be described 

shortly. The recorder shown in the figure is used to 
keep track of the ID of the target slave and the Tag 

ID of every out-of-order transaction.  Whenever a 

response arrives, the comparator determines  whether 

the ordering   restriction is  violated  or not  by 

comparing the ID of the target slave and Tag ID. If 

no ordering   restriction is violated, the response is 

sent forward to the priority setter. If the restriction is  

violated, the response is sent backward to one of the 

inputs of MUX2, which is always a preferred input 

over the input from MUX1.The responses sent 

forward are  given a priority,   which   is   different   
from   the  slave priority, according to the Tag ID and 

are stored in   the   priority  queue.   For  the  

transactions without Tag ID, which are regarded as 

in-order transactions, the priority  setter sets the 

priority to 0 or the largest value to reflect  whether in- 

order first or out-of-order first policy is  used. 

Finally,  the  responses  stored  in  the  priority queue 

are returned to the masters from the first priority   to   

the   last   priority   such   that   the objective of 

“transactions with the same Tag ID are  returned  in-

order,  and  transactions  with different Tag ID can  

be  returned out-of-order” can   be  achieved.   To 
further   improve   the efficiency of the scheduler, the 

response can be forwarded to the master directly 

without  going through  the  priority  queue  when  

the  priority queue is empty. 

 

 
D.  Simulation  result  for  simple  write  and read 

The above developed FSM for the OCP 

Master  and  Slave  which  supports  the  simple write  

and  read  operation is  designed  using VHDL  and  

is  simulated.  The  designed  OCP master  and  slave  

are  integrated  as  a  single design and is simulated 

waveform represents the complete  transaction of 

simple write and read operation from  master to slave 

and vice-versa which is shown in Figure 6 

 

 
 

 
 

 
Figure 6. Waveform for OCP master and slave 

simple write and read 

 

E. Simulation results for burst operation 

The basic  working  of  OCP  master  and salve  is 

discussed based on their FSMs and in the design 

totally four OCP master and slave are present. OCP  
supports burst size of only 4, 8 and 16. 

 

1. Burst operation of size_16 

The  simulation  result  for  the  OCP master and 

slave of burst size 16 is shown in the Figure 7. 

The size is given as “010” which represents the burst 

size 16 and hence four continuous write or read   

operation   happens.  Here  the  count  is introduced 

in order to generate the address with respect the given  

initial address and the count increment. The operation  

remains the same as simple read and write but the 
only change is that after each operation, count will 

check for  the burst size. When the count is not equal 

to the burst size given, the count will get incremented 

and the next  address is get generated based on which 
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the read or write operation that currently performed  

is  carried  out.  When  the  count  is equal to burst 

length, that  represents  the burst operation over and 

count resets to  zero. Hence master and slave go 

IDLE state. 

 
 

 

IV. Conclusions 
This  project  work  presents  the  OCP 

(Open  Core Protocol) design which acts as an 

interface between two different IP cores. In this 

work, initially the  investigation on the OCP is 

carried  out  and  the  basic  commands  and  its 

working are identified based on which the signal flow 

diagram and the specifications are developed for 

designing the OCP using VHDL. This  OCP  will 

include two types of operation such  as   Simple   

Write  and  Read  and  Burst Operation. 
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